1
|
Szymanska M, Basavaraja R, Meidan R. A tale of two endothelins: the rise and fall of the corpus luteum. Reprod Fertil Dev 2024; 37:RD24158. [PMID: 39680472 DOI: 10.1071/rd24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Transcriptome profiling of different developmental stages of corpus luteum during the estrous cycle in pigs. Genomics 2020; 113:366-379. [PMID: 33309770 DOI: 10.1016/j.ygeno.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
To better understand the molecular basis of corpus luteum (CL) development and function RNA-Seq was utilized to identify differentially expressed genes (DEGs) in porcine CL during different physiological stages of the estrous cycle viz. early (EL), mid (ML), late (LL) and regressed (R) luteal. Stage wise comparisons obtained 717 (EL vs. ML), 568 (EL vs. LL), 527 (EL vs. R), 786 (ML vs. LL), 474 (ML vs. R) and 534 (LL vs. R) DEGs with log2(FC) ≥1 and p < 0.05. The process of angiogenesis, steroidogenesis, signal transduction, translation, cell proliferation and tissue remodelling were significantly (p < 0.05) enriched in EL, ML and LL stages, where as apoptosis was most active in regressed stage. Pathway analysis revealed that most annotated genes were associated with lipid metabolism, translation, immune and endocrine system pathways depicting intra-luteal control of diverse CL function. The network analysis identified genes AR, FOS, CDKN1A, which were likely the novel hub genes regulating CL physiology.
Collapse
|
3
|
Gadsby JE, Frandsen S, Chang J, Celestino B, Tucker E, Poole DH. Progesterone inhibits cytokine/TNF-α production by porcine CL macrophages via the genomic progesterone receptor. Domest Anim Endocrinol 2020; 72:106426. [PMID: 32244110 DOI: 10.1016/j.domaniend.2019.106426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
In pigs, luteolytic sensitivity to PGF-2α (=LS) is delayed until d 13 of the estrous cycle. While the control of LS is unknown, it is temporally associated with macrophage (MAC; which secretes tumor necrosis factor [TNF]-α) infiltration into the corpora lutea (CL), and previous studies have shown that TNF-α induces LS in porcine luteal cells (LCs) in culture. This study was designed to explore the control of LS by CL macrophage (CL MAC)/TNF-α by progesterone (P4), and to examine the hypothesis that P4 acting via the genomic P4 receptor (PGR) inhibits CL MAC TNF-α and thus plays a key role in regulating LS during the pig estrous cycle. In experiment 1, the effects of LCs on CL MAC cytokine/TNF-α mRNA expression in co-culture were examined (MID cycle; ~d 7-12; no LS); results showed that LC was inhibitory to cytokine/TNF-α. In experiment 2, the effects of P4 or R5020 (PGR-agonist) on CL MAC cytokine/TNF-α mRNA expression were examined (MID cycle; ~d 7-12; no LS); results showed that both P4 and R5020 dose-dependently inhibited TNF-α. In experiment 3, CL MACs were isolated from CL at MID (~d 7-12; no LS) and LATE (~d 13-18; + LS) cycle, and TNF-α/PGR mRNA measured. Results indicated that while TNF-α mRNA was 4.2-fold greater in CL MACs from LATE vs MID cycle, PGR mRNA was 4.5-fold greater in CL MACs from MID vs LATE cycle. These data support our hypothesis and suggest that progesterone, acting via PGR, plays a critical physiological role in the control of TNF-α production by CL MACs and LS during the pig estrous cycle.
Collapse
Affiliation(s)
- J E Gadsby
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - S Frandsen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - J Chang
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - B Celestino
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - E Tucker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - D H Poole
- Department of Animal Science, College of Agricultural and Life Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos. Theriogenology 2018; 123:185-193. [PMID: 30312936 DOI: 10.1016/j.theriogenology.2018.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Maternal undernutrition during the periconceptional period alters the transcriptomic profile of pig endometrium and embryos. Herein, we tested the hypothesis that restricted maternal consumption by females during the periconceptional period impairs the pattern of DNA methylation in both the endometrium and embryos during the peri-implantation period (Day 15-16 of gestation). Affected genes in restricted-diet-fed pig endometrium and embryos were identified using quantitative methylation-specific PCR and comprised those genes which are known to be important in reproductive, metabolic and epigenetic function, thereby exhibiting altered transcriptomic expression in endometrium and embryos of restricted-diet-fed gilts. Specifically, levels of DNA methylation of selected genes with altered expression in the endometrium included acid phosphatase type 2C (PPAP2C), salivary lipocalin (SAL1), endothelin receptor type B (EDNRB), regulator of G-protein signalling 12 (RGS12), type 4 17β-hydroxysteroid dehydrogenase (HSD17B4), toll-like receptor 3 (TLR3), and adiponectin receptor 1 (ADIPOR1). In embryos, adiponectin receptor 2 (ADIPOR2), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), progestin and adipoQ receptor family member 7 (PAQR7), progesterone receptor membrane component 2 (PGRMC2), steroidogenic acute regulatory protein (STAR), and serpin family A member 1 (SERPINA1) were altered. Finally, 5 acid phosphatase tartrate resistant (ACP5), high mobility group box 2 (HMGB2), and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were altered in both the endometrium and in embryos. In the endometrium, the methylation levels of ACP5 (regulation of endometrial-conceptus iron transport), RGS12 (protein-coupled receptor signalling), and TLR3 (immune response) were increased, while that of EDNRB (corpus luteum maintenance) was decreased. In embryos, the methylation levels of ADIPOR2 (metabolic homeostasis) and DNMT1 (DNA methylation maintenance) were increased. The levels of methylation in other studied endometrial and embryonic genes were unchanged. DNA methylation levels in both the peri-implantation pig endometrium and embryos may be altered in response to female nutritional restriction.
Collapse
|
5
|
Chang J, Frandsen S, D’Annibale-Tolhurst M, Palumbo N, Gadsby J. Prostaglandin (PTG) E and F receptors in the porcine corpus luteum; effect of tumor necrosis factor-α. Anim Reprod Sci 2018; 195:139-148. [DOI: 10.1016/j.anireprosci.2018.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023]
|
6
|
Ziecik AJ, Przygrodzka E, Jalali BM, Kaczmarek MM. Regulation of the porcine corpus luteum during pregnancy. Reproduction 2018; 156:R57-R67. [PMID: 29794023 DOI: 10.1530/rep-17-0662] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The new corpora lutea (CLs) in pigs are formed from the preovulatory follicles after the luteinizing hormone (LH) surge. However, total autonomy and independence of CLs from LH up to Day 12 of cycle has recently been questioned. Transformation of estrous cycle CL to CL of pregnancy initiated by embryonic signals requires not only the cessation of prostaglandin F2 (PGF2α) supply to the luteal tissue but also needs the CL to overcome luteolytic acquisition and/or changing its sensitivity to PGF2α during Days 12-14 of pregnancy. The luteolytic cascade is prevented by inhibition of lymphocyte infiltration and leucocyte recruitment, limitation of cell apoptosis, upregulation of pregnancy-associated genes and an enhanced antiluteolytic role of PGE2 Our 'two-signal switch hypothesis' highlights the importance of post PGF2α and PGE2 receptor signaling pathways activation in CLs during luteolysis and rescue. The 'luteolytic switch' involves increased expression of many regression mediators and activation of the post PTGFR signaling pathway. The 'rescue switch' initiated by embryonic signals - estradiol 17β and PGE2 - induces post PTGER2/4 pathway, turning the 'luteolytic switch' off and triggering activity of genes responsible for CL maintenance. In mid and late pregnancy, CLs are maintained by LH and the synergistic action of metabolic hormones. This paper provides an outline of recent views on CL regression, rescue and maintenance during pregnancy in pigs that conflict with previous paradigms and highlights new findings regarding the actions of prostaglandins, role of microRNAs (miRNA) and immune system and signaling pathways governing the life cycle of porcine CL.
Collapse
Affiliation(s)
- Adam J Ziecik
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research PAS, Olsztyn, Poland
| | - Emilia Przygrodzka
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research PAS, Olsztyn, Poland
| | - Beenu M Jalali
- Department of Immunology and Pathology of Reproduction, Institute of Animal Reproduction and Food Research PAS, Olsztyn, Poland
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research PAS, Olsztyn, Poland
| |
Collapse
|
7
|
Zglejc K, Martyniak M, Waszkiewicz E, Kotwica G, Franczak A. Peri-conceptional under-nutrition alters transcriptomic profile in the endometrium during the peri-implantation period-The study in domestic pigs. Reprod Domest Anim 2017; 53:74-84. [DOI: 10.1111/rda.13068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/27/2017] [Indexed: 11/26/2022]
Affiliation(s)
- K Zglejc
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - M Martyniak
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - E Waszkiewicz
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - G Kotwica
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - A Franczak
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| |
Collapse
|
8
|
Ervin JM, Schütz LF, Spicer LJ. Current status of the role of endothelins in regulating ovarian follicular function: A review. Anim Reprod Sci 2017; 186:1-10. [PMID: 28967452 DOI: 10.1016/j.anireprosci.2017.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Endothelins (EDN) are a group of vasoactive 21 amino acid peptides reported to play roles in steroidogenesis, folliculogenesis, and ovulation. EDN1, EDN2 and EDN3 have all been shown to affect granulosa cell (GC) function in a variety of mammalians species. Herewithin, the role of EDN in regulating steroidogenesis and ovarian follicular development is reviewed, focusing on the localization and function of EDN and their receptors in ovarian follicular function emphasizing species differences. For example, in single ovulating species such as humans and cattle, in the presence of trophic hormones such as FSH and IGF1, EDN1 and EDN2 significantly inhibited GC estradiol production in 2 of 4 studies, while no effect was observed for GC progesterone production in 2 of 4 studies. In contrast, EDN1 exhibited inhibitory effects on progesterone production by GC in 3 of 3 studies in pigs and 3 of 4 studies in rats. Also, EDN1 inhibited GC estradiol production in 4 of 5 studies in rats. Altogether, these results indicate that EDN are produced by ovarian follicles and are involved in the regulation of steroidogenesis of GC of several mammalian species including humans, cattle, pigs and rats, but that these effects may vary with species and culture condition.
Collapse
Affiliation(s)
- J M Ervin
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
9
|
Chang J, Frandsen S, Gadsby JE. Prostaglandin synthesis by the porcine corpus luteum: effect of tumor necrosis factor-α. Domest Anim Endocrinol 2017; 58:53-62. [PMID: 27658124 DOI: 10.1016/j.domaniend.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
The porcine corpus luteum (CL) displays delayed sensitivity to PGF-2α (luteolytic sensitivity, [LS]) until days 12 to 13 of cycle. The control of LS is unknown, but it is temporally associated with macrophage (which secrete tumor necrosis factor-α; TNF-α) infiltration into the CL. Other studies showed that TNF-α induces LS in vitro and that prostaglandins (PGs) may be involved in this mechanism. In experiment 1, PGF-2α and PGE secretion by luteal cells (LCs) was measured on days 4 to 14 of the estrous cycle, and the expression of PTGFS/AKR1B1 and PTGES/mPGES-1, determined by Western blot, before (day 7) vs after (day 13) the onset of LS. Results showed that the PGF-2α:PGE ratio increased significantly (P < 0.05) from day 4 to 13-14, and PTGFS/AKR1B1 and PTGES/mPGES-1 were significantly increased (P < 0.05) on day 13 (vs day 7). In experiment 2, LCs were collected from porcine CL at early (∼days 4-6) or mid (∼days 7-12) stages of the estrous cycle and cultured with 0, 0.1, 1, or 10 ng/mL TNF-α. Results showed that TNF-α significantly increased (P < 0.05) messenger RNA (mRNA) expression of cyclooxygenase (COX)-2 and mPGES-1 but not AKR1B1. TNF-α had no significant effects on AKR1B1 or mPGES protein abundance. TNF-α significantly increased (P < 0.05) PGE-2 but had no effect on PGF-2α secretion or on the PGF-2α:PGE2 ratio. In conclusion, although TNF-α increased COX2 and mPGES-1 mRNA, and PGE-2 secretion in vitro, it did not increase the PGF-2α:PGE2 ratio. Studies are currently directed toward exploring other pathways (eg, FP receptor signaling) by which TNF-α induces LS in the porcine CL.
Collapse
Affiliation(s)
- J Chang
- Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - S Frandsen
- Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - J E Gadsby
- Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
10
|
Przygrodzka E, Kaczmarek MM, Kaczynski P, Ziecik AJ. Steroid hormones, prostanoids, and angiogenic systems during rescue of the corpus luteum in pigs. Reproduction 2015; 151:135-47. [PMID: 26577025 DOI: 10.1530/rep-15-0332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
In order to characterize the transition of the corpora lutea (CL) from acquisition of luteolytic sensitivity to rescue of luteal function: i) the expression of 38 factors associated with steroids, prostanoids, and angiogenic systems and ii) concentrations of the main hormones responsible for maintenance of CL function in cyclic and pregnant pigs were examined. Additionally, the effect of prostaglandin (PG) E2 and F2 α on luteal function during the estrous cycle and pregnancy was evaluated in vitro. Significantly up-regulated gene expression was revealed in CL collected on day 14 of the estrous cycle (CYP19A1, ESR2, PTGS2, HIF1A, and EDN1) and on days 12-14 of pregnancy (SCARB1, PGRMC1, STAR, HSD3B1, NR5A1, PTGFR, PTGER4, and VEGFA). Elevated concentrations of estradiol-17β and PGE2 occurred in CL on days 12 and 14 of pregnancy respectively, while an increased intraluteal PGF2 α content was noted on day 14 of the estrous cycle. Both PGs increased the synthesis of progesterone by cultured luteal slices obtained on day 14 of pregnancy, in contrast to the action of PGF2 α on the corresponding day of the estrous cycle. PGE2 stimulated cAMP production via PTGER2 and PTGER4, while PGF2 α elevated the content of CREB in cultured luteal slices from CL of pregnant pigs. In silico analysis showed that infiltration of lymphocytes and apoptosis of microvascular endothelium were activated in CL on day 12 of the estrous cycle vs pregnancy. Summarizing, an abundance of E2 and PGE2 during pregnancy regulates specific pathways responsible for steroidogenesis, the prostanoid signaling system and angiogenesis during rescue from luteolysis in porcine CL.
Collapse
Affiliation(s)
- E Przygrodzka
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| | - M M Kaczmarek
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| | - P Kaczynski
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| | - A J Ziecik
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
11
|
Przygrodzka E, Witek KJ, Kaczmarek MM, Andronowska A, Ziecik AJ. Expression of factors associated with apoptosis in the porcine corpus luteum throughout the luteal phase of the estrous cycle and early pregnancy: their possible involvement in acquisition of luteolytic sensitivity. Theriogenology 2014; 83:535-45. [PMID: 25457680 DOI: 10.1016/j.theriogenology.2014.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
The studies on the acquisition of luteolytic sensitivity have been focused mainly on molecular changes induced in the luteal tissue after treatment with exogenous PGF2α or on physiological changes occurring during the estrous cycle. The comparison of changes leading to the acquisition of luteolytic sensitivity after Day 12 of the estrous cycle and corresponding days of pregnancy has not been investigated in the pig. The present study was undertaken to evaluate (1) apoptosis measured as the proportions of early apoptotic, late apoptotic, and viable cells; (2) expression of factors involved in the extrinsic (TNFA/TNFα, TNFRSF1A/TNFR1, TNFRSF1B/TNFR2, FAS/Fas, and FASLG/FasL) and intrinsic (CASP3/Casp3, TP53/p-53, BAX/Bax, and BCL2/Bcl-2) apoptotic pathways, with two components of the activating protein-1 complex, i.e., FOS/Fos and JUN/Jun and IFNG/IFNγ; and (3) concentrations of luteal and blood plasma progesterone (P4) throughout the luteal phase of the estrous cycle and early pregnancy. Corpora lutea (CL) were collected postmortem on Days 8, 10, 12, and 14 of the estrous cycle and the corresponding days of pregnancy. The luteal tissue was subjected to RNA and/or protein isolation and disaggregation of CL cells followed by flow cytometry analysis aimed to determine apoptotic changes. Luteal and blood plasma P4 concentrations decreased on Day 14 of the estrous cycle versus pregnancy (P < 0.05 and P < 0.001, respectively). A significant increase in the number of early apoptotic cells and a decrease in the number of viable cells were observed on Day 14 of the estrous cycle (P < 0.001 and P < 0.05, respectively). Increase (P < 0.05) of TNFA messenger RNA (mRNA) level coincided with that of IFNG on Day 12 of the estrous cycle but not on the corresponding day of pregnancy. The content of FAS mRNA and protein increased on Day 14 of the estrous cycle versus pregnancy (P < 0.05). The mRNA expression of CASP3, BCL-2 and BAX was unchanged in cyclic and pregnant CL, while level of TP53 increased (P < 0.05) on Day 12 of the estrous cycle versus Day 8. The level of FOS and JUN mRNA increased (P < 0.05) on Day 14 of the estrous cycle versus the remaining days. The level of FOS and JUN mRNA was significantly higher (P < 0.001 and P < 0.05, respectively) on Day 14 of the estrous cycle than that on the corresponding day of pregnancy. In summary, the simultaneous increase of TNFA and IFNG transcript in cyclic CL suggests the crucial role of both cytokines in sensitization of porcine CL to further luteolytic action of PGF2α. The upregulated expression of FAS, FOS, and JUN mRNA in the late luteal phase in cyclic CL can indicate their involvement in structural luteolysis. The increased viability of luteal cells and elevated P4 concentrations in pregnant CL confirm the protective role of luteal P4 against apoptosis.
Collapse
Affiliation(s)
- E Przygrodzka
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - K J Witek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - M M Kaczmarek
- Molecular Biology Core Facility, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - A Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - A J Ziecik
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
12
|
Zorrilla LM, D'Annibale MA, Swing SE, Gadsby JE. Expression of Genes Associated with Apoptosis in the Porcine Corpus Luteum During the Oestrous Cycle. Reprod Domest Anim 2013; 48:755-61. [DOI: 10.1111/rda.12156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/16/2013] [Indexed: 01/08/2023]
Affiliation(s)
- LM Zorrilla
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| | - MA D'Annibale
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| | - SE Swing
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| | - JE Gadsby
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| |
Collapse
|
13
|
Why two endothelins and two receptors for ovulation and luteal regulation? Life Sci 2012; 91:501-6. [DOI: 10.1016/j.lfs.2012.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 05/11/2012] [Accepted: 05/19/2012] [Indexed: 01/12/2023]
|