1
|
Yu H, Zhang W, Wang D, Shi B, Zhu Y, Hu W, He J, Hong J, Xu X, Zheng X, Chen W, Wang F, Qu F. Exposure to 6PPD-Q induces dysfunctions of ovarian granulosa cells: Its potential role in PCOS. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137037. [PMID: 39764971 DOI: 10.1016/j.jhazmat.2024.137037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 03/12/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an environmental pollutant derived from the ozonolysis of the widely used tire rubber antioxidant 6PPD, has been found to accumulate in air, dust, and water, posing significant health risks. While its reproductive toxicity in male organisms has been established, its effects on female reproductive health remain unclear. Polycystic ovary syndrome (PCOS), a common endocrine disorder in premenopausal women, is known to be influenced by environmental pollutants. In this study, we exposed BALB/c mice intraperitoneally to 6PPD-Q, and they exhibited PCOS-like changes after 40 days, including alterations in hormone levels, estrous cycle arrest, and polycystic ovarian morphology. Then we identified significantly elevated levels of 6PPD-Q in the follicular fluid of PCOS patients compared to those with tubal infertility, and these levels were associated with clinical parameters. In the human ovarian granulosa cell line (KGN) studies, we demonstrated that 6PPD-Q induced granulosa cell apoptosis by inhibiting the PI3K/AKT/FOXO1 pathway, leading to ovarian damage and fertility decline. To our knowledge, this is the first study to report 6PPD-Q levels in human follicular fluid and its detrimental effects on female reproductive health, underscoring the need for further research on environmental impacts on PCOS.
Collapse
Affiliation(s)
- Hanxi Yu
- School of Medicine, Zhejiang University, Hangzhou 310003, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danyun Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Biwei Shi
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yuhang Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weihuan Hu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jiayi He
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jiawei Hong
- School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Xiaolin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiaoxiao Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
2
|
Weaver AC, Kind KL, Herde PJ, van Wettere WHEJ. Split weaning improves pregnancy rate and embryo survival in sows mated in lactation. Anim Reprod Sci 2024; 263:107440. [PMID: 38452579 DOI: 10.1016/j.anireprosci.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
Increasing piglet weaning age while maintaining the reproductive efficiency of the breeding herd depends on the ability to stimulate sows to ovulate during lactation without reducing subsequent pregnancy rates and litter sizes. The aim of this study was to determine if a reduction in piglet suckling load, either prior to or immediately after mating in lactation, altered ovarian follicle development and increased embryo survival to day 30 of gestation. Fifty-nine multiparous Large White x Landrace sows were allocated to one of three treatments; litter size maintained at 11 piglets (control); litter size reduced to seven piglets on day 18 of lactation (split wean (SW)); or litter size reduced to seven piglets at expression of lactation oestrus (oestrus split wean (OES SW)). The percentage of sows that expressed lactation oestrus did not differ between treatments (79.7 %; P > 0.05) and split weaning had minimal effects on ovarian follicle development. Pregnancy rates were higher for SW and OES SW sows, compared to control sows. Embryo survival to day 30 of gestation was higher for SW sows (73.7 %) compared with control (56.4 %) and OES SW sows (49.5 %; P < 0.05). In summary, weaning a portion of the litter prior to mating in lactation improved pregnancy rates and embryo survival.
Collapse
Affiliation(s)
- Alice C Weaver
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia.
| | - Karen L Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; Robinson Research Institute, The University of Adelaide, SA 5005, Australia
| | - Paul J Herde
- South Australian Research and Development Institute, Pig and Poultry Production Institute, University of Adelaide, Roseworthy, SA 5371, Australia
| | - William H E J van Wettere
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|
3
|
Weaver AC, Kind KL, Kelly JM, Herde P, van Wettere WHJ. Effect of split weaning on follicle development and oocyte quality in multiparous sows. Anim Reprod Sci 2024; 262:107434. [PMID: 38368653 DOI: 10.1016/j.anireprosci.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Increasing piglet weaning age while maintaining the reproductive efficiency of the breeding herd depends on being able to stimulate sows to ovulate during lactation without reducing subsequent pregnancy rates and litter sizes. Embryo survival is affected by the quality of the oocytes shed at ovulation, and oocyte quality is profoundly impacted by the follicular environment in which the oocyte matures. This study determined the effect of reducing suckled litter size from 11 to 7 piglets on day 18 of lactation on the ovarian follicular environment and oocyte developmental competence at day 21 of lactation. Thirty-nine, Large White X Landrace sows (parity 3.2 ± 0.2; mean ± SEM; range 2-6) had their litter size either maintained at 11 piglets (control); or reduced to seven piglets on day 18 of lactation (split wean (SW)). Sows were slaughtered on day 21 of lactation and ovaries were collected for analysis of follicular fluid composition and in vitro blastocyst development rates. There was no effect of split weaning on fertilisation rate and development to blastocyst stage; however, a greater proportion of blastocysts from control sows were classified as early blastocyst stage. Furthermore, follicular fluid concentrations of oestradiol were higher in SW sows. Together, these results indicate split weaning prior to mating in lactation alters the ovarian follicular environment and while blastocyst development rates were unaffected, embryos from control sows may be of poorer quality as indicated by a delay in development.
Collapse
Affiliation(s)
- Alice C Weaver
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia.
| | - Karen L Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; Robinson Research Institute, The University of Adelaide, SA 5005, Australia
| | - Jennifer M Kelly
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, SA 5350 Australia
| | - Paul Herde
- South Australian Research and Development Institute, Pig and Poultry Production Institute, University of Adelaide, Roseworthy, SA 5371, Australia
| | - William He J van Wettere
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|
4
|
Zhang Z, Tian J, Liu W, Zhou J, Zhang Y, Ding L, Sun H, Yan G, Sheng X. Perfluorooctanoic acid exposure leads to defect in follicular development through disrupting the mitochondrial electron transport chain in granulosa cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166954. [PMID: 37722425 DOI: 10.1016/j.scitotenv.2023.166954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental pollutant that can impair ovarian function, while the underlying mechanism is not fully understood, and effective treatments are lacking. In this study, we established a mouse model of PFOA exposure induced by drinking water and found that PFOA exposure impaired follicle development, increased apoptosis of granulosa cells (GCs), and hindered normal follicular development in a 3D culture system. RNA-seq analysis revealed that PFOA disrupted oxidative phosphorylation in ovaries by impairing the mitochondrial electron transport chain. This resulted in reduced mitochondrial membrane potential and increased mitochondrial reactive oxygen species (mtROS) in isolated GCs or KGN cells. Resveratrol, a mitochondrial nutrient supplement, could improve mitochondrial function and restore normal follicular development by activating FoxO1 through SIRT1/PI3K-AKT pathway. Our results indicate that PFOA exposure impairs mitochondrial function in GCs and affects follicle development. Resveratrol can be a potential therapeutic agent for PFOA-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jiao Tian
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lijun Ding
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Guijun Yan
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Characteristic of factors influencing the proper course of folliculogenesis in mammals. ACTA ACUST UNITED AC 2018. [DOI: 10.2478/acb-2018-0006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Folliculogenesis is the process of ovarian follicle formation,, taking presence during foetal period. During the follicular development, oogoniums undergo meiosis and oocytes are formed. In the ovaries of new born sows, primary and secondary follicles are present and, 90 days after birth, tertiary follicles appear. During development in the ovarian follicles growth of granulosa cells and differentiation of the thecal cells can be observed. A cavity filled with follicular fluid appears. Granulosa cells are divided into: mural cells and corona radiata, which together with the oocyte form the cumulus oophorus. Corona radiata cells, mural layers and oolemma contact each other by a network of gap junctions. Secreted from the pituitary gland, FSH and LH gonadotropin hormones act on receptors located in granular and follicular cells. In the postnatal life tertiary follicles and Graafian follicles are formed. When the follicle reaches a diameter of 1 mm, further growth depends on the secretion of gonadotropins. Mature ovarian follicles produce: progestins, androgens and oestrogens. The growth, differentiation and steroidogenic activity of ovarian follicles, in addition to FSH and LH, is also affected by prolactin, oxytocin, steroid and protein hormones, numerous proteins from the cytokine and interleukin family, metabolic hormones like insulin, glucocorticoids, leptin, thyroid hormones and growth hormones. Despite numerous studies, many processes related to folliculogenesis have not been discovered Learning the mechanisms regulating reproductive processes would allow to easily distinguish pathological processes and discover more and more genes and mechanisms of their expression in cells that build ovarian follicles.
Collapse
|
6
|
Yu S, Xia M, Alsiddig MA, Liu H, Wei W, Chen J. Molecular cloning, alternative splicing and mRNA expression analysis of MAGI1 and its correlation with laying performance in geese. Br Poult Sci 2017; 58:158-165. [DOI: 10.1080/00071668.2016.1268251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
- College of Life Science, Leshan Normal University, Sichuan, PR China
| | - M. Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - M. A. Alsiddig
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - H. Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - W. Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - J. Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
7
|
Wright EC, Hale BJ, Yang CX, Njoka JG, Ross JW. MicroRNA-21 and PDCD4 expression during in vitro oocyte maturation in pigs. Reprod Biol Endocrinol 2016; 14:21. [PMID: 27084064 PMCID: PMC4833929 DOI: 10.1186/s12958-016-0152-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/04/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) are small non-coding RNA molecules critical for regulating cellular function, and are abundant in the maturing oocyte and developing embryo. MiRNA-21 (MIR21) has been shown to elicit posttranscriptional gene regulation in several tissues associated with rapid cell proliferation in addition to demonstrating anti-apoptotic features through interactions with PDCD4 mRNA and other targets. In many tissues, MIR21 interacts and suppresses PDCD4 due to the strong complementation between MIR21 and the PDCD4 3'UTR. METHODS The objective of this project was to examine the relationship between MIR21 and PDCD4 expression in porcine oocytes during in vitro maturation and assess the impact of MIR21 inhibition during oocyte maturation on early embryo development. Additionally, we evaluated the effect of gonadotropins in maturation media and the presence of cumulus cells to determine their ability to contribute to MIR21 abundance in the oocyte during maturation. RESULTS During in vitro maturation, expression of MIR21 increased approximately 6-fold in the oocyte and 25-fold in the cumulus cell. Temporally associated with this was the reduction of PDCD4 protein abundance in MII arrested oocytes compared with GV stage oocytes, although PDCD4 mRNA was not significantly different during this transition. Neither the presence of cumulus cells nor gonadotropins during in vitro maturation affected MIR21 abundance in those oocytes achieving MII arrest. However, inhibition of MIR21 activity during in vitro maturation using antisense MIR21 suppressed embryo development to the 4-8 cell stage following parthenogenetic activation. CONCLUSIONS MIR21 is differentially expressed in the oocyte during meiotic maturation in the pig and inhibition of MIR21 during this process alters PDCD4 protein abundance suggesting posttranscriptional regulatory events involving MIR21 during oocyte maturation may impact subsequent embryonic development in the pig.
Collapse
Affiliation(s)
- Elane C. Wright
- Department of Animal Science, Iowa State University, 2356 Kildee hall, Ames, IA 50011 USA
| | - Benjamin J. Hale
- Department of Animal Science, Iowa State University, 2356 Kildee hall, Ames, IA 50011 USA
| | - Cai-Xia Yang
- Department of Animal Science, Iowa State University, 2356 Kildee hall, Ames, IA 50011 USA
| | - Josephat G. Njoka
- Department of Animal Science, Iowa State University, 2356 Kildee hall, Ames, IA 50011 USA
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, 2356 Kildee hall, Ames, IA 50011 USA
| |
Collapse
|
8
|
Microfluidic method of pig oocyte quality assessment in relation to different follicular size based on lab-on-chip technology. BIOMED RESEARCH INTERNATIONAL 2014; 2014:467063. [PMID: 25548771 PMCID: PMC4274715 DOI: 10.1155/2014/467063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
Abstract
Since microfollicular environment and the size of the follicle are important markers influencing oocyte quality, the aim of this study is to present the spectral characterization of oocytes isolated from follicles of various sizes using lab-on-chip (LOC) technology and to demonstrate how follicle size may affect oocyte quality. Porcine oocytes (each, n = 100) recovered from follicles of different sizes, for example, from large (>5 mm), medium (3–5 mm), and small (<3 mm), were analyzed after preceding in vitro maturation (IVM). The LOC analysis was performed using a silicon-glass sandwich with two glass optical fibers positioned “face-to-face.” Oocytes collected from follicles of different size classes revealed specific and distinguishable spectral characteristics. The absorbance spectra (microspectrometric specificity) for oocytes isolated from large, medium, and small follicles differ significantly (P < 0.05) and the absorbance wavelengths were between 626 and 628 nm, between 618 and 620 nm, and less than 618 nm, respectively. The present study offers a parametric and objective method of porcine oocyte assessment. However, up to now this study has been used to evidence spectral markers associated with follicular size in pigs, only. Further investigations with functional-biological assays and comparing LOC analyses with fertilization and pregnancy success and the outcome of healthy offspring must be performed.
Collapse
|
9
|
The effects of season and moderate nutritional restriction on ovarian function and oocyte nuclear maturation in cycling gilts. Theriogenology 2014; 82:1303-9. [DOI: 10.1016/j.theriogenology.2014.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022]
|
10
|
Weaver AC, Kelly JM, Kind KL, Gatford KL, Kennaway DJ, Herde PJ, van Wettere WHEJ. Oocyte maturation and embryo survival in nulliparous female pigs (gilts) is improved by feeding a lupin-based high-fibre diet. Reprod Fertil Dev 2013; 25:1216-23. [DOI: 10.1071/rd12329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/26/2012] [Indexed: 11/23/2022] Open
Abstract
Inclusion of high levels of the high-fibre ingredient sugar-beet pulp in pre-mating diets has been shown to increase gonadotrophin concentrations and improve oocyte quality in nulliparous pigs (gilts). This study evaluated the effects of two alternative fibre sources on reproductive performance in gilts. Gilts received one of three diets from 3 weeks before puberty stimulation until Day 19 of the first oestrous cycle: control (39 g kg–1 fibre), bran (500 g kg–1 wheat bran, 65 g kg–1 fibre) or lupin (350 g kg–1 lupin, 118 g kg–1 crude fibre). Diet did not affect circulating LH concentrations or ovarian follicle size. However, a higher percentage of oocytes collected from lupin-supplemented gilts reached metaphase II in vitro compared with those collected from bran-fed or control gilts (89 ± 5% versus 72 ± 5% and 66 ± 5%, respectively; P < 0.05). Furthermore, in a second experiment, gilts fed the same lupin-based diet before mating had improved embryo survival (92 ± 5%) on Day 28 after mating compared with control gilts (76 ± 4%; P < 0.05). Therefore, feeding a high-fibre diet before mating can improve oocyte quality in gilts without changes in circulating LH, but this effect is dependent on the fibre source.
Collapse
|
11
|
Mural granulosa cell gene expression associated with oocyte developmental competence. J Ovarian Res 2010; 3:6. [PMID: 20205929 PMCID: PMC2845131 DOI: 10.1186/1757-2215-3-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/06/2010] [Indexed: 01/23/2023] Open
Abstract
Background Ovarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte. Methods Immature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC) of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC). Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array. Results The result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox) and nerve growth factor receptor associated protein 1 (Ngfrap1), which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2), which is involved in the regulation of extracellular matrix organization and biogenesis. Conclusions The data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and the developmental competence of oocytes. This finding suggests that the most differentially expressed gene, lysyl oxidase, may be a candidate biomarker of oocyte health and useful for the selection of good quality oocytes for assisted reproduction.
Collapse
|
12
|
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:223-90. [PMID: 18703408 DOI: 10.1016/s1937-6448(08)00807-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oocyte is a unique and highly specialized cell responsible for creating, activating, and controlling the embryonic genome, as well as supporting basic processes such as cellular homeostasis, metabolism, and cell cycle progression in the early embryo. During oogenesis, the oocyte accumulates a myriad of factors to execute these processes. Oogenesis is critically dependent upon correct oocyte-follicle cell interactions. Disruptions in oogenesis through environmental factors and changes in maternal health and physiology can compromise oocyte quality, leading to arrested development, reduced fertility, and epigenetic defects that affect long-term health of the offspring. Our expanding understanding of the molecular determinants of oocyte quality and how these determinants can be disrupted has revealed exciting new insights into the role of oocyte functions in development and evolution.
Collapse
Affiliation(s)
- Namdori R Mtango
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
13
|
Foxcroft GR, Vinsky MD, Paradis F, Tse WY, Town SC, Putman CT, Dyck MK, Dixon WT. Macroenvironment effects on oocytes and embryos in swine. Theriogenology 2007; 68 Suppl 1:S30-9. [PMID: 17524466 DOI: 10.1016/j.theriogenology.2007.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As in other domestic mammals, the interaction between genotype and environment in swine has profound effects on the ultimate phenotype of the individual born. Interactions within the litter in utero add an additional level of complexity in a litter-bearing species like the pig. Nutritional manipulations during the preovulatory period affect the maturity of the follicle and enclosed oocyte, and the metabolic and endocrine mechanisms potentially mediating these effects have been described. Extensive research on lactational catabolism in the first parity sow has established an association between the development of immature follicles and oocytes, and the reduced fertility of these sows when bred at the first postweaning estrus. This negative impact of lactational catabolism appears to be exaggerated in contemporary dam-lines by a minimal delay between weaning and first estrus, further limiting the maturity of the follicle and oocyte at the time of ovulation. Metabolic programming may induce gender-specific loss of embryos by Day 30 and affects embryonic development directly, without significant effects on placental size. In contrast, inadvertent crowding of embryos in utero, particularly evident in a sub-population of mature sows with high ovulation rates and moderate to high embryonic survival to Day 30, significantly limits placental development of crowded litters. However, even at Day 30, moderate crowding in utero also appears to affect myogenesis in the embryo in a gender-specific manner. In the absence of compensatory placental growth after Day 30, classic measures of IUGR are evident in surviving fetuses at Day 90 and at term.
Collapse
Affiliation(s)
- G R Foxcroft
- Swine Reproduction-Development Program, Swine Research & Technology Centre, University of Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Webb R, Garnsworthy PC, Campbell BK, Hunter MG. Intra-ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenology 2007; 68 Suppl 1:S22-9. [PMID: 17540442 DOI: 10.1016/j.theriogenology.2007.04.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In both mono-ovulatory species, such as cattle, and poly-ovulatory species, such as pigs, the interactions among extra-ovarian gonadotropins, metabolic hormones and intra-ovarian growth factors determine the continued development of follicles, the number of follicles that ovulate and the developmental competence of the ovulated oocyte. FSH and then subsequently LH are the main hormones regulating antral follicle growth in both mono- and poly-ovular species. However, a range of intra-ovarian growth factors, such as insulin-like growth factors (IGFs) and bone morphogenetic proteins (BMPs), are expressed throughout follicle and oocyte development and interact with gonadotropins to control follicle maturation. In addition, environmental factors such as nutrition, including both the amount and composition of the diet consumed prior to ovulation, can influence follicle development and the quality of the oocyte. Recent progress in our understanding has resulted in the development of diets that enhance oocyte quality and improve pregnancy rate in both pigs and cattle. In conclusion, despite some species-specific differences, similar interacting mechanisms control follicular development and influence oocyte quality.
Collapse
Affiliation(s)
- R Webb
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| | | | | | | |
Collapse
|
15
|
Brandt Y, Madej A, Rodríguez-Martínez H, Einarsson S. Effects of exogenous ACTH during oestrus on early embryo development and oviductal transport in the sow. Reprod Domest Anim 2007; 42:118-25. [PMID: 17348967 DOI: 10.1111/j.1439-0531.2006.00698.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was conducted to assess the effects of ACTH injections on the early development of embryos and their transportation to the uterus. Fifteen sows were monitored for ovulation using transrectal ultrasonography during the first two oestrous periods after weaning. The sows were randomly divided into a control group (C group, n = 8) and an ACTH-treated group (ACTH group, n = 7), and were all surgically fitted with intra-jugular catheters. From the onset of the second standing oestrus after weaning, the sows were injected (NaCl/synthetic ACTH) every 4 h. Blood samples were collected immediately before and 45 min after each injection. All sows were inseminated once 10-33 h before ovulation in their second oestrus after weaning. At 48 (n = 4) or 60 (n = 11) h after ovulation during their second oestrus, the sows were killed and the embryos retrieved from the oviduct and uterus. The embryos were counted and compared with the number of corpora lutea, cleavage rate was noted and, finally, the embryos were prepared for confocal laser scanning microscopy and transmission electron microscopy. There was no difference between the groups regarding cleavage rate, the cytoskeleton, or the number of active nucleoli. However, the ACTH group had significantly (p < 0.05) fewer ova/embryos retrieved (51%) than the C group (81%), and there was a tendency towards faster transportation to the uterus in the ACTH group, possibly because of high progesterone concentrations during treatment. To conclude, administration of ACTH every 4 h from onset of oestrus to 48 h caused significant loss of oocytes or embryos, and possibly faster transportation through the oviduct.
Collapse
Affiliation(s)
- Y Brandt
- Division of Comparative Reproduction, Obstetrics and Udder Health, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
16
|
Wang Q, Sun QY. Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev 2007; 19:1-12. [PMID: 17389130 DOI: 10.1071/rd06103] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mounting evidence that oocyte quality profoundly affects fertilisation an d subsequent embryo development drives the continued search for reliable predictors of oocyte developmental competence. In the present review, we provide an overall summary and analysis of potential criteria that can be used to evaluate oocyte quality. These criteria are specifically classified as morphological and cellular/molecular predictors. Traditional methods for the evaluation of oocyte quality are based on morphological classification of thefollicle, cumulus-oocytecomplex, polar body and/or meiotic spindle. Although the use of morphological characteristics as predictors of oocyte quality is controversial, such a grading system can provide valuable information for the preselection of oocytes with higher developmental competence and, therefore, may maximise embryo developmental outcome. Several intrinsic markers (such as mitochondrial status and glucose-6-phosphate dehydrogenase 1 activity) and extrinsic markers (such as apoptosis of follicular cells and levels of the transforming growth factor-beta superfamily in follicular fluid or serum) have also been reported as useful indicators of oocyte competence and embryo quality. Compared with the morphological parameters, these cellular and molecular predictors of oocyte quality may prove to be more precise and objective, although further studies and refinement of techniques are needed.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
17
|
Zhu G, Guo B, Pan D, Mu Y, Feng S. Expression of bone morphogenetic proteins and receptors in porcine cumulus-oocyte complexes during in vitro maturation. Anim Reprod Sci 2007; 104:275-83. [PMID: 17368971 DOI: 10.1016/j.anireprosci.2007.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/10/2007] [Accepted: 02/16/2007] [Indexed: 11/16/2022]
Abstract
In vitro oocyte growth is the essential technology which enables oocytes to achieve maturation and acquire the competence for subsequent manipulation. There is increasing evidence that members of the transforming growth factor-beta (TGF-beta) superfamily are expressed in a variety of cell types within the ovary in a developmental stage-related manner and function as crucial factors in oocyte growth and follicular development. However, the expression of TGF-beta family members has been studied extensively in follicular compartment cells in the ovaries while poorly explored in the cumulus-oocytes complex (COC) within culture systems. Using semi-quantitative RT-PCR, we investigated the temporal and spatial expression patterns of several bone morphogenetic proteins (BMP-4, BMP-6, BMP-15 and GDF-9), as well as BMP receptors (BMPRIA, BMPRIB, BMPRII and ActRII), in porcine COCs throughout in vitro maturation (IVM). In oocytes, the transcription of BMP-6, BMP-15, GDF-9 and BMPRII were down-regulated, while BMP-4, BMPRIA and BMPRIB remained unchanged during IVM. In cumulus cells, BMP-4 mRNA expression increased significantly, while BMP-6 and ActRII was down-regulated during IVM. Nevertheless, mRNAs of BMPRIA, BMPRIB and BMPRII were constantly expressed in cumulus cells in the process. However, BMP-15 was absent in cumulus cells and ActRII was not detected in oocytes. In addition, hardly any transcription of BMP-2, BMP-5, BMP-7, ActRIA was found in porcine COCs throughout IVM. These data demonstrate a complex BMP-signaling system for member gene expression within porcine COCs during IVM and indicate the need for further functional characterization of these factors during oocyte maturation.
Collapse
Affiliation(s)
- Guiyu Zhu
- Department of Gene and Cell Engineering, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, China
| | | | | | | | | |
Collapse
|
18
|
Fleming JS, Beaugié CR, Haviv I, Chenevix-Trench G, Tan OL. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol 2006; 247:4-21. [PMID: 16297528 DOI: 10.1016/j.mce.2005.09.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 09/30/2005] [Accepted: 10/11/2005] [Indexed: 12/11/2022]
Abstract
Epithelial ovarian cancer (EOC) is often a lethal disease because in many cases early symptoms go undetected. Although research proceeds apace, as yet there are few reliable and specific biomarkers for the early stages of the disease. EOC is an umbrella label for a highly heterogeneous collection of cancers, which includes tumours of low malignant potential, serous cystadenomas, mucinous and clear cell carcinomas, all of which are likely to arise from a number of epithelial cell types and a variety of progenitor lesions. Many, but not all types of EOC are thought to arise from the cells lining ovarian inclusion cysts. In this review, we discuss the hypotheses that have driven our ideas on epithelial ovarian carcinogenesis and examine the morphological and genetic evidence for pathways to EOC. The emergence of laser-capture microdissection and expression profiling by microarray technologies offers the promise of defining these pathways more accurately, as well as providing us with the tools for earlier diagnosis.
Collapse
Affiliation(s)
- Jean S Fleming
- Eskitis Institute for Cell & Molecular Therapies, School of Biomolecular and Biomedical Sciences, Griffith University Nathan Campus, Nathan, Qld 4111, Australia.
| | | | | | | | | |
Collapse
|
19
|
Ji GD, Zhou L, Wang Y, Xia W, Gui JF. Identification of a novel C2 domain factor in ovaries of orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 2006; 143:374-83. [PMID: 16459120 DOI: 10.1016/j.cbpb.2005.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 12/11/2005] [Accepted: 12/18/2005] [Indexed: 11/21/2022]
Abstract
Follicle consists of an oocyte and a lot of surrounding follicular cells, and significant interactions exist between the oocyte and the somatic cells. In this study, a novel cDNA has been screened from a subtractive cDNA library between tail bud embryos and blastula embryos in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Its full-length cDNA is 821 bp, and has an ORF of 414 bp for encoding a peptide of 137 aa, which shows 38%, 37%, 33%, and 33% homology with 4 putative proteins screened from zebrafish (Danio rerio). Conserved domain search in NCBI reveals a single C2 domain existing in the C2 domain superfamily proteins, and has only 7 beta strands in comparison with 8 beta strands of C2 domains in other C2 domain superfamily proteins. Artificial sex reversal, RT-PCR analysis and Western blot detection demonstrated ovary-specific expression of the C2 domain factor, and therefore the novel gene was designated as E. coioides ovary-specific C2 domain factor, EcOC2 factor. Moreover, predominant expression of EcOC2 factor was further revealed in grouper mature ovary, and its strong immunofluorescence signals were located between granulosa cells and oocyte zona radiata in grouper mature follicles. The data indicate that the novel EcOC2 factor might be a main component that associates between granulosa cells and the oocyte during oocyte maturation, and might play significant roles in regulating oocyte maturation and ovulation. Further studies on its developmental behaviour and physiological functions will elucidate the interactions between oocyte and the surrounding somatic cells and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Guang-Dong Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|