1
|
Deng J, Du Z, Li L, Zhu M, Zhao H. Phase separation in DNA repair: orchestrating the cellular response to genomic stability. PeerJ 2025; 13:e19402. [PMID: 40330699 PMCID: PMC12051939 DOI: 10.7717/peerj.19402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
DNA repair is a hierarchically organized, spatially and temporally regulated process involving numerous repair factors that respond to various types of damage. Despite decades of research, the mechanisms by which these factors are recruited to and depart from repair sites have been a subject of intrigue. Recent advancements in the field have increasingly highlighted the role of phase separation as a critical facilitator of the efficiency of DNA repair. This review emphasizes how phase separation enhances the concentration and coordination of repair factors at damage sites, optimizing repair efficiency. Understanding how dysregulation of phase separation can impair DNA repair and alter nuclear organization, potentially leading to diseases such as cancer and neurodegenerative disorders, is crucial. This manuscript provides a comprehensive understanding of the pivotal role of phase separation in DNA repair, sheds light on the current research, and suggests potential future directions for research and therapeutic interventions.
Collapse
Affiliation(s)
- Juxin Deng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhaoyang Du
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lei Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Institute of Emergency and Critical Care Medicine, Bengbu, Anhui, China
| | - Min Zhu
- School of Life Science, Anhui Agriculture University, Hefei, Anhui, China
| | - Hongchang Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Institute of Emergency and Critical Care Medicine, Bengbu, Anhui, China
| |
Collapse
|
2
|
Romero-Aranda C, Sáenz-Narciso B, Gómez-Orte E, Metola Á, Ezcurra B, Calvo O, Nilsen H, Miranda-Vizuete A, Cabello J. Integrator complex subunit 6 (INTS-6) mediates DNA damage response in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001345. [PMID: 39575199 PMCID: PMC11579701 DOI: 10.17912/micropub.biology.001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
The Caenorhabditis elegans Integrator complex is a set of at least 13 evolutionarily conserved proteins that binds the C-terminal domain of RNA polymerase II to regulate snRNA 3'-end processing and gene expression. Here we show that the Integrator subunit 6 intervenes in the DNA damage response in C. elegans . We find that upon X-ray radiation, INTS-6 is necessary for RAD-51 foci formation. In addition, CDK-1 Tyr-15 phosphorylation depends on the presence of INTS-6 . This work adds a new piece to elucidate the Integrator complex mechanism of action in DNA repair.
Collapse
Affiliation(s)
| | | | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Ángela Metola
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Begoña Ezcurra
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Olga Calvo
- Instituto de Biologia Funcional y Genomica (IBFG), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Hilde Nilsen
- Department of Microbiology, Oslo University Hospital PO Box 0424 Oslo, Norway. University of Oslo, The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway. CRESCO- Centre for embryology and healthy development, University of Oslo, Norway
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| |
Collapse
|
3
|
Chen H, Li B, Zhao X, Yang C, Zhou S, Ma W. Cell-free analysis reveals the role of RG/RGG motifs in DDX3X phase separation and their potential link to cancer pathogenesis. Int J Biol Macromol 2024; 279:135251. [PMID: 39222785 DOI: 10.1016/j.ijbiomac.2024.135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The DEAD-box RNA helicase DDX3X is a multifunctional protein involved in RNA metabolism and stress responses. In this study, we investigated the role of RG/RGG motifs in the dynamic process of liquid-liquid phase separation (LLPS) of DDX3X using cell-free assays and explored their potential link to cancer development through bioinformatic analysis. Our results demonstrate that the number, location, and composition of RG/RGG motifs significantly influence the ability of DDX3X to undergo phase separation and form self-aggregates. Mutational analysis revealed that the spacing between RG/RGG motifs and the number of glycine residues within each motif are critical factors in determining the extent of phase separation. Furthermore, we found that DDX3X is co-expressed with the stress granule protein G3BP1 in several cancer types and can undergo co-phase separation with G3BP1 in a cell-free system, suggesting a potential functional interaction between these proteins in phase-separated structures. DDX3X and G3BP1 may interact through their RG/RGG domains and subsequently exert important cellular functions under stress situation. Collectively, our findings provide novel insights into the role of RG/RGG motifs in modulating DDX3X phase separation and their potential contribution to cancer pathogenesis.
Collapse
Affiliation(s)
- Hongran Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Boyang Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Caini Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Qilu Institute of Technology, Shandong, China.
| |
Collapse
|
4
|
Secchi M, Garbelli A, Riva V, Deidda G, Santonicola C, Formica T, Sabbioneda S, Crespan E, Maga G. Synergistic action of human RNaseH2 and the RNA helicase-nuclease DDX3X in processing R-loops. Nucleic Acids Res 2024; 52:11641-11658. [PMID: 39189461 PMCID: PMC11514492 DOI: 10.1093/nar/gkae731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops are three-stranded RNA-DNA hybrid structures that play important regulatory roles, but excessive or deregulated R-loops formation can trigger DNA damage and genome instability. Digestion of R-loops is mainly relying on the action of two specialized ribonucleases: RNaseH1 and RNaseH2. RNaseH2 is the main enzyme carrying out the removal of misincorporated rNMPs during DNA replication or repair, through the Ribonucleotide Excision Repair (RER) pathway. We have recently shown that the human RNA helicase DDX3X possessed RNaseH2-like activity, being able to substitute RNaseH2 in reconstituted RER reactions. Here, using synthetic R-loop mimicking substrates, we could show that human DDX3X alone was able to both displace and degrade the ssRNA strand hybridized to DNA. Moreover, DDX3X was found to physically interact with human RNaseH2. Such interaction suppressed the nuclease and helicase activities of DDX3X, but stimulated severalfold the catalytic activity of the trimeric RNaseH2, but not of RNaseH1. Finally, silencing of DDX3X in human cells caused accumulation of RNA-DNA hybrids and phosphorylated RPA foci. These results support a role of DDX3X as a scaffolding protein and auxiliary factor for RNaseH2 during R-loop degradation.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Valentina Riva
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Graziano Deidda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Carolina Santonicola
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Teresa Maria Formica
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
5
|
Diaz Escarcega R, Marshall P, Tsvetkov AS. G-quadruplex DNA and RNA in cellular senescence. FRONTIERS IN AGING 2024; 5:1491389. [PMID: 39444378 PMCID: PMC11496277 DOI: 10.3389/fragi.2024.1491389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Normal cells divide, are damaged, and are repaired across their lifetime. As cells age, they enter cellular senescence, characterized by a permanent state of cell-cycle arrest triggered by various stressors. The molecular mechanisms that regulate senescent phenotypes have been actively investigated over the last several decades; however, one area that has been neglected is how G-quadruplex (G4) DNA and RNA (G4-DNA and G4-RNA) mediate senescence. These non-canonical four-stranded DNA and RNA structures regulate most normative DNA and RNA-dependent processes, such as transcription, replication, and translation, as well as pathogenic mechanisms, including genomic instability and abnormal stress granule function. This review also highlights the contribution of G4s to sex differences in age-associated diseases and emphasizes potential translational approaches to target senescence and anti-aging mechanisms through G4 manipulation.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Paul Marshall
- College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - Andrey S. Tsvetkov
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
6
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Khoroshkin M, Buyan A, Dodel M, Navickas A, Yu J, Trejo F, Doty A, Baratam R, Zhou S, Lee SB, Joshi T, Garcia K, Choi B, Miglani S, Subramanyam V, Modi H, Carpenter C, Markett D, Corces MR, Mardakheh FK, Kulakovskiy IV, Goodarzi H. Systematic identification of post-transcriptional regulatory modules. Nat Commun 2024; 15:7872. [PMID: 39251607 PMCID: PMC11385195 DOI: 10.1038/s41467-024-52215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
In our cells, a limited number of RNA binding proteins (RBPs) are responsible for all aspects of RNA metabolism across the entire transcriptome. To accomplish this, RBPs form regulatory units that act on specific target regulons. However, the landscape of RBP combinatorial interactions remains poorly explored. Here, we perform a systematic annotation of RBP combinatorial interactions via multimodal data integration. We build a large-scale map of RBP protein neighborhoods by generating in vivo proximity-dependent biotinylation datasets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell readout to capture transcriptomic changes upon RBP knockdowns. By combining these physical and functional interaction readouts, along with the atlas of RBP mRNA targets from eCLIP assays, we generate an integrated map of functional RBP interactions. We then use this map to match RBPs to their context-specific functions and validate the predicted functions biochemically for four RBPs. This study provides a detailed map of RBP interactions and deconvolves them into distinct regulatory modules with annotated functions and target regulons. This multimodal and integrative framework provides a principled approach for studying post-transcriptional regulatory processes and enriches our understanding of their underlying mechanisms.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrey Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, Inserm, Orsay, France
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fathima Trejo
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Anthony Doty
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Rithvik Baratam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sean B Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tanvi Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
He YN, Han XR, Wang D, Hou JL, Hou XM. Dual mode of DDX3X as an ATP-dependent RNA helicase and ATP-independent nucleic acid chaperone. Biochem Biophys Res Commun 2024; 714:149964. [PMID: 38669753 DOI: 10.1016/j.bbrc.2024.149964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Human DDX3X, an important member of the DEAD-box family RNA helicases, plays a crucial role in RNA metabolism and is involved in cancer development, viral infection, and neurodegenerative disease. Although there have been many studies on the physiological functions of human DDX3X, issues regarding its exact targets and mechanisms of action remain unclear. In this study, we systematically characterized the biochemical activities and substrate specificity of DDX3X. The results demonstrate that DDX3X is a bidirectional RNA helicase to unwind RNA duplex and RNA-DNA hybrid driven by ATP. DDX3X also has nucleic acid annealing activity, especially for DNA. More importantly, it can function as a typical nucleic acid chaperone which destabilizes highly structured DNA and RNA in an ATP-independent manner and promotes their annealing to form a more stable structure. Further truncation mutations confirmed that the highly disordered N-tail and C-tail are critical for the biochemical activities of DDX3X. They are functionally complementary, with the N-tail being crucial. These results will shed new light on our understanding of the molecular mechanism of DDX3X in RNA metabolism and DNA repair, and have potential significance for the development of antiviral/anticancer drugs targeting DDX3X.
Collapse
Affiliation(s)
- Yi-Ning He
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao-Rui Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dong Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia-Li Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Zhang H, Mañán-Mejías PM, Miles HN, Putnam AA, MacGillivray LR, Ricke WA. DDX3X and Stress Granules: Emerging Players in Cancer and Drug Resistance. Cancers (Basel) 2024; 16:1131. [PMID: 38539466 PMCID: PMC10968774 DOI: 10.3390/cancers16061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paula M. Mañán-Mejías
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrea A. Putnam
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - William A. Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
11
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
12
|
Maharati A, Moghbeli M. Forkhead box proteins as the critical regulators of cisplatin response in tumor cells. Eur J Pharmacol 2023; 956:175937. [PMID: 37541368 DOI: 10.1016/j.ejphar.2023.175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cisplatin (CDDP) is one of the most common chemotherapy drugs used in a wide range of cancer patients; however, there is a high rate of CDDP resistance among cancer patients. Considering the side effects of cisplatin in normal tissues, it is necessary to predict the CDDP response in cancer patients. Therefore, identifying the molecular mechanisms involved in CDDP resistance can help to introduce the prognostic markers. Several molecular mechanisms such as apoptosis inhibition, drug efflux, drug detoxification, and increased DNA repair are involved in CDDP resistance. Regarding the key role of transcription factors in regulation of many cellular processes related to drug resistance, in the present review, we discussed the role of Forkhead box (FOX) protein family in CDDP response. It has been reported that FOX proteins mainly promote CDDP resistance through the regulation of DNA repair, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. Therefore, FOX proteins can be introduced as the prognostic markers to predict CDDP response in cancer patients. In addition, considering that oncogenic role of FOX proteins, the CDDP treatment along with FOX inhibition can be used as a therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
14
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
15
|
Lu H, Yang M, Zhou Q. Reprogramming transcription after DNA damage: recognition, response, repair, and restart. Trends Cell Biol 2022:S0962-8924(22)00261-6. [PMID: 36513571 DOI: 10.1016/j.tcb.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Genome integrity is constantly challenged by endogenous and exogenous insults that cause DNA damage. To cope with these threats, cells have a surveillance mechanism, known as the DNA damage response (DDR), to repair any lesions. Although transcription has long been implicated in DNA repair, how transcriptional reprogramming is coordinated with the DDR is just beginning to be understood. In this review, we highlight recent advances in elucidating the molecular mechanisms underlying major transcriptional events, including RNA polymerase (Pol) II stalling and transcriptional silencing and recovery, which occur in response to DNA damage. Furthermore, we discuss how such transcriptional adaptation contributes to sensing and eliminating damaged DNA and how it can jeopardize genome integrity when it goes awry.
Collapse
Affiliation(s)
- Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Min Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Zhou
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong.
| |
Collapse
|
16
|
Tong X, Tang R, Xu J, Wang W, Zhao Y, Yu X, Shi S. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Gómez-Flores-Ramos L, Barraza-Arellano AL, Mohar A, Trujillo-Martínez M, Grimaldo L, Ortiz-Lopez R, Treviño V. Germline Variants in Cancer Genes from Young Breast Cancer Mexican Patients. Cancers (Basel) 2022; 14:cancers14071647. [PMID: 35406420 PMCID: PMC8997148 DOI: 10.3390/cancers14071647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is one of the most frequent cancer types in women worldwide. About 7% is diagnosed in young women (YBC) less than 40 years old. In Mexico, however, YBC reaches 15% suggesting a higher genetic susceptibility. There have been some reports of germline variants in YBC across the world. However, there is only one report from a Mexican population, which is not restricted by age and limited to a panel of 143 genes resulting in 15% of patients carrying putatively pathogenic variants. Nevertheless, expanding the analysis to whole exome involves using more complex tools to determine which genes and variants could be pathogenic. We used germline whole exome sequencing combined with the PeCanPie tool to analyze exome variants in 115 YBC patients. Our results showed that we were able to identify 49 high likely pathogenic variants involving 40 genes on 34% of patients. We noted many genes already reported in BC and YBC worldwide, such as BRCA1, BRCA2, ATM, CHEK2, PALB2, and POLQ, but also others not commonly reported in YBC in Latin America, such as CLTCL1, DDX3X, ERCC6, FANCE, and NFKBIE. We show further supporting and controversial evidence for some of these genes. We conclude that exome sequencing combined with robust annotation tools and further analysis, can identify more genes and more patients affected by germline mutations in cancer.
Collapse
Affiliation(s)
- Liliana Gómez-Flores-Ramos
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Angélica Leticia Barraza-Arellano
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
| | - Alejandro Mohar
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Dirección de Investigación, Instituto Nacional de Cancerología, Av. San Fernando #22, Col. Sección XVI, Delegación Tlalpan, Mexico City 14080, Mexico;
| | - Miguel Trujillo-Martínez
- Instituto Mexicano del Seguro Social, Hospital General de Zona con Medicina Familiar No. 7, Cuautla 62780, Morelos, Mexico;
| | - Lizbeth Grimaldo
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Rocío Ortiz-Lopez
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
| | - Víctor Treviño
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|
18
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|