1
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
2
|
Shcherbitskaia AD, Kovalenko AA, Milyutina YP, Vasilev DS. Thyroid Hormone Production and Transplacental Transfer in the “Mother–Fetus” System during Gestational Hyperhomocysteinemia. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Adaptive Responses of Thyroid Hormones, Insulin, and Glucose during Pregnancy and Lactation in Dairy Cows. Animals (Basel) 2022; 12:ani12111395. [PMID: 35681859 PMCID: PMC9179583 DOI: 10.3390/ani12111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The study examined the effects of different stages of pregnancy and lactation on thyroid, insulin, and glucose responses in dairy cows. In the present study, 30 dairy cows (10 Holstein, 10 Simmental, and 10 Brown) at 30 ± 20 d of lactation were randomly selected and blood samples were collected once every 60 d for one year to measure circulating thyroid stimulating hormone (TSH), total and free triiodothyronines (T3, fT3) and thyroxines (T4, fT4), insulin, and glucose. Pregnant cows showed higher T4 (p = 0.010) and insulin (p = 0.046) concentrations at >180 d than at >60−120 d of pregnancy and in nonpregnant cows. Along the lactation phase, circulating T4 concentrations showed a biphasic trend, decreasing from 0−60 d to >60−120 d phase, which showed the lowest values, and then increasing until the end of lactation (>300 d) (p = 0.016). Glucose showed the highest concentrations at the start of lactation (0−120 days) and the lowest values at the end (p = 0.008). The monitoring of thyroid hormones, insulin, and glucose changes represents an important tool to evaluate the anabolic and/or catabolic adaptation in response to functional periods in dairy cows, which can potentially predispose the cows to an excessive negative energy balance and related metabolic issues.
Collapse
|
4
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid Transcriptomic Profiling Reveals the Follicular Phase Differential Regulation of lncRNA and mRNA Related to Prolificacy in Small Tail Han Sheep with Two FecB Genotypes. Genes (Basel) 2022; 13:849. [PMID: 35627234 PMCID: PMC9141851 DOI: 10.3390/genes13050849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) accounts for a large proportion of RNA in animals. The thyroid gland has been established as an important gland involved in animal reproduction, however, little is known of its gene expression patterns and potential roles in the sheep. Herein, RNA-Seq was used to detect reproduction-related differentially expressed lncRNAs (DELs) and mRNAs (DEGs) in the follicular phase (FT) FecBBB (MM) and FecB++ (ww) genotypes of Small Tail Han (STH) sheep thyroids. Overall, 29 DELs and 448 DEGs in thyroid between MM and ww sheep were screened. Moreover, GO and KEGG enrichment analysis showed that targets of DELs and DEGs were annotated in biological transitions, such as cell cycle, oocyte meiosis and methylation, which in turn affect reproductive performance in sheep. In addition, we constructed co-expression and networks of lncRNAs-mRNAs. Specifically, XLOC_075176 targeted MYB, XLOC_014695 targeted VCAN, 106991527 targeted CASR, XLOC_075176 targeted KIFC1, XLOC_360232 targeted BRCA2. All these differential lncRNAs and mRNAs expression profiles in the thyroid provide a new resource for elucidating the regulatory mechanism underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
5
|
Steinhauser CB, Lambo CA, Askelson K, Burns GW, Behura SK, Spencer TE, Bazer FW, Satterfield MC. Placental Transcriptome Adaptations to Maternal Nutrient Restriction in Sheep. Int J Mol Sci 2021; 22:ijms22147654. [PMID: 34299281 PMCID: PMC8306922 DOI: 10.3390/ijms22147654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Placental development is modified in response to maternal nutrient restriction (NR), resulting in a spectrum of fetal growth rates. Pregnant sheep carrying singleton fetuses and fed either 100% (n = 8) or 50% (NR; n = 28) of their National Research Council (NRC) recommended intake from days 35–135 of pregnancy were used to elucidate placentome transcriptome alterations at both day 70 and day 135. NR fetuses were further designated into upper (NR NonSGA; n = 7) and lower quartiles (NR SGA; n = 7) based on day 135 fetal weight. At day 70 of pregnancy, there were 22 genes dysregulated between NR SGA and 100% NRC placentomes, 27 genes between NR NonSGA and 100% NRC placentomes, and 22 genes between NR SGA and NR NonSGA placentomes. These genes mediated molecular functions such as MHC class II protein binding, signaling receptor binding, and cytokine activity. Gene set enrichment analysis (GSEA) revealed significant overrepresentation of genes for natural-killer-cell-mediated cytotoxicity in NR SGA compared to 100% NRC placentomes, and alterations in nutrient utilization pathways between NR SGA and NR NonSGA placentomes at day 70. Results identify novel factors associated with impaired function in SGA placentomes and potential for placentomes from NR NonSGA pregnancies to adapt to nutritional hardship.
Collapse
Affiliation(s)
- Chelsie B. Steinhauser
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Colleen A. Lambo
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX 77843, USA;
| | - Katharine Askelson
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (S.K.B.); (T.E.S.)
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (S.K.B.); (T.E.S.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Michael Carey Satterfield
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
- Correspondence: ; Tel.: +1-979-845-6448
| |
Collapse
|