1
|
Bryan C, Cepeda J, Li B, Yang K. DNA-Protein Cross-Links Derived from Abasic DNA Lesions: Recent Progress and Future Directions. Chem Res Toxicol 2025. [PMID: 40387817 DOI: 10.1021/acs.chemrestox.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Covalent DNA-protein cross-links (DPCs), if not resolved, can block DNA replication and transcription, resulting in genome instability. Compared to other types of DNA damage, how DPCs are formed and repaired is less understood. This review focuses on recent findings concerning DPCs derived from two types of abasic DNA lesions, apurinic/apyrimidinic sites and 3'-phospho-α,β-unsaturated aldehydes. It summarizes the newly reported DPCs and their identification by liquid chromatography tandem mass spectrometry. It also reviews the approaches for synthesizing stable and site-specific DPCs, and their applications for discovering the corresponding repair mechanisms. Finally, it discusses the future directions to better understand the mechanistic formation and repair of those DPCs.
Collapse
Affiliation(s)
- Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joel Cepeda
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bingru Li
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Xiong YR, Fang YC, He M, Li KJ, Qi L, Sui Y, Zhang K, Wu XC, Meng L, Li O, Zheng DQ. Patterns of spontaneous and induced genomic alterations in Yarrowia lipolytica. Appl Environ Microbiol 2025; 91:e0167824. [PMID: 39714191 PMCID: PMC11784153 DOI: 10.1128/aem.01678-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
This study explored the genomic alterations in Yarrowia lipolytica, a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10-10 events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels. Furthermore, chromosomal aneuploidy and rearrangements occur, albeit at a lower frequency. Exposure to ultraviolet (UV) light, methylmethane sulfonate (MMS), and Zeocin significantly enhances the rates of SNVs and alters their mutational spectra in distinct patterns. Notably, Zeocin-induced SNVs are predominantly T-to-A and T-to-G substitutions, often occurring within the 5'-TGT*-3' motif (* denotes the mutated base). Additionally, Zeocin exhibits a higher potency in stimulating InDels compared to UV and MMS. Translesion DNA synthesis is implicated as the primary mechanism behind most Zeocin-induced SNVs and some InDels, whereas non-homologous end joining serves as the main pathway for Zeocin-mediated InDels. Intriguingly, the study identifies the gene YALI1_E21053g, encoding a protein kinase, as negatively associated with Zeocin resistance. Overall, our results not only deepened our knowledge about the genome evolution in Y. lipolytica but also provided reference to develop innovative strategies to harness its genetic potential.IMPORTANCEYarrowia lipolytica exhibits high environmental stress tolerance and lipid metabolism capabilities, making it a microorganism with significant industrial application potential. In this study, we investigated the genomic variation and evolutionary patterns of this yeast under both spontaneous and induced mutation conditions. Our results reveal distinctive mutation spectra induced by different mutagenic conditions and elucidate the underlying genetic mechanisms. We further highlight the roles of non-homologous end joining and translesion synthesis pathways in Zeocin-induced mutations, demonstrating that such treatments can rapidly confer drug resistance to the cells. Overall, our research enhances the understanding of how yeast genomes evolve under various conditions and provides guidance for developing more effective mutagenesis and breeding techniques.
Collapse
Affiliation(s)
- Yuan-Ru Xiong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Min He
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Xue-Chang Wu
- College of Life Science, Zhejiang University, Hangzhou, China
| | | | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | | |
Collapse
|
4
|
Yudkina AV, Amanova MM, Zharkov DO. Polyamine Adducts with AP Sites: Interaction with DNA Polymerases and AP Endonucleases. Chem Res Toxicol 2025; 38:102-114. [PMID: 39763436 DOI: 10.1021/acs.chemrestox.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine. Here we have investigated formation of AP site adducts with spermine and spermidine using sodium borohydride trapping technique and shown that they could persist in DNA for long enough to possibly interfere with cell's replication and transcription machinery. We demonstrate that both adducts placed internally into DNA are strongly blocking for DNA polymerases (Klenow fragment, phage RB69 polymerase, human polymerases β and κ) and direct dAMP incorporation in the rare bypass events. The internal AP site adducts with polyamines can be repaired, albeit rather slowly, by Escherichia coli endonuclease IV and yeast Apn1 but not by human AP endonuclease APE1 or E. coli exonuclease III, whereas the 3'-terminal adducts are substrates for the phosphodiesterase activities of all these AP endonucleases.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Margarita M Amanova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Wen T, Zhao S, Stingele J, Ravanat JL, Greenberg MM. Quantification of Intracellular DNA-Protein Cross-Links with N7-Methyl-2'-Deoxyguanosine and Their Contribution to Cytotoxicity. Chem Res Toxicol 2024; 37:814-823. [PMID: 38652696 PMCID: PMC11105979 DOI: 10.1021/acs.chemrestox.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion in vivo, but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPCMdG), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPCMdG in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine. Using this method, we determined that DPCMdG is formed in less than 1% yield based upon the levels of MdG in methyl methanesulfonate (MMS)-treated HeLa cells. Despite its low chemical yield, DPCMdG contributes to MMS cytotoxicity. Consequently, cells that lack efficient DPC repair by the DPC protease SPRTN are hypersensitive to MMS. This investigation shows that the downstream chemical and biochemical effects of initially formed DNA damage can have significant biological consequences. With respect to MdG formation, the initial DNA lesion is only the beginning.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Gusti Ngurah Putu EP, Cattiaux L, Lavergne T, Pommier Y, Bombard S, Granzhan A. Unprecedented reactivity of polyamines with aldehydic DNA modifications: structural determinants of reactivity, characterization and enzymatic stability of adducts. Nucleic Acids Res 2023; 51:10846-10866. [PMID: 37850658 PMCID: PMC10639052 DOI: 10.1093/nar/gkad837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.
Collapse
Affiliation(s)
- Eka Putra Gusti Ngurah Putu
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Laurent Cattiaux
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Thomas Lavergne
- DCM, CNRS UMR5250, Université Grenoble Alpes, 38000 Grenoble, France
| | - Yves Pommier
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, CCR-NCI, NIH, Bethesda, MD 20892, USA
| | - Sophie Bombard
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anton Granzhan
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|