1
|
Wang MF, Li MY, Yang YC, Chuang YC, Tsai CY, Binder MC, Ma L, Lin SW, Li HW, Smith G, Chi P. Mug20-Rec25-Rec27 binds DNA and enhances meiotic DNA break formation via phase-separated condensates. Nucleic Acids Res 2025; 53:gkaf123. [PMID: 40037704 PMCID: PMC11879393 DOI: 10.1093/nar/gkaf123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are formed at hotspots to initiate homologous recombination, which is vital for reassorting genetic material. In fission yeast, the linear element (LinE) proteins Mug20, Rec25, and Rec27 interdependently bind chromosomal hotspots with high specificity and are necessary for high-level DSB formation. However, their mechanistic role in regulating the meiotic DSB machinery remains unknown. Here, using purified Mug20-Rec25-Rec27 (MRR) complex and functional intracellular analyses, we reveal that the MRR-DNA nucleoprotein complex assembles phase-separated condensates that compact the DNA. Notably, MRR complex formation is a prerequisite for DNA binding and condensate assembly, with Rec27 playing a pivotal role in directly binding DNA. Consistent with this finding, failure to form MRR-DNA condensates results in defective intracellular meiotic DSB formation and recombination. Our results provide mechanistic insights into how LinEs enhance meiotic DSB formation and provide a paradigm for studies in other species.
Collapse
Affiliation(s)
- Max F Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Meng-Yun Li
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Ching Yang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chien Chuang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - Chieh-Yu Tsai
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Mai-Chi Nguyen Binder
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - Lijuan Ma
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Lorenz A. Measuring Meiotic Recombination Frequency in Schizosaccharomyces pombe Using an Engineered Genetic Interval. Methods Mol Biol 2025; 2862:277-295. [PMID: 39527208 DOI: 10.1007/978-1-0716-4168-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fission yeast Schizosaccharomyces pombe has been used to elucidate meiotic recombination mechanisms for decades. Alongside the budding yeast Saccharomyces cerevisiae, research employing fission yeast has been instrumental in advancing our knowledge of double-stranded DNA break (DSB) formation and repair during meiosis. Genetic recombination assays are the workhorses of gene conversion and crossover frequency analysis; these have been employed to investigate cis and trans determinants of meiotic recombination. Here, I describe meiotic recombination assays engineered by the introduction of nutritional markers up- and downstream of the ade6 and ade7 genes. These particular setups enable a comprehensive assessment of reproductive success in a single assay because spore viability and the frequency of gene conversion, crossovers, and crossovers associated with gene conversion events are simultaneously measured.
Collapse
Affiliation(s)
- Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
3
|
Florsheim N, Naugolni L, Zahdeh F, Lobel O, Terespolsky B, Michaelson-Cohen R, Gold MY, Goldberg M, Renbaum P, Levy-Lahad E, Zangen D. Loss of function of FIGNL1, a DNA damage response gene, causes human ovarian dysgenesis. Eur J Endocrinol 2023; 189:K7-K14. [PMID: 37740949 DOI: 10.1093/ejendo/lvad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/25/2023]
Abstract
Ovarian dysgenesis (OD), an XX disorder of sex development, presents with primary amenorrhea, hypergonadotrophic hypogonadism, and infertility. In an Ashkenazi Jewish patient with OD, whole exome sequencing identified compound heterozygous frameshifts in FIGNL1, a DNA damage response (DDR) gene: c.189del and c.1519_1523del. Chromosomal breakage was significantly increased in patient cells, both spontaneously, and following mitomycin C exposure. Transfection of DYK-tagged FIGNL1 constructs in HEK293 cells showed no detectable protein in FIGNL1c.189del and truncation with reduced expression in FIGNL1c.1519_1523del (64% of wild-type [WT], P = .003). FIGNL1 forms nuclear foci increased by phleomycin treatment (20.6 ± 1.6 vs 14.8 ± 2.4, P = .02). However, mutant constructs showed reduced DYK-FIGNL1 foci formation in non-treated cells (0.8 ± 0.9 and 5.6 ± 1.5 vs 14.8 ± 2.4 in DYK-FIGNL1WT, P < .001) and no increase with phleomycin treatment. In conclusion, FIGNL1 loss of function is a newly characterized OD gene, highlighting the DDR pathway's role in ovarian development and maintenance and suggesting chromosomal breakage as an assessment tool in XX-DSD patients.
Collapse
Affiliation(s)
- Natan Florsheim
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Division of Pediatric Endocrinology, Hadassah Medical Center, Jerusalem, Israel
| | - Larisa Naugolni
- Pediatric Endocrinology and Diabetes Institute, Shamir Medical Center, Zerifin, Israel
| | - Fouad Zahdeh
- Translational Genomics Lab, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Orit Lobel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Batel Terespolsky
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Michaelson-Cohen
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Merav Y Gold
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Goldberg
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Zangen
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Division of Pediatric Endocrinology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
Dutreux F, Dutta A, Peltier E, Bibi-Triki S, Friedrich A, Llorente B, Schacherer J. Lessons from the meiotic recombination landscape of the ZMM deficient budding yeast Lachancea waltii. PLoS Genet 2023; 19:e1010592. [PMID: 36608114 PMCID: PMC9851511 DOI: 10.1371/journal.pgen.1010592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/19/2023] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiotic recombination is a driving force for genome evolution, deeply characterized in a few model species, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, Zip2, Zip3, Zip4, Spo16, Msh4, and Msh5, members of the so-called ZMM pathway that implements the interfering meiotic crossover pathway in S. cerevisiae, have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. In this context, after investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii. Attempts to generate diploid strains with fully hybrid genomes invariably resulted in strains with frequent whole-chromosome aneuploidy and multiple extended regions of loss of heterozygosity (LOH), which mechanistic origin is so far unclear. Despite the lack of multiple ZMM pro-crossover factors in L. waltii, numbers of crossovers and noncrossovers per meiosis were higher than in L. kluyveri but lower than in S. cerevisiae, for comparable genome sizes. Similar to L. kluyveri but opposite to S. cerevisiae, L. waltii exhibits an elevated frequency of zero-crossover bivalents. Lengths of gene conversion tracts for both crossovers and non-crossovers in L. waltii were comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tract size in S. cerevisiae. L. waltii recombination hotspots were not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, L. waltii crossover interference was reduced relative to S. cerevisiae, with interference being detected only in the 25 kb distance range. Detection of positive inference only at short distance scales in the absence of multiple ZMM factors required for interference-sensitive crossovers in other systems likely reflects interference between early recombination precursors such as DSBs.
Collapse
Affiliation(s)
- Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Emilien Peltier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France,* E-mail: (BL); (JS)
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France,Institut Universitaire de France (IUF), Paris, France,* E-mail: (BL); (JS)
| |
Collapse
|
5
|
Zattera ML, Bruschi DP. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells 2022; 11:3373. [PMID: 36359770 PMCID: PMC9659126 DOI: 10.3390/cells11213373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
The impact of transposable elements (TEs) on the evolution of the eukaryote genome has been observed in a number of biological processes, such as the recruitment of the host's gene expression network or the rearrangement of genome structure. However, TEs may also provide a substrate for the emergence of novel repetitive elements, which contribute to the generation of new genomic components during the course of the evolutionary process. In this review, we examine published descriptions of TEs that give rise to tandem sequences in an attempt to comprehend the relationship between TEs and the emergence of de novo satellite DNA families in eukaryotic organisms. We evaluated the intragenomic behavior of the TEs, the role of their molecular structure, and the chromosomal distribution of the paralogous copies that generate arrays of repeats as a substrate for the emergence of new repetitive elements in the genome. We highlight the involvement and importance of TEs in the eukaryote genome and its remodeling processes.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Departamento de Genética, Programa de Pós-Graduação em Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| | - Daniel Pacheco Bruschi
- Departamento de Genética, Laboratorio de Citogenética Evolutiva e Conservação Animal, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| |
Collapse
|
6
|
Abstract
Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.
Collapse
Affiliation(s)
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
7
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
8
|
Dukić M, Bomblies K. Male and female recombination landscapes of diploid Arabidopsis arenosa. Genetics 2022; 220:iyab236. [PMID: 35100396 PMCID: PMC8893250 DOI: 10.1093/genetics/iyab236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The number and placement of meiotic crossover events during meiosis have important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here, we generate genetic maps for 2 diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Marinela Dukić
- Department of Biology, Plant Evolutionary Genetics, Institute of Plant Molecular Biology, ETH Zürich, Zürich 8092, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Plant Evolutionary Genetics, Institute of Plant Molecular Biology, ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
9
|
Chuang YC, Smith GR. Dynamic configurations of meiotic DNA-break hotspot determinant proteins. J Cell Sci 2022; 135:jcs259061. [PMID: 35028663 PMCID: PMC8918816 DOI: 10.1242/jcs.259061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022] Open
Abstract
Appropriate DNA double-strand break (DSB) and crossover distributions are required for proper meiotic chromosome segregation. Schizosaccharomyces pombe linear element proteins (LinEs) determine DSB hotspots; LinE-bound hotspots form three-dimensional clusters over ∼200 kb chromosomal regions. Here, we investigated LinE configurations and distributions in live cells using super-resolution fluorescence microscopy. We found LinEs form two chromosomal structures, dot-like and linear structures, in both zygotic and azygotic meiosis. Dot-like LinE structures appeared around the time of meiotic DNA replication, underwent dotty-to-linear-to-dotty configurational transitions and disassembled before the first meiotic division. DSB formation and repair did not detectably influence LinE structure formation but failure of DSB formation delayed disassembly. Recombination-deficient LinE missense mutants formed dot-like, but not linear, LinE structures. Our quantitative study reveals a transient form of LinE structures and suggests a novel role for LinE proteins in regulating meiotic events, such as DSB repair. We discuss the relationship of LinEs and the synaptonemal complex in other species. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Hyppa RW, Cho JD, Nambiar M, Smith GR. Redirecting meiotic DNA break hotspot determinant proteins alters localized spatial control of DNA break formation and repair. Nucleic Acids Res 2022; 50:899-914. [PMID: 34967417 PMCID: PMC8789058 DOI: 10.1093/nar/gkab1253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
During meiosis, DNA double-strand breaks (DSBs) are formed at high frequency at special chromosomal sites, called DSB hotspots, to generate crossovers that aid proper chromosome segregation. Multiple chromosomal features affect hotspot formation. In the fission yeast S. pombe the linear element proteins Rec25, Rec27 and Mug20 are hotspot determinants - they bind hotspots with high specificity and are necessary for nearly all DSBs at hotspots. To assess whether they are also sufficient for hotspot determination, we localized each linear element protein to a novel chromosomal site (ade6 with lacO substitutions) by fusion to the Escherichia coli LacI repressor. The Mug20-LacI plus lacO combination, but not the two separate lac elements, produced a strong ade6 DSB hotspot, comparable to strong endogenous DSB hotspots. This hotspot had unexpectedly low ade6 recombinant frequency and negligible DSB hotspot competition, although like endogenous hotspots it manifested DSB interference. We infer that linear element proteins must be properly placed by endogenous functions to impose hotspot competition and proper partner choice for DSB repair. Our results support and expand our previously proposed DSB hotspot-clustering model for local control of meiotic recombination.
Collapse
Affiliation(s)
- Randy W Hyppa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua D Cho
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Sanchez A, Reginato G, Cejka P. Crossover or non-crossover outcomes: tailored processing of homologous recombination intermediates. Curr Opin Genet Dev 2021; 71:39-47. [PMID: 34293660 DOI: 10.1016/j.gde.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
DNA breaks may arise accidentally in vegetative cells or in a programmed manner in meiosis. The usage of a DNA template makes homologous recombination potentially error-free, however, recombination is not always accurate. Cells possess a remarkable capacity to tailor processing of recombination intermediates to fulfill a particular need. Vegetatively growing cells aim to maintain genome stability and therefore repair accidental breaks largely accurately, using sister chromatids as templates, into mostly non-crossovers products. Recombination in meiotic cells is instead more likely to employ homologous chromosomes as templates and result in crossovers to allow proper chromosome segregation and promote genetic diversity. Here we review models explaining the processing of recombination intermediates in vegetative and meiotic cells and its regulation, with a focus on MLH1-MLH3-dependent crossing-over during meiotic recombination.
Collapse
Affiliation(s)
- Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
12
|
Sevcovicova A, Plava J, Gazdarica M, Szabova E, Huraiova B, Gaplovska-Kysela K, Cipakova I, Cipak L, Gregan J. Mapping and Analysis of Swi5 and Sfr1 Phosphorylation Sites. Genes (Basel) 2021; 12:1014. [PMID: 34208949 PMCID: PMC8305525 DOI: 10.3390/genes12071014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023] Open
Abstract
The evolutionarily conserved Swi5-Sfr1 complex plays an important role in homologous recombination, a process crucial for the maintenance of genomic integrity. Here, we purified Schizosaccharomyces pombe Swi5-Sfr1 complex from meiotic cells and analyzed it by mass spectrometry. Our analysis revealed new phosphorylation sites on Swi5 and Sfr1. We found that mutations that prevent phosphorylation of Swi5 and Sfr1 do not impair their function but swi5 and sfr1 mutants encoding phosphomimetic aspartate at the identified phosphorylation sites are only partially functional. We concluded that during meiosis, Swi5 associates with Sfr1 and both Swi5 and Sfr1 proteins are phosphorylated. However, the functional relevance of Swi5 and Sfr1 phosphorylation remains to be determined.
Collapse
Affiliation(s)
- Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Jana Plava
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Matej Gazdarica
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Szabova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Katarina Gaplovska-Kysela
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
13
|
Wintrebert M, Nguyen MC, Smith GR. Activation of meiotic recombination by nuclear import of the DNA break hotspot-determining complex in fission yeast. J Cell Sci 2021; 134:jcs253518. [PMID: 33526714 PMCID: PMC7929924 DOI: 10.1242/jcs.253518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Meiotic recombination forms crossovers important for proper chromosome segregation and offspring viability. This complex process involves many proteins acting at each of the multiple steps of recombination. Recombination initiates by formation of DNA double-strand breaks (DSBs), which in the several species examined occur with high frequency at special sites (DSB hotspots). In Schizosaccharomyces pombe, DSB hotspots are bound with high specificity and strongly activated by linear element (LinE) proteins Rec25, Rec27 and Mug20, which form colocalized nuclear foci with Rec10, essential for all DSB formation and recombination. Here, we test the hypothesis that the nuclear localization signal (NLS) of Rec10 is crucial for coordinated nuclear entry after forming a complex with other LinE proteins. In NLS mutants, all LinE proteins were abundant in the cytoplasm, not the nucleus; DSB formation and recombination were much reduced but not eliminated. Nuclear entry of limited amounts of Rec10, apparently small enough for passive nuclear entry, can account for residual recombination. LinE proteins are related to synaptonemal complex proteins of other species, suggesting that they also share an NLS, not yet identified, and undergo protein complex formation before nuclear entry.This article has an associated First Person interview with Mélody Wintrebert, joint first author of the paper.
Collapse
Affiliation(s)
- Mélody Wintrebert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mai-Chi Nguyen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Ferreira MTM, Glombik M, Perničková K, Duchoslav M, Scholten O, Karafiátová M, Techio VH, Doležel J, Lukaszewski AJ, Kopecký D. Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:254-267. [PMID: 33029645 PMCID: PMC7853598 DOI: 10.1093/jxb/eraa455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Crossing over, in addition to its strictly genetic role, also performs a critical mechanical function, by bonding homologues in meiosis. Hence, it is responsible for an orderly reduction of the chromosome number. As such, it is strictly controlled in frequency and distribution. The well-known crossover control is positive crossover interference which reduces the probability of a crossover in the vicinity of an already formed crossover. A poorly studied aspect of the control is chromatid interference. Such analyses are possible in very few organisms as they require observation of all four products of a single meiosis. Here, we provide direct evidence of chromatid interference. Using in situ probing in two interspecific plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei) during anaphase I, we demonstrate that the involvement of four chromatids in double crossovers is significantly more frequent than expected (64% versus 25%). We also provide a physical measure of the crossover interference distance, covering ~30-40% of the relative chromosome arm length, and show that the centromere acts as a barrier for crossover interference. The two arms of a chromosome appear to act as independent units in the process of crossing over. Chromatid interference has to be seriously addressed in genetic mapping approaches and further studies.
Collapse
Affiliation(s)
- Marco Tulio Mendes Ferreira
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Department of Biology, Federal University of Lavras, Lavras-MG, Brazil
| | - Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Kateřina Perničková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Olga Scholten
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
15
|
Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex. Sci Rep 2020; 10:9792. [PMID: 32555361 PMCID: PMC7299967 DOI: 10.1038/s41598-020-66429-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
Dinoflagellates of the Symbiodiniaceae family encompass diverse symbionts that are critical to corals and other species living in coral reefs. It is well known that sexual reproduction enhances adaptive evolution in changing environments. Although genes related to meiotic functions were reported in Symbiodiniaceae, cytological evidence of meiosis and fertilisation are however yet to be observed in these taxa. Using transcriptome and genome data from 21 Symbiodiniaceae isolates, we studied genes that encode proteins associated with distinct stages of meiosis and syngamy. We report the absence of genes that encode main components of the synaptonemal complex (SC), a protein structure that mediates homologous chromosomal pairing and class I crossovers. This result suggests an independent loss of canonical SCs in the alveolates, that also includes the SC-lacking ciliates. We hypothesise that this loss was due in part to permanently condensed chromosomes and repeat-rich sequences in Symbiodiniaceae (and other dinoflagellates) which favoured the SC-independent class II crossover pathway. Our results reveal novel insights into evolution of the meiotic molecular machinery in the ecologically important Symbiodiniaceae and in other eukaryotes.
Collapse
|
16
|
Smith GR, Nambiar M. New Solutions to Old Problems: Molecular Mechanisms of Meiotic Crossover Control. Trends Genet 2020; 36:337-346. [PMID: 32294414 PMCID: PMC7162993 DOI: 10.1016/j.tig.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/25/2023]
Abstract
During scientific investigations, the explanation of remarkably interesting phenomena must often await development of new methods or accrual of new observations that in retrospect can lead to lucid answers to the initial problem. A case in point is the control of genetic recombination during meiosis, which leads to crossovers between chromosomes critical for production of healthy offspring. Crossovers must be properly placed along meiotic chromosomes for their accurate segregation. Here, we review observations on two aspects of meiotic crossover control - crossover interference and repression of crossovers near centromeres, both observed more than 85 years ago. Only recently have relatively simple molecular mechanisms for these phenomena become clear through advances in both methods and understanding the molecular basis of meiotic recombination.
Collapse
Affiliation(s)
- Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|