1
|
Chen F, Xu W, Tang M, Tian Y, Shu Y, He X, Zhou L, Liu Q, Zhu Q, Lu X, Zhang J, Zhu WG. hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability. Cell Death Differ 2025; 32:382-396. [PMID: 39511404 PMCID: PMC11893882 DOI: 10.1038/s41418-024-01412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Repair of double strand breaks (DSBs) by RNA-binding proteins (RBPs) is vital for ensuring genome integrity. DSB repair is accompanied by local transcriptional repression in the vicinity of transcriptionally active genes, but the mechanism by which RBPs regulate transcriptional regulation is unclear. Here, we demonstrated that RBP hnRNPA2B1 functions as a RNA polymerase-associated factor that stabilizes the transcription complex under physiological conditions. Following a DSB, hnRNPA2B1 is released from damaged chromatin, reducing the efficiency of RNAPII complex assembly, leading to local transcriptional repression. Mechanistically, SIRT6 deacetylates hnRNPA2B1 at K113/173 residues, enforcing its rapid detachment from DSBs. This process disrupts the integrity of the RNAPII complex on active chromatin, which is a pre-requisite for transient but complete repression of local transcription. Functionally, the overexpression of an acetylation mimic stabilizes the transcription complex and facilitates the functioning of the transcription machinery. hnRNPA2B1 acetylation status was negatively correlated with SIRT6 expression, and acetylation mimic enhanced radio-sensitivity in vivo. Our findings demonstrate that hnRNPA2B1 is crucial for transcriptional repression. We have uncovered the missing link between DSB repair and transcriptional regulation in genome stability maintenance, highlighting the potential of hnRNPA2B1 as a therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wenchao Xu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Tian
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yuxin Shu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Xingkai He
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Linmin Zhou
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qi Liu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qian Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
2
|
Mamontova V, Trifault B, Gribling-Burrer AS, Bohn P, Boten L, Preckwinkel P, Gallant P, Solvie D, Ade CP, Papadopoulos D, Eilers M, Gutschner T, Smyth RP, Burger K. NEAT1 promotes genome stability via m 6A methylation-dependent regulation of CHD4. Genes Dev 2024; 38:915-930. [PMID: 39362776 PMCID: PMC11535147 DOI: 10.1101/gad.351913.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear. Here, we investigate the expression, modification, localization, and structure of NEAT1 in response to DNA double-strand breaks (DSBs). DNA damage increases the levels and N6-methyladenosine (m6A) marks on NEAT1, which promotes alterations in NEAT1 structure, accumulation of hypermethylated NEAT1 at promoter-associated DSBs, and DSB signaling. The depletion of NEAT1 impairs DSB focus formation and elevates DNA damage. The genome-protective role of NEAT1 is mediated by the RNA methyltransferase 3 (METTL3) and involves the release of the chromodomain helicase DNA binding protein 4 (CHD4) from NEAT1 to fine-tune histone acetylation at DSBs. Our data suggest a direct role for NEAT1 in DDR.
Collapse
Affiliation(s)
- Victoria Mamontova
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Barbara Trifault
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, 97808 Würzburg, Germany
| | - Patrick Bohn
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, 97808 Würzburg, Germany
| | - Lea Boten
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Pit Preckwinkel
- Department of RNA Biology and Pathogenesis, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, 06120 Halle, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Daniel Solvie
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Dimitrios Papadopoulos
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Tony Gutschner
- Department of RNA Biology and Pathogenesis, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, 06120 Halle, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, 97808 Würzburg, Germany
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany;
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Cao H, Zhang Y, Song T, Xia L, Cai Y, Kapranov P. Common occurrence of hotspots of single strand DNA breaks at transcriptional start sites. BMC Genomics 2024; 25:368. [PMID: 38622509 PMCID: PMC11017599 DOI: 10.1186/s12864-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND We recently developed two high-resolution methods for genome-wide mapping of two prominent types of DNA damage, single-strand DNA breaks (SSBs) and abasic (AP) sites and found highly complex and non-random patterns of these lesions in mammalian genomes. One salient feature of SSB and AP sites was the existence of single-nucleotide hotspots for both lesions. RESULTS In this work, we show that SSB hotspots are enriched in the immediate vicinity of transcriptional start sites (TSSs) in multiple normal mammalian tissues, however the magnitude of enrichment varies significantly with tissue type and appears to be limited to a subset of genes. SSB hotspots around TSSs are enriched on the template strand and associate with higher expression of the corresponding genes. Interestingly, SSB hotspots appear to be at least in part generated by the base-excision repair (BER) pathway from the AP sites. CONCLUSIONS Our results highlight complex relationship between DNA damage and regulation of gene expression and suggest an exciting possibility that SSBs at TSSs might function as sensors of DNA damage to activate genes important for DNA damage response.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Yufei Zhang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Tianrong Song
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, 361000, Xiamen, China
| | - Ye Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
4
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
5
|
Gómez-González B, Aguilera A. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe? EMBO Rep 2023; 24:e57801. [PMID: 37818834 DOI: 10.15252/embr.202357801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
6
|
Wang Z, Castillo-González CM, Zhao C, Tong CY, Li C, Zhong S, Liu Z, Xie K, Zhu J, Wu Z, Peng X, Jacob Y, Michaels SD, Jacobsen SE, Zhang X. H3.1K27me1 loss confers Arabidopsis resistance to Geminivirus by sequestering DNA repair proteins onto host genome. Nat Commun 2023; 14:7484. [PMID: 37980416 PMCID: PMC10657422 DOI: 10.1038/s41467-023-43311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Changjiang Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhiyang Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kaili Xie
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhongshou Wu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xu Peng
- Department of Molecular Physiology, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Yannick Jacob
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Scott D Michaels
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Cowell IG, Casement JW, Austin CA. To Break or Not to Break: The Role of TOP2B in Transcription. Int J Mol Sci 2023; 24:14806. [PMID: 37834253 PMCID: PMC10573011 DOI: 10.3390/ijms241914806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and its regulation pose challenges related to DNA torsion and supercoiling of the DNA template. RNA polymerase tracking the helical groove of the DNA introduces positive helical torsion and supercoiling upstream and negative torsion and supercoiling behind its direction of travel. This can inhibit transcriptional elongation and other processes essential to transcription. In addition, chromatin remodeling associated with gene activation can generate or be hindered by excess DNA torsional stress in gene regulatory regions. These topological challenges are solved by DNA topoisomerases via a strand-passage reaction which involves transiently breaking and re-joining of one (type I topoisomerases) or both (type II topoisomerases) strands of the phosphodiester backbone. This review will focus on one of the two mammalian type II DNA topoisomerase enzymes, DNA topoisomerase II beta (TOP2B), that have been implicated in correct execution of developmental transcriptional programs and in signal-induced transcription, including transcriptional activation by nuclear hormone ligands. Surprisingly, several lines of evidence indicate that TOP2B-mediated protein-free DNA double-strand breaks are involved in signal-induced transcription. We discuss the possible significance and origins of these DSBs along with a network of protein interaction data supporting a variety of roles for TOP2B in transcriptional regulation.
Collapse
Affiliation(s)
- Ian G. Cowell
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John W. Casement
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A. Austin
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
8
|
Davó-Martínez C, Helfricht A, Ribeiro-Silva C, Raams A, Tresini M, Uruci S, van Cappellen W, Taneja N, Demmers JA, Pines A, Theil A, Vermeulen W, Lans H. Different SWI/SNF complexes coordinately promote R-loop- and RAD52-dependent transcription-coupled homologous recombination. Nucleic Acids Res 2023; 51:9055-9074. [PMID: 37470997 PMCID: PMC10516656 DOI: 10.1093/nar/gkad609] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The SWI/SNF family of ATP-dependent chromatin remodeling complexes is implicated in multiple DNA damage response mechanisms and frequently mutated in cancer. The BAF, PBAF and ncBAF complexes are three major types of SWI/SNF complexes that are functionally distinguished by their exclusive subunits. Accumulating evidence suggests that double-strand breaks (DSBs) in transcriptionally active DNA are preferentially repaired by a dedicated homologous recombination pathway. We show that different BAF, PBAF and ncBAF subunits promote homologous recombination and are rapidly recruited to DSBs in a transcription-dependent manner. The PBAF and ncBAF complexes promote RNA polymerase II eviction near DNA damage to rapidly initiate transcriptional silencing, while the BAF complex helps to maintain this transcriptional silencing. Furthermore, ARID1A-containing BAF complexes promote RNaseH1 and RAD52 recruitment to facilitate R-loop resolution and DNA repair. Our results highlight how multiple SWI/SNF complexes perform different functions to enable DNA repair in the context of actively transcribed genes.
Collapse
Affiliation(s)
- Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Maria Tresini
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Sidrit Uruci
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
9
|
Jauch AJ, Bignucolo O, Seki S, Ghraichy M, Delmonte OM, von Niederhäusern V, Higgins R, Ghosh A, Nishizawa M, Tanaka M, Baldrich A, Köppen J, Hirsiger JR, Hupfer R, Ehl S, Rensing-Ehl A, Hopfer H, Prince SS, Daley SR, Marquardsen FA, Meyer BJ, Tamm M, Daikeler TD, Diesch T, Kühne T, Helbling A, Berkemeier C, Heijnen I, Navarini AA, Trück J, de Villartay JP, Oxenius A, Berger CT, Hess C, Notarangelo LD, Yamamoto H, Recher M. Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency. J Allergy Clin Immunol 2023; 152:500-516. [PMID: 37004747 PMCID: PMC10529397 DOI: 10.1016/j.jaci.2023.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.
Collapse
Affiliation(s)
- Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Marie Ghraichy
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Valentin von Niederhäusern
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rebecca Higgins
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Adhideb Ghosh
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julius Köppen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Helmut Hopfer
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland
| | - Florian A Marquardsen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Michael Tamm
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Thomas D Daikeler
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Tamara Diesch
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Thomas Kühne
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Arthur Helbling
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Caroline Berkemeier
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Johannes Trück
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherché 1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- University Center for Immunology, University Hospital Basel, Basel, Switzerland; Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Oberdoerffer P, Miller KM. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin Cell Dev Biol 2023; 135:59-72. [PMID: 35331626 PMCID: PMC9489817 DOI: 10.1016/j.semcdb.2022.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Cao H, Zhang Y, Cai Y, Tang L, Gao F, Xu D, Kapranov P. Hotspots of single-strand DNA “breakome” are enriched at transcriptional start sites of genes. Front Mol Biosci 2022; 9:895795. [PMID: 36046604 PMCID: PMC9420937 DOI: 10.3389/fmolb.2022.895795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023] Open
Abstract
Single-strand breaks (SSBs) represent one of the most common types of DNA damage, yet not much is known about the genome landscapes of this type of DNA lesions in mammalian cells. Here, we found that SSBs are more likely to occur in certain positions of the human genome—SSB hotspots—in different cells of the same cell type and in different cell types. We hypothesize that the hotspots are likely to represent biologically relevant breaks. Furthermore, we found that the hotspots had a prominent tendency to be enriched in the immediate vicinity of transcriptional start sites (TSSs). We show that these hotspots are not likely to represent technical artifacts or be caused by common mechanisms previously found to cause DNA cleavage at promoters, such as apoptotic DNA fragmentation or topoisomerase type II (TOP2) activity. Therefore, such TSS-associated hotspots could potentially be generated using a novel mechanism that could involve preferential cleavage at cytosines, and their existence is consistent with recent studies suggesting a complex relationship between DNA damage and regulation of gene expression.
Collapse
|
13
|
Trifault B, Mamontova V, Burger K. In vivo Proximity Labeling of Nuclear and Nucleolar Proteins by a Stably Expressed, DNA Damage-Responsive NONO-APEX2 Fusion Protein. Front Mol Biosci 2022; 9:914873. [PMID: 35733943 PMCID: PMC9207311 DOI: 10.3389/fmolb.2022.914873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular stress can induce DNA lesions that threaten the stability of genes. The DNA damage response (DDR) recognises and repairs broken DNA to maintain genome stability. Intriguingly, components of nuclear paraspeckles like the non-POU domain containing octamer-binding protein (NONO) participate in the repair of DNA double-strand breaks (DSBs). NONO is a multifunctional RNA-binding protein (RBP) that facilitates the retention and editing of messenger (m)RNA as well as pre-mRNA processing. However, the role of NONO in the DDR is poorly understood. Here, we establish a novel human U2OS cell line that expresses NONO fused to the engineered ascorbate peroxidase 2 (U2OS:NONO-APEX2-HA). We show that NONO-APEX2-HA accumulates in the nucleolus in response to DNA damage. Combining viability assays, subcellular localisation studies, coimmunoprecipitation experiments and in vivo proximity labeling, we demonstrate that NONO-APEX2-HA is a stably expressed fusion protein that mimics endogenous NONO in terms of expression, localisation and bona fide interactors. We propose that in vivo proximity labeling in U2OS:NONO-APEX2-HA cells is capable for the assessment of NONO interactomes by downstream assays. U2OS:NONO-APEX2-HA cells will likely be a valuable resource for the investigation of NONO interactome dynamics in response to DNA damage and other stimuli.
Collapse
|
14
|
Kathjoo MB, Srivastava M. A link between DNA double‐strand breaks and regulation of global translation. FEBS J 2022; 289:3093-3096. [DOI: 10.1111/febs.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022]
|
15
|
Zinc finger protein 280C contributes to colorectal tumorigenesis by maintaining epigenetic repression at H3K27me3-marked loci. Proc Natl Acad Sci U S A 2022; 119:e2120633119. [PMID: 35605119 PMCID: PMC9295756 DOI: 10.1073/pnas.2120633119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study uncovered the role of ZNF280C, a known DNA damage response protein, as a tumorigenic transcription regulator that contributes to colorectal tumorigenesis and metastasis through maintaining an epigenetic repression program at key cancer gene loci. These findings identified a contributor with potential prognostic value to colorectal pathogenesis and provide mechanistic insight to the essential function of transcription factor in fine-tuning the activity of chromatin regulators for proper transcription control. Dysregulated epigenetic and transcriptional programming due to abnormalities of transcription factors (TFs) contributes to and sustains the oncogenicity of cancer cells. Here, we unveiled the role of zinc finger protein 280C (ZNF280C), a known DNA damage response protein, as a tumorigenic TF in colorectal cancer (CRC), required for colitis-associated carcinogenesis and Apc deficiency–driven intestinal tumorigenesis in mice. Consistently, ZNF280C silencing in human CRC cells inhibited proliferation, clonogenicity, migration, xenograft growth, and liver metastasis. As a C2H2 (Cys2-His2) zinc finger-containing TF, ZNF280C occupied genomic intervals with both transcriptionally active and repressive states and coincided with CCCTC-binding factor (CTCF) and cohesin binding. Notably, ZNF280C was crucial for the repression program of trimethylation of histone H3 at lysine 27 (H3K27me3)-marked genes and the maintenance of both focal and broad H3K27me3 levels. Mechanistically, ZNF280C counteracted CTCF/cohesin activities and condensed the chromatin environment at the cis elements of certain tumor suppressor genes marked by H3K27me3, at least partially through recruiting the epigenetic repressor structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1). In clinical relevance, ZNF280C was highly expressed in primary CRCs and distant metastases, and a higher ZNF280C level independently predicted worse prognosis of CRC patients. Thus, our study uncovered a contributor with good prognostic value to CRC pathogenesis and also elucidated the essence of DNA-binding TFs in orchestrating the epigenetic programming of gene regulation.
Collapse
|
16
|
Abu-Zhayia ER, Bishara LA, Machour FE, Barisaac AS, Ben-Oz BM, Ayoub N. CDYL1-dependent decrease in lysine crotonylation at DNA double-strand break sites functionally uncouples transcriptional silencing and repair. Mol Cell 2022; 82:1940-1955.e7. [PMID: 35447080 DOI: 10.1016/j.molcel.2022.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/17/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Previously, we showed that CDYL1 is recruited to DNA double-strand breaks (DSBs) to promote homologous recombination (HR) repair and foster transcriptional silencing. However, how CDYL1 elicits DSB-induced silencing is not fully understood. Here, we identify a CDYL1-dependent local decrease in the transcriptionally active marks histone lysine crotonylation (Kcr) and crotonylated lysine 9 of H3 (H3K9cr) at AsiSI-induced DSBs, which correlates with transcriptional silencing. Mechanistically, we reveal that CDYL1 crotonyl-CoA hydratase activity counteracts Kcr and H3K9cr at DSB sites, which triggers the eviction of the transcription elongation factor ENL and fosters transcriptional silencing. Furthermore, genetic inhibition of CDYL1 hydratase activity blocks the reduction in H3K9cr and alleviates DSB-induced silencing, whereas HR efficiency unexpectedly remains intact. Therefore, our results functionally uncouple the repair and silencing activity of CDYL1 at DSBs. In a broader context, we address a long-standing question concerning the functional relationship between HR repair and DSB-induced silencing, suggesting that they may occur independently.
Collapse
Affiliation(s)
- Enas R Abu-Zhayia
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Laila A Bishara
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Feras E Machour
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alma Sophia Barisaac
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Bella M Ben-Oz
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
17
|
Fitieh A, Locke AJ, Mashayekhi F, Khaliqdina F, Sharma AK, Ismail IH. BMI-1 regulates DNA end resection and homologous recombination repair. Cell Rep 2022; 38:110536. [PMID: 35320715 DOI: 10.1016/j.celrep.2022.110536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/12/2021] [Accepted: 02/28/2022] [Indexed: 11/03/2022] Open
Abstract
BMI-1 is an essential regulator of transcriptional silencing during development. Recently, the role of BMI-1 in the DNA damage response has gained much attention, but the exact mechanism of how BMI-1 participates in the process is unclear. Here, we establish a role for BMI-1 in the repair of DNA double-strand breaks by homologous recombination (HR), where it promotes DNA end resection. Mechanistically, BMI-1 mediates DNA end resection by facilitating the recruitment of CtIP, thus allowing RPA and RAD51 accumulation at DNA damage sites. Interestingly, treatment with transcription inhibitors rescues the DNA end resection defects of BMI-1-depleted cells, suggesting BMI-1-dependent transcriptional silencing mediates DNA end resection. Moreover, we find that H2A ubiquitylation at K119 (H2AK119ub) promotes end resection. Taken together, our results identify BMI-1-mediated transcriptional silencing and promotion of H2AK119ub deposition as essential regulators of DNA end resection and thus the progression of HR.
Collapse
Affiliation(s)
- Amira Fitieh
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt; Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Andrew J Locke
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fajr Khaliqdina
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ajit K Sharma
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ismail Hassan Ismail
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt; Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
18
|
Böttcher R, Schmidts I, Nitschko V, Duric P, Förstemann K. RNA polymerase II is recruited to DNA double-strand breaks for dilncRNA transcription in Drosophila. RNA Biol 2021; 19:68-77. [PMID: 34965182 PMCID: PMC8786327 DOI: 10.1080/15476286.2021.2014694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
DNA double-strand breaks are among the most toxic lesions that can occur in a genome and their faithful repair is thus of great importance. Recent findings have uncovered local transcription that initiates at the break and forms a non-coding transcript, called damage-induced long non-coding RNA (dilncRNA), which helps to coordinate the DNA transactions necessary for repair. We provide nascent RNA sequencing-based evidence that RNA polymerase II transcribes the dilncRNA in Drosophila and that this is more efficient for DNA breaks in an intron-containing gene, consistent with the higher damage-induced siRNA levels downstream of an intron. The spliceosome thus stimulates recruitment of RNA polymerase II to the break, rather than merely promoting the annealing of sense and antisense RNA to form the siRNA precursor. In contrast, RNA polymerase III nascent RNA libraries did not contain reads corresponding to the cleaved loci and selective inhibition of RNA polymerase III did not reduce the yield of damage-induced siRNAs. Finally, the damage-induced siRNA density was unchanged downstream of a T8 sequence, which terminates RNA polymerase III transcription. We thus found no evidence for a participation of RNA polymerase III in dilncRNA transcription in cultured Drosophila cells.
Collapse
Affiliation(s)
- Romy Böttcher
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Ines Schmidts
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Volker Nitschko
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Petar Duric
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Klaus Förstemann
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
19
|
Min S, Lee HS, Ji JH, Heo Y, Kim Y, Chae S, Choi YW, Kang HC, Nakanishi M, Cho H. The chromatin remodeler RSF1 coordinates epigenetic marks for transcriptional repression and DSB repair. Nucleic Acids Res 2021; 49:12268-12283. [PMID: 34850117 PMCID: PMC8643642 DOI: 10.1093/nar/gkab1093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
DNA lesions impact on local transcription and the damage-induced transcriptional repression facilitates efficient DNA repair. However, how chromatin dynamics cooperates with these two events remained largely unknown. We here show that histone H2A acetylation at K118 is enriched in transcriptionally active regions. Under DNA damage, the RSF1 chromatin remodeling factor recruits HDAC1 to DSB sites. The RSF1-HDAC1 complex induces the deacetylation of H2A(X)-K118 and its deacetylation is indispensable for the ubiquitination of histone H2A at K119. Accordingly, the acetylation mimetic H2A-K118Q suppressed the H2A-K119ub level, perturbing the transcriptional repression at DNA lesions. Intriguingly, deacetylation of H2AX at K118 also licenses the propagation of γH2AX and recruitment of MDC1. Consequently, the H2AX-K118Q limits DNA repair. Together, the RSF1-HDAC1 complex controls the traffic of the DNA damage response and transcription simultaneously in transcriptionally active chromatins. The interplay between chromatin remodelers and histone modifiers highlights the importance of chromatin versatility in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Sunwoo Min
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ho-Soo Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, TX 78229-3000, USA
| | - Yungyeong Heo
- Department of Biomedical Sciences, the Graduate School of Ajou University, Suwon, Korea
| | - Yonghyeon Kim
- Department of Biomedical Sciences, the Graduate School of Ajou University, Suwon, Korea
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Korea
| | - Yong Won Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Ho-Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
20
|
Ortega P, Gómez-González B, Aguilera A. Heterogeneity of DNA damage incidence and repair in different chromatin contexts. DNA Repair (Amst) 2021; 107:103210. [PMID: 34416542 DOI: 10.1016/j.dnarep.2021.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
It has been long known that some regions of the genome are more susceptible to damage and mutagenicity than others. Recent advances have determined a critical role of chromatin both in the incidence of damage and in its repair. Thus, chromatin arises as a guardian of the stability of the genome, which is altered in cancer cells. In this review, we focus into the mechanisms by which chromatin influences the occurrence and repair of the most cytotoxic DNA lesions, double-strand breaks, in particular at actively transcribed chromatin or related to DNA replication.
Collapse
Affiliation(s)
- Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
21
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
22
|
Caron P, Pobega E, Polo SE. DNA Double-Strand Break Repair: All Roads Lead to HeterochROMAtin Marks. Front Genet 2021; 12:730696. [PMID: 34539757 PMCID: PMC8440905 DOI: 10.3389/fgene.2021.730696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), chromatin modifications orchestrate DNA repair pathways thus safeguarding genome integrity. Recent studies have uncovered a key role for heterochromatin marks and associated factors in shaping DSB repair within the nucleus. In this review, we present our current knowledge of the interplay between heterochromatin marks and DSB repair. We discuss the impact of heterochromatin features, either pre-existing in heterochromatin domains or de novo established in euchromatin, on DSB repair pathway choice. We emphasize how heterochromatin decompaction and mobility further support DSB repair, focusing on recent mechanistic insights into these processes. Finally, we speculate about potential molecular players involved in the maintenance or the erasure of heterochromatin marks following DSB repair, and their implications for restoring epigenome function and integrity.
Collapse
Affiliation(s)
- Pierre Caron
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| | - Enrico Pobega
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| |
Collapse
|
23
|
Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst) 2021; 106:103192. [PMID: 34358806 DOI: 10.1016/j.dnarep.2021.103192] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Transcription-blocking DNA lesions (TBLs) in genomic DNA are triggered by a wide variety of DNA-damaging agents. Such lesions cause stalling of elongating RNA polymerase II (RNA Pol II) enzymes and fully block transcription when unresolved. The toxic impact of DNA damage on transcription progression is commonly referred to as transcription stress. In response to RNA Pol II stalling, cells activate and employ transcription-coupled repair (TCR) machineries to repair cytotoxic TBLs and resume transcription. Increasing evidence indicates that the modification and processing of stalled RNA Pol II is an integral component of the cellular response to and the repair of TBLs. If TCR pathways fail, the prolonged stalling of RNA Pol II will impede global replication and transcription as well as block the access of other DNA repair pathways that may act upon the TBL. Consequently, such prolonged stalling will trigger profound genome instability and devastating clinical features. In this review, we will discuss the mechanisms by which various types of TBLs are repaired by distinct TCR pathways and how RNA Pol II processing is regulated during these processes. We will also discuss the clinical consequences of transcription stress and genotype-phenotype correlations of related TCR-deficiency disorders.
Collapse
Affiliation(s)
- Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
24
|
Bouvier D, Ferrand J, Chevallier O, Paulsen MT, Ljungman M, Polo SE. Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nat Commun 2021; 12:3835. [PMID: 34158510 PMCID: PMC8219801 DOI: 10.1038/s41467-021-24153-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.
Collapse
Affiliation(s)
- Déborah Bouvier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Juliette Ferrand
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sophie E Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
25
|
Fernandes SG, Shah P, Khattar E. Recent Advances in Therapeutic Application of DNA Damage Response Inhibitors against Cancer. Anticancer Agents Med Chem 2021; 22:469-484. [PMID: 34102988 DOI: 10.2174/1871520621666210608105735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
DNA integrity is continuously challenged by intrinsic cellular processes and environmental agents. To overcome this genomic damage, cells have developed multiple signaling pathways collectively named as DNA damage response (DDR) and composed of three components: (i) sensor proteins, which detect DNA damage, (ii) mediators that relay the signal downstream and recruit the repair machinery, and (iii) the repair proteins, which restore the damaged DNA. A flawed DDR and failure to repair the damage lead to the accumulation of genetic lesions and increased genomic instability, which is recognized as a hallmark of cancer. Cancer cells tend to harbor increased mutations in DDR genes and often have fewer DDR pathways than normal cells. This makes cancer cells more dependent on particular DDR pathways and thus become more susceptible to compounds inhibiting those pathways compared to normal cells, which have all the DDR pathways intact. Understanding the roles of different DDR proteins in the DNA damage response and repair pathways and identification of their structures have paved the way for the development of their inhibitors as targeted cancer therapy. In this review, we describe the major participants of various DDR pathways, their significance in carcinogenesis, and focus on the inhibitors developed against several key DDR proteins.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Prachi Shah
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
26
|
Perfecting DNA double-strand break repair on transcribed chromatin. Essays Biochem 2021; 64:705-719. [PMID: 32309851 DOI: 10.1042/ebc20190094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Timely repair of DNA double-strand break (DSB) entails coordination with the local higher order chromatin structure and its transaction activities, including transcription. Recent studies are uncovering how DSBs trigger transient suppression of nearby transcription to permit faithful DNA repair, failing of which leads to elevated chromosomal aberrations and cell hypersensitivity to DNA damage. Here, we summarize the molecular bases for transcriptional control during DSB metabolism, and discuss how the exquisite coordination between the two DNA-templated processes may underlie maintenance of genome stability and cell homeostasis.
Collapse
|
27
|
Muñiz-González AB, Novo M, Martínez-Guitarte JL. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31431-31446. [PMID: 33608783 DOI: 10.1007/s11356-021-12669-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 μg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain
| |
Collapse
|
28
|
Lesage E, Clouaire T, Legube G. Repair of DNA double-strand breaks in RNAPI- and RNAPII-transcribed loci. DNA Repair (Amst) 2021; 104:103139. [PMID: 34111758 DOI: 10.1016/j.dnarep.2021.103139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are toxic lesions triggered not only by environmental sources, but also by a large number of physiological processes. Of importance, endogenous DSBs frequently occur in genomic loci that are transcriptionally active. Recent work suggests that DSBs occurring in transcribed loci are handled by specific pathway(s) that entail local transcriptional repression, chromatin signaling, the involvement of RNA species and DSB mobility. In this Graphical Review we provide an updated view of the "Transcription-Coupled DSB Repair" (TC-DSBR) pathway(s) that are mounted at DSBs occurring in loci transcribed by RNA Polymerase I (RNAPI) or RNA Polymerase II (RNAPII), highlighting differences and common features, as well as yet unanswered questions.
Collapse
Affiliation(s)
- E Lesage
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - T Clouaire
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - G Legube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France.
| |
Collapse
|
29
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
30
|
Kumbhar R, Sanchez A, Perren J, Gong F, Corujo D, Medina F, Devanathan SK, Xhemalce B, Matouschek A, Buschbeck M, Buck-Koehntop BA, Miller KM. Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. J Cell Biol 2021; 220:212163. [PMID: 34003252 PMCID: PMC8135068 DOI: 10.1083/jcb.202006149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)–binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi’s) blocks KDM5A–PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.
Collapse
Affiliation(s)
- Ramhari Kumbhar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Jullian Perren
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Fade Gong
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain
| | - Frank Medina
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Sravan K Devanathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
31
|
DNA double-strand break repair: Putting zinc fingers on the sore spot. Semin Cell Dev Biol 2021; 113:65-74. [DOI: 10.1016/j.semcdb.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
|
32
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
33
|
Long Q, Liu Z, Gullerova M. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Front Mol Biosci 2021; 8:655786. [PMID: 33959637 PMCID: PMC8096065 DOI: 10.3389/fmolb.2021.655786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Genomic integrity is continuously threatened by thousands of endogenous and exogenous damaging factors. To preserve genome stability, cells developed comprehensive DNA damage response (DDR) pathways that mediate the recognition of damaged DNA lesions, the activation of signaling cascades, and the execution of DNA repair. Transcription has been understood to pose a threat to genome stability in the presence of DNA breaks. Interestingly, accumulating evidence in recent years shows that the transient transcriptional activation at DNA double-strand break (DSB) sites is required for efficient repair, while the rest of the genome exhibits temporary transcription silencing. This genomic shut down is a result of multiple signaling cascades involved in the maintenance of DNA/RNA homeostasis, chromatin stability, and genome fidelity. The regulation of transcription of protein-coding genes and non-coding RNAs has been extensively studied; however, the exact regulatory mechanisms of transcription at DSBs remain enigmatic. These complex processes involve many players such as transcription-associated protein complexes, including kinases, transcription factors, chromatin remodeling complexes, and helicases. The damage-derived transcripts themselves also play an essential role in DDR regulation. In this review, we summarize the current findings on the regulation of transcription at DSBs and discussed the roles of various accessory proteins in these processes and consequently in DDR.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Herrero-Ruiz A, Martínez-García PM, Terrón-Bautista J, Millán-Zambrano G, Lieberman JA, Jimeno-González S, Cortés-Ledesma F. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep 2021; 35:108977. [PMID: 33852840 PMCID: PMC8052185 DOI: 10.1016/j.celrep.2021.108977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.
Collapse
Affiliation(s)
- Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | | | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain.
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
35
|
R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 2021; 23:305-313. [PMID: 33837288 DOI: 10.1038/s41556-021-00663-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demonstrated to accumulate in cis to DSBs, especially those induced in transcriptionally active loci. In this Review, we discuss whether R-loops actively participate in DSB repair or are detrimental by-products that must be removed to avoid genome instability.
Collapse
|
36
|
Noe Gonzalez M, Blears D, Svejstrup JQ. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 2021; 22:3-21. [PMID: 33208928 DOI: 10.1038/s41580-020-00308-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
38
|
Lee SY, Kim JJ, Miller KM. Emerging roles of RNA modifications in genome integrity. Brief Funct Genomics 2020; 20:106-112. [PMID: 33279952 DOI: 10.1093/bfgp/elaa022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Post-translational modifications of proteins are well-established participants in DNA damage response (DDR) pathways, which function in the maintenance of genome integrity. Emerging evidence is starting to reveal the involvement of modifications on RNA in the DDR. RNA modifications are known regulators of gene expression but how and if they participate in DNA repair and genome maintenance has been poorly understood. Here, we review several studies that have now established RNA modifications as key components of DNA damage responses. RNA modifying enzymes and the binding proteins that recognize these modifications localize to and participate in the repair of UV-induced and DNA double-strand break lesions. RNA modifications have a profound effect on DNA-RNA hybrids (R-loops) at DNA damage sites, a structure known to be involved in DNA repair and genome stability. Given the importance of the DDR in suppressing mutations and human diseases such as neurodegeneration, immunodeficiencies, cancer and aging, RNA modification pathways may be involved in human diseases not solely through their roles in gene expression but also by their ability to impact DNA repair and genome stability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Miller laboratory at the University of Texas at Austin
| | - Jae Jin Kim
- Miller laboratory at the University of Texas at Austin
| | | |
Collapse
|
39
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
40
|
NELF complex fosters BRCA1 and RAD51 recruitment to DNA damage sites and modulates sensitivity to PARP inhibition. DNA Repair (Amst) 2020; 97:103025. [PMID: 33248388 DOI: 10.1016/j.dnarep.2020.103025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
The negative elongation factor (NELF) is a four-subunit protein complex (NELF-E, NELF-A, NELF-B and NELF-C/D) that negatively regulates transcription elongation of RNA polymerase II (Pol II). Interestingly, upregulation of NELF-E subunit promotes hepatocellular carcinoma (HCC) and pancreatic cancer. In addition, we have previously shown that NELF complex fosters double-strand break (DSB)-induced transcription silencing and promotes homology-directed repair (HDR). However, the mechanisms underlying NELF-E regulation of HDR of DSBs remain unknown. Here, we show that NELF-E interacts with BRCA1 and promotes its recruitment to laser-microirradiated sites and facilitates ionizing radiation-induced foci (IRIF) of BRCA1 in HCC cells (Hep3B). The reduction in BRCA1 IRIF is accompanied by decreased RAD51 IRIF. A corollary to this, NELF-E-deficient Hep3B cells exhibit defective HDR of chromosomal DSBs induced by CRISPR-Cas9 system. Consequently, the disruption of NELF complex integrity, by NELF-E downregulation, sensitizes Hep3B cells to PARP inhibition. Altogether, our results suggest that NELF promotes HDR by facilitating BRCA1 and RAD51 IRIF formation and identify NELF complex as a novel synthetic lethal partner of PARP1.
Collapse
|
41
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
42
|
Harrod A, Lane KA, Downs JA. The role of the SWI/SNF chromatin remodelling complex in the response to DNA double strand breaks. DNA Repair (Amst) 2020; 93:102919. [PMID: 33087260 DOI: 10.1016/j.dnarep.2020.102919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells possess multiple closely related SWI/SNF chromatin remodelling complexes. These complexes have been implicated in the cellular response to DNA double strand breaks (DSBs). Evidence suggests that SWI/SNF complexes contribute to successful repair via both the homologous recombination and non-homologous end joining pathways. In addition, repressing transcription near DSBs is dependent on SWI/SNF activity. Understanding these roles is important because SWI/SNF complexes are frequently dysregulated in cancer, and DNA DSB repair defects have the potential to be therapeutically exploited. In this graphical review, we summarise what is known about SWI/SNF contribution to DNA DSB responses in mammalian cells and provide an overview of the SWI/SNF-encoding gene alteration spectrum in human cancers.
Collapse
Affiliation(s)
- Alison Harrod
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Karen A Lane
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
43
|
Aleksandrov R, Hristova R, Stoynov S, Gospodinov A. The Chromatin Response to Double-Strand DNA Breaks and Their Repair. Cells 2020; 9:cells9081853. [PMID: 32784607 PMCID: PMC7464352 DOI: 10.3390/cells9081853] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular DNA is constantly being damaged by numerous internal and external mutagenic factors. Probably the most severe type of insults DNA could suffer are the double-strand DNA breaks (DSBs). They sever both DNA strands and compromise genomic stability, causing deleterious chromosomal aberrations that are implicated in numerous maladies, including cancer. Not surprisingly, cells have evolved several DSB repair pathways encompassing hundreds of different DNA repair proteins to cope with this challenge. In eukaryotic cells, DSB repair is fulfilled in the immensely complex environment of the chromatin. The chromatin is not just a passive background that accommodates the multitude of DNA repair proteins, but it is a highly dynamic and active participant in the repair process. Chromatin alterations, such as changing patterns of histone modifications shaped by numerous histone-modifying enzymes and chromatin remodeling, are pivotal for proficient DSB repair. Dynamic chromatin changes ensure accessibility to the damaged region, recruit DNA repair proteins, and regulate their association and activity, contributing to DSB repair pathway choice and coordination. Given the paramount importance of DSB repair in tumorigenesis and cancer progression, DSB repair has turned into an attractive target for the development of novel anticancer therapies, some of which have already entered the clinic.
Collapse
|
44
|
|
45
|
Abstract
Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.
Collapse
Affiliation(s)
- David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
46
|
Pan H, Jin M, Ghadiyaram A, Kaur P, Miller HE, Ta HM, Liu M, Fan Y, Mahn C, Gorthi A, You C, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA1 and SA2 are RNA binding proteins that localize to RNA containing regions on DNA. Nucleic Acids Res 2020; 48:5639-5655. [PMID: 32352519 PMCID: PMC7261166 DOI: 10.1093/nar/gkaa284] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/28/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cohesin SA1 (STAG1) and SA2 (STAG2) are key components of the cohesin complex. Previous studies have highlighted the unique contributions by SA1 and SA2 to 3D chromatin organization, DNA replication fork progression, and DNA double-strand break (DSB) repair. Recently, we discovered that cohesin SA1 and SA2 are DNA binding proteins. Given the recently discovered link between SA2 and RNA-mediated biological pathways, we investigated whether or not SA1 and SA2 directly bind to RNA using a combination of bulk biochemical assays and single-molecule techniques, including atomic force microscopy (AFM) and the DNA tightrope assay. We discovered that both SA1 and SA2 bind to various RNA containing substrates, including ssRNA, dsRNA, RNA:DNA hybrids, and R-loops. Importantly, both SA1 and SA2 localize to regions on dsDNA that contain RNA. We directly compared the SA1/SA2 binding and R-loops sites extracted from Chromatin Immunoprecipitation sequencing (ChIP-seq) and DNA-RNA Immunoprecipitation sequencing (DRIP-Seq) data sets, respectively. This analysis revealed that SA1 and SA2 binding sites overlap significantly with R-loops. The majority of R-loop-localized SA1 and SA2 are also sites where other subunits of the cohesin complex bind. These results provide a new direction for future investigation of the diverse biological functions of SA1 and SA2.
Collapse
Affiliation(s)
- Hai Pan
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Miao Jin
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ashwin Ghadiyaram
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Henry E Miller
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, TX 78229, USA
| | - Hai Minh Ta
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Yanlin Fan
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, TX 78229, USA
| | - Changjiang You
- Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, TX 78229, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxiology Program, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
47
|
Machour FE, Ayoub N. Transcriptional Regulation at DSBs: Mechanisms and Consequences. Trends Genet 2020; 36:981-997. [PMID: 32001024 DOI: 10.1016/j.tig.2020.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Defective double-strand break (DSB) repair leads to genomic instabilities that may augment carcinogenesis. DSBs trigger transient transcriptional silencing in the vicinity of transcriptionally active genes through multilayered processes instigated by Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and poly-(ADP-ribose) polymerase 1 (PARP1). Novel factors have been identified that ensure DSB-induced silencing via two distinct pathways: direct inhibition of RNA Polymerase II (Pol II) mediated by negative elongation factor (NELF), and histone code editing by CDYL1 and histone deacetylases (HDACs) that catalyze H3K27me3 and erase lysine crotonylation, respectively. Here, we highlight major advances in understanding the mechanisms underlying transcriptional silencing at DSBs, and discuss its functional implications on repair. Furthermore, we discuss consequential links between DSB-silencing factors and carcinogenesis and discuss the potential of exploiting them for targeted cancer therapy.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
48
|
Pharmacological methods to transcriptionally modulate double-strand break DNA repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 354:187-213. [PMID: 32475473 DOI: 10.1016/bs.ircmb.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is much interest in targeting DNA repair pathways for use in cancer therapy, as the effectiveness of many therapeutic agents relies on their ability to cause damage to DNA, and deficiencies in DSB repair pathways can make cells more sensitive to specific cancer therapies. For example, defects in the double-strand break (DSB) pathways, non-homologous end joining (NHEJ) and homology-directed repair (HDR), induce sensitivity to radiation therapy and poly(ADP)-ribose polymerase (PARP) inhibitors, respectively. However, traditional approaches to inhibit DNA repair through small molecule inhibitors have often been limited by toxicity and poor bioavailability. This review identifies several pharmacologic manipulations that modulate DSB repair by reducing expression of DNA repair factors. A number of pathways have been identified that modulate activity of NHEJ and HDR through this mechanism, including growth and hormonal receptor signaling pathways as well as epigenetic modifiers. We also discuss the effects of anti-angiogenic therapy on DSB repair. Preclinically, these pharmacological manipulations of DNA repair factor expression have been shown to increase sensitivity to specific cancer therapies, including ionizing radiation and PARP inhibitors. When applicable, relevant clinical trials are discussed and areas for future study are identified.
Collapse
|