1
|
Xiao Y, Ni M, Zheng Z, Liu Y, Yin M, Mao S, Zhao Y, Tian B, Wang L, Xu H, Hua Y. POLM variant G312R promotes ovarian tumorigenesis through genomic instability and COL11A1-NF-κB axis. Am J Physiol Cell Physiol 2024; 327:C168-C183. [PMID: 38826139 DOI: 10.1152/ajpcell.00025.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
In ovarian cancer (OC), identifying key molecular players in disease escalation and chemoresistance remains critical. Our investigation elucidates the role of the DNA polymerase mu (POLM), especially G312R mutation, in propelling oncogenesis through dual pathways. POLMG312R markedly augments the ribonucleotide insertion capability of POLM, precipitating genomic instability. In addition, our research reveals that POLMG312R perturbs collagen alpha-1 (XI) chain (COL11A1) expression-a gene that plays a key role in oncogenesis-and modulates the NF-κB signaling pathway, alters the secretion of downstream inflammatory cytokines, and promotes tumor-macrophage interactions. We illustrate a bidirectional regulatory interaction between POLM, particularly its G312R variant, and COL11A1. This interaction regulates NF-κB signaling, culminating in heightened malignancy and resistance to chemotherapy in OC cells. These insights position the POLM as a potential molecular target for OC therapy, shedding light on the intricate pathways underpinning POLM variant disease progression.NEW & NOTEWORTHY Our research reveals that POLM plays an important role in ovarian cancer development, especially the mutation G312R. We uncover the POLMG312R mutation as a driver of genomic instability in ovarian cancer via aberrant ribonucleotide incorporation. We reveal that POLMG312R upregulates COL11A1 and activates NF-κB signaling, contributing to tumor progression and chemoresistance. This study identifies the POLM-COL11A1-NF-κB axis as a novel oncogenic pathway.
Collapse
Affiliation(s)
- Yue Xiao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Yufeng Liu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Mingyu Yin
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Shuyu Mao
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Liangyan Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Xu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Structural insights into the role of DNA-PK as a master regulator in NHEJ. GENOME INSTABILITY & DISEASE 2021; 2:195-210. [PMID: 34723130 PMCID: PMC8549938 DOI: 10.1007/s42764-021-00047-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
DNA-dependent protein kinase catalytic subunit DNA-PKcs/PRKDC is the largest serine/threonine protein kinase of the phosphatidyl inositol 3-kinase-like protein kinase (PIKK) family and is the most highly expressed PIKK in human cells. With its DNA-binding partner Ku70/80, DNA-PKcs is required for regulated and efficient repair of ionizing radiation-induced DNA double-strand breaks via the non-homologous end joining (NHEJ) pathway. Loss of DNA-PKcs or other NHEJ factors leads to radiation sensitivity and unrepaired DNA double-strand breaks (DSBs), as well as defects in V(D)J recombination and immune defects. In this review, we highlight the contributions of the late Dr. Carl W. Anderson to the discovery and early characterization of DNA-PK. We furthermore build upon his foundational work to provide recent insights into the structure of NHEJ synaptic complexes, an evolutionarily conserved and functionally important YRPD motif, and the role of DNA-PKcs and its phosphorylation in NHEJ. The combined results identify DNA-PKcs as a master regulator that is activated by its detection of two double-strand DNA ends for a cascade of phosphorylation events that provide specificity and efficiency in assembling the synaptic complex for NHEJ.
Collapse
|