1
|
Gao M, Wang J, Lv Z. Supplementing Genistein for Breeder Hens Alters the Growth Performance and Intestinal Health of Offspring. Life (Basel) 2023; 13:1468. [PMID: 37511844 PMCID: PMC10381885 DOI: 10.3390/life13071468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent research revealed that dietary genistein supplementation for breeder hens can improve the immune function of offspring chicks. However, it remains unknown whether this maternal effect could improve the intestinal health of offspring. This study was conducted to explore the mechanism involved in the maternal effect of genistein on the intestinal mucosa and microbial homeostasis of chicken offspring. A total of 120 Qiling breeder hens were fed a basal diet, a 20 mg/kg genistein-supplemented diet, or a 40 mg/kg genistein-supplemented diet for 4 weeks before collecting their eggs. After hatching, 180 male offspring (60 chickens from each group) were randomly selected and divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a low-dose genistein-supplemented diet (LGE); (3) the offspring of hens fed a high-dose genistein-supplemented diet (HGE). At 17 d, 72 male offspring (48 chickens from CON and 24 chickens from LGE) were divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the CON group challenged with LPS (LPS); (3) the LGE group challenged with LPS (LPS + LGE). The results showed that maternal genistein supplementation increased the birth weight and serum level of total protein (TP), followed by improved intestinal villus morphology. Continuously, the maternal effect on the body weight of chicks lasted until 21 d. Additionally, it was observed that maternal genistein supplementation exhibited protective effects against LPS-induced morphological damage and intestinal mucosal barrier dysfunction by upregulating the expression of tight junction proteins, specifically ZO-1, Claudin1, E-cadherin, and Occludin, at 21 d. Using 16S rRNA gene sequencing, we demonstrated that maternal supplementation of genistein has the potential to facilitate the maturation of newly hatched chicken offspring by enhancing the abundance of Escherichia coli. Additionally, maternal genistein supplementation can effectively reduce the abundance of Gammaproteobacteria, thus mitigating the risk of bacterial diversity impairment of LPS. In light of these findings, maternal genistein supplementation holds promise as a potential strategy for ameliorating intestinal mucosal damage and modulating the microbiome in chicken offspring.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Uyanga VA, Sun L, Liu Y, Zhang M, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Effects of arginine replacement with L-citrulline on the arginine/nitric oxide metabolism in chickens: An animal model without urea cycle. J Anim Sci Biotechnol 2023; 14:9. [PMID: 36721201 PMCID: PMC9890773 DOI: 10.1186/s40104-022-00817-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This study examined the efficacy of L-citrulline supplementation on the arginine/nitric oxide metabolism, and intestinal functions of broilers during arginine deficiency. A total of 288 day-old Arbor Acre broilers were randomly assigned to either an arginine deficient basal diet (NC diet), NC diet + 0.50% L-arginine (PC diet), or NC diet + 0.50% L-citrulline (NCL diet). Production performance was recorded, and at 21 days old, chickens were euthanized for tissue collection. RESULTS The dietary treatments did not affect the growth performance of broilers (P > 0.05), although NC diet increased the plasma alanine aminotransferase, urate, and several amino acids, except arginine (P < 0.05). In contrast, NCL diet elevated the arginine and ornithine concentration higher than NC diet, and it increased the plasma citrulline greater than the PC diet (P < 0.05). The nitric oxide concentration in the kidney and liver tissues, along with the plasma and liver eNOS activities were promoted by NCL diet higher than PC diet (P < 0.05). In the liver, the activities of arginase 1, ASS, and ASL, as well as, the gene expression of iNOS and OTC were induced by PC diet greater than NC diet (P < 0.05). In the kidney, the arginase 1, ASS and ASL enzymes were also increased by PC diet significantly higher than the NC and NCL diets. Comparatively, the kidney had higher abundance of nNOS, ASS, ARG2, and OTC genes than the liver tissue (P < 0.05). In addition, NCL diet upregulated (P < 0.05) the mRNA expression of intestinal nutrient transporters (EAAT3 and PEPT1), tight junction proteins (Claudin 1 and Occludin), and intestinal mucosal defense (MUC2 and pIgR). The intestinal morphology revealed that both PC and NCL diets improved (P < 0.05) the ileal VH/CD ratio and the jejunal VH and VH/CD ratio compared to the NC fed broilers. CONCLUSION This study revealed that NCL diet supported arginine metabolism, nitric oxide synthesis, and promoted the intestinal function of broilers. Thus, L-citrulline may serve as a partial arginine replacement in broiler's diet without detrimental impacts on the performance, arginine metabolism and gut health of chickens.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Lijing Sun
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Yu Liu
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Meiming Zhang
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Jingpeng Zhao
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Xiaojuan Wang
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Hongchao Jiao
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| | - Okanlawon M. Onagbesan
- grid.448723.eDepartment of Animal Physiology, Federal University of Agriculture, Ogun State, Abeokuta P.M.B, 2240 Nigeria
| | - Hai Lin
- grid.440622.60000 0000 9482 4676Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai’an City, Shandong Province, 271018 China
| |
Collapse
|
3
|
Marín-García PJ, Llobat L, López-Lujan MC, Cambra-López M, Blas E, Pascual JJ. Urea Nitrogen Metabolite Can Contribute to Implementing the Ideal Protein Concept in Monogastric Animals. Animals (Basel) 2022; 12:ani12182344. [PMID: 36139206 PMCID: PMC9495106 DOI: 10.3390/ani12182344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Can urea nitrogen metabolite contribute to implementing the ideal protein concept in monogastric animals? This work aims to critically analyse how this metabolite can contribute to accurately implementing the ideal protein concept in monogastric animals, particularly in pig, poultry, and rabbit nutrition. This information will contribute to evaluating its potential and limitations as biomarker, as well as to standardizing the use of this metabolite in precise amino acidic monogastric nutrition. Abstract The ideal protein concept refers to dietary protein with an amino acid profile that exactly meets an animal’s requirement. Low-quality protein levels in the diet have negative implications for productive and reproductive traits, and a protein oversupply is energetically costly and leads to an excessive N excretion, with potentially negative environmental impact. Urea Nitrogen (UN), which corresponds to the amount of nitrogen in the form of urea circulating in the bloodstream, is a metabolite that has been widely used to detect amino acid imbalances and deficiencies and protein requirements. This review aims to critically analyse how UN can contribute to accurately implementing the ideal protein concept in monogastric animals, particularly in pig, poultry, and rabbit nutrition (14,000 animals from 76 published trials). About 59, 37, and 4% of trials have been conducted in pigs, poultry, and rabbits, respectively. UN level was negatively correlated to main performance traits (Pearson Correlation Coefficient [PCC] of −0.98 and −0.76, for average daily gain and feed conversion ratio, respectively), and lower UN level was related to higher milk yield and concentration. High level of UN was positively correlated to N excretion (PCC = 0.99) and negatively correlated to protein retention (PCC = −0.99). Therefore, UN in blood seems to be a proper indicator of amino acid imbalance in monogastric animals. Great variability in the use of UN was observed in the literature, including uses as determination medium (blood, plasma, or serum), units, and feeding system used (ad libitum or restricted), among others. A standardization of the methods in each of the species, with the aim to harmonize comparison among works, is suggested. After review, UN measurement in plasma and, whenever possible, the utilization of the same nutritional methodology (ad libitum conditions or restriction with blood sampling after refeeding at standardised time) are recommended. More studies are necessary to know the potential of UN and other bioindicators for amino acid deficiencies evaluation to get closer to the ideal protein concept.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
- Correspondence: (P.J.M.-G.); (L.L.)
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
- Correspondence: (P.J.M.-G.); (L.L.)
| | - Mari Carmen López-Lujan
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Cambra-López
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Enrique Blas
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan José Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|