1
|
Saha N, Kumar A, Debnath BB, Sarkar A, Chakraborti AK. Recent Advances in the Development of Greener Methodologies for the Synthesis of Benzothiazoles. Curr Top Med Chem 2025; 25:581-644. [PMID: 39844549 DOI: 10.2174/0115680266347975241217112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 01/24/2025]
Abstract
The benzothiazole ring system has been recognised with crucial pharmacophoric features being present among various approved drugs and clinical and pre-clinical candidates. The medicinal importance of this privileged scaffold stimulated the interest of synthetic medicinal/ organic chemists for the synthesis of its derivatives due to their diverse biological applications. In most of the reports in the literature, benzothiazoles were synthesized by cyclocondensation of 2- aminothiophenol with either carboxylic acid and its derivatives or aldehydes. However, many of these procedures involve reaction conditions that are not in conformity with sustainable chemistry development. The negative impact of chemicals and their manufacturing processes on the environment, human health, and biodiversity raises safety concerns. On the other hand, the utilization of non-renewable energy sources, use of rare earth metals as catalysts, involvement of costly chemicals, prolonged reaction time at high temperatures, and considerable waste generation diminish the greener impact of these reaction methodologies and make them non-sustainable. In order to avoid such drawbacks of the non-sustainable practices in the synthesis of benzothiazoles, there have been continuous efforts to develop greener methodologies for the construction of this bioactive scaffold. This review aims to delve into the literature reports on the recent advancements in the development of greener methodologies for the synthesis of bioactive benzothiazoles.
Collapse
Affiliation(s)
- Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Asim Kumar
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, India-122413
| | - Bibhuti Bhusan Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Anirban Sarkar
- Department of Chemistry, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, West Bengal 700006, India
| | - Asit K Chakraborti
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| |
Collapse
|
2
|
Mudgal D, Yadav N, Srivastava GK, Mishra M, Mishra V. Click Reaction Inspired Enzyme Inhibitors in Diabetes Care: An Update in the Field of Chronic Metabolic Disorder. Curr Pharm Des 2025; 31:261-291. [PMID: 39410885 DOI: 10.2174/0113816128310031240923062555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 02/20/2025]
Abstract
Diabetes is a chronic metabolic disorder that impacts all age groups and affects a large population worldwide. Humans receive glucose from almost every food source, and after absorption from the gut, it reaches the liver, which functions as the distribution center for it. The insulin-responsive glucose transporter type 4 (GLUT-4) is a major carrier of glucose to the various cells (majorly expressed in myocytes, adipocytes, and cardiomyocytes) in a well-fed state. In fasting periods, the glucose supply is maintained by glycogenolysis and gluconeogenesis. In diabetes, the distribution of glucose is hampered due to several reasons. Furthermore, to treat this disorder, several drugs have been synthesized, and click chemistry plays an important role. A more recent concept for producing pharmaceuticals with a click chemistry approach makes any reaction more practical and stereospecific, along with a higher yield of products and a smaller number of by-products. This approach comprises a compiled study of the activity of numerous compelling antidiabetic drugs containing 1,2,3-triazole derivatives supported by click chemistry. In this review, we discuss the synthetic antidiabetic drugs made via click chemistry and their commendable role in improving diabetes care.
Collapse
Affiliation(s)
- Deeksha Mudgal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201303, India
| | - Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201303, India
| | - Gaurav Kumar Srivastava
- Integrated Drug Discovery, Aragen Life Sciences Limited, Hyderabad, Telangana, 500076, India
| | - Manish Mishra
- Department of Biomedical Sciences, School of Medicine, Mercer University, Macon, GA 31207, USA
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201303, India
| |
Collapse
|
3
|
Manya BS, Kumar MRP, Rajagopal K, Hassan MA, Rab SO, Alshehri MA, Emran TB. Insights into the Biological Activities and Substituent Effects of Pyrrole Derivatives: The Chemistry-Biology Connection. Chem Biodivers 2024; 21:e202400534. [PMID: 38771305 DOI: 10.1002/cbdv.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Pyrrole, with its versatile heterocyclic ring structure, serves as a valuable template for generating a diverse range of lead compounds with various pharmacophores. Researchers and scientists globally are intrigued by pyrrole and its analogs for their broad pharmacological potential, prompting thorough investigations aimed at advancing human welfare. This comprehensive review delves into the diverse activities exhibited by pyrrole compounds, encompassing their synthesis, reactions, and pharmacological properties alongside their derivatives. In addition to detailing the characteristics of pyrrole and its derivatives within the context of green chemistry, the review also examines microwave-assisted reactions. It provides insights into their chemical structures, natural occurrences, and potential applications across various domains. Furthermore, the article investigates structural alterations of pyrrole compounds and their implications on their functionality, highlighting their versatility as foundational elements for both functional materials and bioactive compounds. The review emphasizes the need for ongoing research and development in the field of pyrrole compounds to discover new activities and benefits.
Collapse
Affiliation(s)
- B S Manya
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - M R Pradeep Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi, 580031, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, The Nilgiris, Tamil Nadu, India
| | - Md Abul Hassan
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
4
|
Masum AA, Aoki S, Rahman MM, Hisamatsu Y. Chemical synthetic approaches to mimic the TRAIL: promising cancer therapeutics. RSC Med Chem 2024; 15:d4md00183d. [PMID: 39246747 PMCID: PMC11376135 DOI: 10.1039/d4md00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Apoptosis is programmed cell death that eliminates undesired cells to maintain homeostasis in metazoan. Aberration of this process may lead to cancer genesis. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) induces apoptosis in cancer cells after ligation with death receptors (DR4/DR5) while sparing most normal cells. Therefore, strategies to induce apoptosis in cancer cells by mimicking the TRAIL emerge as a promising therapeutic tool. Hence, approaches are taken to develop TRAIL/DR-based cancer therapeutics. The recombinant soluble TRAIL (rhTRAIL) and death receptor agonistic antibodies were produced and tested pre-clinically and clinically. Pre-clinical and clinical trial data demonstrate that these therapeutics are safe and relatively well tolerated. But some of these therapeutics failed to exert adequate efficacy in clinical settings. Besides these biotechnologically derived therapeutics, a few chemically synthesized therapeutics are reported. Some of these therapeutics exert considerable efficacy in vitro and in vivo. In this review, we will discuss chemically synthesized TRAIL/DR-based therapeutics, their chemical and biological behaviour, design concepts and strategies that may contribute to further improvement of TRAIL/DR-based therapeutics.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University Mizuho-Ku Nagoya 467-8603 Japan
| |
Collapse
|
5
|
Sifaoui I, Rodríguez-Expósito RL, Reyes-Batlle M, Dumpiérrez Ramos A, Diana-Rivero R, García-Tellado F, Tejedor D, Piñero JE, Lorenzo-Morales J. Amoebicidal effect of synthetic indoles against Acanthamoeba spp.: a study of cell death. Antimicrob Agents Chemother 2024; 68:e0165123. [PMID: 38412000 PMCID: PMC10989003 DOI: 10.1128/aac.01651-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Organic and synthetic chemistry plays a crucial role in drug discovery fields. Moreover, chemical modifications of available molecules to enhance their efficacy, selectivity and safety have been considered as an attractive approach for the development of new bioactive agents. Indoles, a versatile group of natural heterocyclic compounds, have been widely used in pharmaceutical industry due to their broad spectrum of activities including antimicrobial, antitumoral and anti-inflammatory among others. Herein, we report the amoebicidal activity of different indole analogs on Acanthamoeba castellanii Neff. Among the 40 tested derivatives, eight molecules were able to inhibit this protistan parasite. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity would suggest that a carboxylation of C-3 position and the incorporation of halogen as chlorine/fluorine would enhance their biological profile, presumably by increasing their lipophilicity and therefore their ability to cross the cell membrane. Fluorescence image base system was used to investigate the effect of indole 6o c-6 on the cytoskeleton network and various programmed cell death features. We were able to highlight that the methyl 6-chloro-1H-indole-3-carboxylate could induce program cell death by the mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
- Consorcio Centro de Investigación Biomédica En Red (CIBER), área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
- Consorcio Centro de Investigación Biomédica En Red (CIBER), área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
- Consorcio Centro de Investigación Biomédica En Red (CIBER), área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Dumpiérrez Ramos
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Raquel Diana-Rivero
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, La Laguna, Tenerife, Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, La Laguna, Tenerife, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
- Consorcio Centro de Investigación Biomédica En Red (CIBER), área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
- Consorcio Centro de Investigación Biomédica En Red (CIBER), área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Mukhtar Gunam Resul MF, Rehman A, Saleem F, Usman M, López Fernández AM, Eze VC, Harvey AP. Recent advances in catalytic and non-catalytic epoxidation of terpenes: a pathway to bio-based polymers from waste biomass. RSC Adv 2023; 13:32940-32971. [PMID: 38025849 PMCID: PMC10630890 DOI: 10.1039/d3ra04870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Epoxides derived from waste biomass are a promising avenue for the production of bio-based polymers, including polyamides, polyesters, polyurethanes, and polycarbonates. This review article explores recent efforts to develop both catalytic and non-catalytic processes for the epoxidation of terpene, employing a variety of oxidizing agents and techniques for process intensification. Experimental investigations into the epoxidation of limonene have shown that these methods can be extended to other terpenes. To optimize the epoxidation of bio-based terpene, there is a need to develop continuous processes that address limitations in mass and heat transfer. This review discusses flow chemistry and innovative reactor designs as part of a multi-scale approach aimed at industrial transformation. These methods facilitate continuous processing, improve mixing, and either eliminate or reduce the need for solvents by enhancing heat transfer capabilities. Overall, the objective of this review is to contribute to the development of commercially viable processes for producing bio-based epoxides from waste biomass.
Collapse
Affiliation(s)
- Mohamad Faiz Mukhtar Gunam Resul
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Abdul Rehman
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | - Faisal Saleem
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | - Muhammd Usman
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | | | - Valentine C Eze
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Adam P Harvey
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
7
|
Mustafa D, Overhulse JM, Kashemirov BA, McKenna CE. Microwave-Accelerated McKenna Synthesis of Phosphonic Acids: An Investigation. Molecules 2023; 28:molecules28083497. [PMID: 37110732 PMCID: PMC10144917 DOI: 10.3390/molecules28083497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphonic acids represent one of the most important categories of organophosphorus compounds, with myriad examples found in chemical biology, medicine, materials, and other domains. Phosphonic acids are rapidly and conveniently prepared from their simple dialkyl esters by silyldealkylation with bromotrimethylsilane (BTMS), followed by desilylation upon contact with water or methanol. Introduced originally by McKenna, the BTMS route to phosphonic acids has long been a favored method due to its convenience, high yields, very mild conditions, and chemoselectivity. We systematically investigated microwave irradiation as a means to accelerate the BTMS silyldealkylations (MW-BTMS) of a series of dialkyl methylphosphonates with respect to solvent polarity (ACN, dioxane, neat BTMS, DMF, and sulfolane), alkyl group (Me, Et, and iPr), electron-withdrawing P-substitution, and phosphonate-carboxylate triester chemoselectivity. Control reactions were performed using conventional heating. We also applied MW-BTMS to the preparation of three acyclic nucleoside phosphonates (ANPs, an important class of antiviral and anticancer drugs), which were reported to undergo partial nucleoside degradation under MW hydrolysis with HCl at 130-140 °C (MW-HCl, a proposed alternative to BTMS). In all cases, MW-BTMS dramatically accelerated quantitative silyldealkylation compared to BTMS with conventional heating and was highly chemoselective, confirming it to be an important enhancement of the conventional BTMS method with significant advantages over the MW-HCl method.
Collapse
Affiliation(s)
- Dana Mustafa
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin M Overhulse
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Koranne A, Kurrey K, Kumar P, Gupta S, Jha VK, Ravi R, Sahu PK, Anamika, Jha AK. Metal catalyzed C-H functionalization on triazole rings. RSC Adv 2022; 12:27534-27545. [PMID: 36276020 PMCID: PMC9516561 DOI: 10.1039/d2ra05697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
The present review covers advancement in the area of C-H functionalization on triazole rings, by utilizing various substrates with palladium or copper as catalysts, and resulting in the development of various substituted 1,2,3- and 1,2,4-triazoles. Synthesis of these substituted compounds is necessary from the perspective of pharmaceutical, medicinal, and materials chemistry.
Collapse
Affiliation(s)
- Anushka Koranne
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | - Khushboo Kurrey
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | - Prashant Kumar
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | - Sangeeta Gupta
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | | | | | | | - Anamika
- Jawaharlal Nehru University New Delhi India
| | - Abadh Kishor Jha
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| |
Collapse
|
9
|
Hao Z, Zhao P, Xing Q, Wahab A, Gao Z, Gou J, Yu B. Dual Roles of Azide: Dearomative Dimerization of Furfuryl Azides. J Org Chem 2022; 87:10185-10198. [PMID: 35864566 DOI: 10.1021/acs.joc.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A dearomative dimerization of furfuryl azides for the construction of furfuryl triazoles is developed. As a rare leaving group, azide is capable of initiating the generation of a furfuryl cation under the Lewis acid-catalyzed conditions, followed by reacting with the other azide to realize an intermolecular [3 + 2] cycloaddition/furan ring-opening cascade. By extending the reaction time, a fragmentation reaction of resulting furfuryl triazoles occurs to afford 1H-triazoles in high yield. Control studies demonstrated that key furfuryl cations also can be obtained from furfuryl triazoles. Furthermore, a chemoselective cross-cycloaddition can be achieved between furfuryl azides and a benzyl azide.
Collapse
Affiliation(s)
- Zhe Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Penggang Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qingzhao Xing
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Abdul Wahab
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| |
Collapse
|
10
|
Pellissier H. Recent developments in enantioselective titanium-catalyzed transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Brandão P, Pineiro M, M.V.D. Pinho e Melo T. Flow Chemistry: Sequential Flow Processes for the Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Siow A, Tasma Z, Walker CS, Brimble MA, Harris PWR. Synthesis and development of seven-membered constrained cyclic urea based PSMA inhibitors via RCM. NEW J CHEM 2022. [DOI: 10.1039/d2nj01016j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular ring-closing metathesis on an N,N-diallyl Glu-urea-Gly substrate affords 7-membered cyclic ureas as inhibitors of prostrate specific membrane antigen (PMSA).
Collapse
Affiliation(s)
- Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Paul. W. R. Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
13
|
Xing Q, Zhou C, Jiang S, Chen S, Deng GJ. Acid-catalyzed three-component addition of carbonyl compounds with 1,2,3-triazoles and indoles. Org Biomol Chem 2021; 19:7838-7842. [PMID: 34549239 DOI: 10.1039/d1ob01451j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient acid-catalyzed three-component reaction of indoles, 1-tosyl-1,2,3-triazoles and carbonyl compounds has been developed. The use of TsOH with a small amount of water significantly promoted the reaction yield. This method provided a general and one-pot approach for the synthesis of structurally diverse C3-alkylated indole derivatives. The alkylation exclusively occurred at the N2 position of triazoles. Various functional groups were tolerated under the optimized simple reaction conditions.
Collapse
Affiliation(s)
- Qiaoyan Xing
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Chunlan Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
14
|
|
15
|
Mohamed AM, El-Sayed WA, Ibrahim AA, Abdel-Hafez NA, Ali KAK, Mohamed SF. Recent Trends in the Chemistry of [1,2,4]Triazole[1,5-a]pyrimidines. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2020.1871310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ashraf M. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Wael A. El-Sayed
- Photochemistry Department, National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, College of Science, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Alhussein A. Ibrahim
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Korany A. K. Ali
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
- Center of Excellence, Advanced Materials and Nanotechnology Group, National Research Centre, Dokki, Giza, Egypt
| | - Salwa F. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
16
|
2,2′-(Arylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) crystals formation via atom economy reaction and their antioxidant activity. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02767-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Pati S, Almeida RG, da Silva Júnior EN, Namboothiri INN. Synthesis of β-triazolylenones via metal-free desulfonylative alkylation of N-tosyl-1,2,3-triazoles. Beilstein J Org Chem 2021; 17:762-770. [PMID: 33828620 PMCID: PMC8022205 DOI: 10.3762/bjoc.17.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Desulfonylative alkylation of N-tosyl-1,2,3-triazoles under metal-free conditions leading to β-triazolylenones is reported here. The present study encompasses the synthesis of triazoles with a new substitution pattern in a single step from cyclic 1,3-dicarbonyl compounds and N-tosyl triazole in moderate to high yields. Our synthesis takes place with complete regioselectivity as confirmed by crystallographic analysis which is rationalized by a suitable mechanistic proposal. This method provides an efficient, versatile and straightforward strategy towards the synthesis of new functionalized 1,2,3-triazoles.
Collapse
Affiliation(s)
- Soumyaranjan Pati
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
18
|
Microfluidic Modules Integrated with Microwave Components-Overview of Applications from the Perspective of Different Manufacturing Technologies. SENSORS 2021; 21:s21051710. [PMID: 33801309 PMCID: PMC7958350 DOI: 10.3390/s21051710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
The constant increase in the number of microfluidic-microwave devices can be explained by various advantages, such as relatively easy integration of various microwave circuits in the device, which contains microfluidic components. To achieve the aforementioned solutions, four trends of manufacturing appear—manufacturing based on epoxy-glass laminates, polymer materials (mostly common in use are polydimethylsiloxane (PDMS) and polymethyl 2-methylpropenoate (PMMA)), glass/silicon substrates, and Low-Temperature Cofired Ceramics (LTCCs). Additionally, the domains of applications the microwave-microfluidic devices can be divided into three main fields—dielectric heating, microwave-based detection in microfluidic devices, and the reactors for microwave-enhanced chemistry. Such an approach allows heating or delivering the microwave power to the liquid in the microchannels, as well as the detection of its dielectric parameters. This article consists of a literature review of exemplary solutions that are based on the above-mentioned technologies with the possibilities, comparison, and exemplary applications based on each aforementioned technology.
Collapse
|
19
|
Sana S, Reddy VG, Srinivasa Reddy T, Tokala R, Kumar R, Bhargava SK, Shankaraiah N. Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: Synthesis, in silico and cell growth inhibition studies. Bioorg Chem 2021; 110:104765. [PMID: 33677248 DOI: 10.1016/j.bioorg.2021.104765] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022]
Abstract
An approach in modern medicinal chemistry to discover novel bioactive compounds is by mimicking diverse complementary pharmacophores. In extension of this strategy, a new class of piperazine-linked cinnamide derivatives of benzimidazole-pyrimidine hybrids have been designed and synthesized. Their in vitro cytotoxicity profiles were explored on selected human cancer cell lines. Specifically, structural comparison of target hybrids with tubulin-DAMA-colchicine and tubulin-nocodazole complexes has exposed a deep position of benzimidazole ring into the αT5 loop. All the synthesized compounds were demonstrated modest to interesting cytotoxicity against different cancer cell lines. The utmost cytotoxicity has shown with an amine linker of benzimidazole-pyrimidine series, with specificity toward A549 (lung cancer) cell line. The most potent compound in this series was 18i, which inhibited cancer cell growth at micromolar concentrations ranging 2.21-7.29 µM. Flow cytometry studies disclosed that 18i inhibited the cells in G2/M phase of cell cycle. The potent antitumor activity of 18i resulted from enhanced microtubule disruption at a similar level as nocodazole on β-tubulin antibody, explored using immunofluorescence staining. The most active compound 18i also inhibited tubulin polymerization with an IC50 of 5.72 ± 0.51 µM. In vitro biological analysis of 18i presented apoptosis induction on A549 cells with triggering of ROS generation and loss of mitochondrial membrane potential, resulting in DNA injury. In addition, 18i displayed impairment in cellular migration and inhibited the colony formation. Notably, the safety profile of most potent compound 18i was revealed by screening against normal human pulmonary epithelial cells (L132: IC50: 69.25 ± 5.95 μM). The detailed binding interactions of 18i with tubulin was investigated by employing molecular docking, superimposition and free energy analyses. Thus remarks made in this study established that pyrimidine-benzimidazole hybrids as a new class of tubulin polymerization inhibitors with significant anticancer activity.
Collapse
Affiliation(s)
- Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - T Srinivasa Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
20
|
Teli P, Sahiba N, Sethiya A, Soni J, Agarwal S. Advancement in synthetic strategies of bisdimedones: Two decades study. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry MLSU Udaipur India
| |
Collapse
|
21
|
1, 4-Diazabicyclo[2.2.2]octane-sulfonic acid immobilized on magnetic Fe3O4@SiO2 nanoparticles: a novel and recyclable catalyst for the one-pot synthesis of 4-aryl-NH-1, 2, 3-triazoles. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Borah P, Shivling VD, Banik BK, Sahoo BM. An Overview on Steroids and Microwave Energy in Multi-Component Reactions towards the Synthesis of Novel Hybrid Molecules. Curr Org Synth 2020; 17:594-609. [PMID: 32359339 DOI: 10.2174/1570179417666200503050106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/14/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
In recent years, hybrid systems are gaining considerable attention owing to their various biological applications in drug development. Generally, hybrid molecules are constructed from different molecular entities to generate a new functional molecule with improved biological activities. There already exist a large number of naturally occurring hybrid molecules based on both non-steroid and steroid frameworks synthesized by nature through mixed biosynthetic pathways such as, a) integration of the different biosynthetic pathways or b) Carbon- Carbon bond formation between different components derived through different biosynthetic pathways. Multicomponent reactions are a great way to generate efficient libraries of hybrid compounds with high diversity. Throughout the scientific history, the most common factors developing technologies are less energy consumption and avoiding the use of hazardous reagents. In this case, microwave energy plays a vital role in chemical transformations since it involves two very essential criteria of synthesis, minimizing energy consumption required for heating and time required for the reaction. This review summarizes the use of microwave energy in the synthesis of steroidal and non-steroidal hybrid molecules and the use of multicomponent reactions.
Collapse
Affiliation(s)
| | | | | | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India
| |
Collapse
|
23
|
Pawlowski R, Skorka P, Stodulski M. Radical‐Mediated Non‐Dearomative Strategies in Construction of Spiro Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- R. Pawlowski
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| | - P. Skorka
- Medical University of Warsaw Faculty of Pharmacy Warsaw Poland
| | - M. Stodulski
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| |
Collapse
|
24
|
Barbosa JS, Braga SS, Almeida Paz FA. Empowering the Medicinal Applications of Bisphosphonates by Unveiling their Synthesis Details. Molecules 2020; 25:molecules25122821. [PMID: 32570958 PMCID: PMC7356784 DOI: 10.3390/molecules25122821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Bisphosphonates (BPs), well-known medicinal compounds used for osteoporosis management, are currently the target of intensive research, from basic pre-formulation studies to more advanced stages of clinical practice. The high demand by the pharmaceutical industry inherently requires an easy, efficient and quick preparation of BPs. Current synthetic procedures are, however, still far from ideal. This work presents a comprehensive compilation of reports on the synthesis of the commercially available bisphosphonates that are pharmaceutical active ingredients. Current limitations to the conventional synthesis are assessed, and paths towards their improvement are described, either through the use of alternative solvents and/or by selecting appropriate ratios of the reactants. Innovative processes, such as microwave-assisted synthesis, are presented as more environmental-friendly and effective methods. The main advantages and setbacks of all syntheses are provided as a way to clarify and promote the development of simpler and improved procedures. Only in this way one will be able to efficiently respond to the future high demand of BPs, mostly due to the increase in life span in occidental countries.
Collapse
Affiliation(s)
- Jéssica S. Barbosa
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.S.B.); (S.S.B.); (F.A.A.P.)
| | - Susana Santos Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.S.B.); (S.S.B.); (F.A.A.P.)
| | - Filipe A. Almeida Paz
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.S.B.); (S.S.B.); (F.A.A.P.)
| |
Collapse
|
25
|
Pellissier H. Recent Developments in Enantioselective Multicatalyzed Tandem Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000210] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Wang D, Ma X, Dong L, Feng H, Yu P, Désaubry L. Stereoselective Four-Component Synthesis of Functionalized 2,3-Dihydro-4-Nitropyrroles. Front Chem 2020; 7:810. [PMID: 32039135 PMCID: PMC6988783 DOI: 10.3389/fchem.2019.00810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022] Open
Abstract
We report a metal-free and stereoselective four-component reaction between α-ketoamides, amines, aromatic aldehydes and β-nitroalkenes or β-pivaloxy-nitroalkanes to obtain 2,3-dihydro-4-nitropyrroles functionalized in every position. The heterocycles accessible using this reaction may have utility in the synthesis of pharmacologically active compounds.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Ma
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Linru Dong
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hairong Feng
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Laboratory of Medicinal Chemistry and Cardio-oncology, FRE2033, CNRS, Institut Le Bel, Strasbourg, France
| |
Collapse
|
27
|
|
28
|
Brandão P, Pineiro M, Pinho e Melo TMVD. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pedro Brandão
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
- Centro de Química de Évora; Institute for Research and Advanced Studies; University of Évora; 7000 Évora Portugal
| | - Marta Pineiro
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
| | | |
Collapse
|
29
|
Wang Q, Mgimpatsang KC, Konstantinidou M, Shishkina SV, Dömling A. 1,3,4-Oxadiazoles by Ugi-Tetrazole and Huisgen Reaction. Org Lett 2019; 21:7320-7323. [PMID: 31478379 PMCID: PMC6759755 DOI: 10.1021/acs.orglett.9b02614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Easy
to perform, functional group tolerant, and short syntheses
of the privileged scaffold oxadiazole are highly desired. Here, a
metal-free protocol for MCR-based synthesis of 2,5-disubstituted 1,3,4-oxadiazoles
via a Ugi-tetrazole/Huisgen sequence was developed. Optimization and
scope and limitations of this short and general sequence are described.
The reaction was also successfully performed on a gram scale.
Collapse
Affiliation(s)
- Qian Wang
- University of Groningen , Department of Drug Design , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Kumchok C Mgimpatsang
- University of Groningen , Department of Drug Design , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Markella Konstantinidou
- University of Groningen , Department of Drug Design , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Svitlana V Shishkina
- SSI "Institute for Single Crystals" , National Academy of Science of Ukraine , 60 Lenina Avenue , Kharkiv 61001 , Ukraine
| | - Alexander Dömling
- University of Groningen , Department of Drug Design , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| |
Collapse
|
30
|
Kordnezhadian R, Shekouhy M, Khalafi-Nezhad A. Microwave-accelerated diastereoselective catalyst-free one-pot four-component synthesis of 2-(N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes in glycerol. Mol Divers 2019; 24:737-751. [PMID: 31392483 DOI: 10.1007/s11030-019-09985-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Abstract
In the current study, glycerol was successfully employed as a nonvolatile, non-toxic, non-flammable, biodegradable, very cheap, easily accessible, and efficient reaction medium for the microwave-enhanced diastereoselective synthesis of 2-(N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes via a catalyst-free one-pot four-component reaction. A versatile range of starting materials were used, and diverse products were obtained in good to excellent yields and very short reaction times. Moreover, the reaction medium was recovered and reused several times without any loss of the efficiency.
Collapse
Affiliation(s)
- Reza Kordnezhadian
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Mohsen Shekouhy
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| |
Collapse
|
31
|
Synthesis of ruthenium triazolato complexes by the [3 + 2] cycloaddition of a ruthenium azido complex with acetylacetylenes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
|
33
|
Bhagat S, Supriya M, Pathak S, Sriram D, Chakraborti AK. α-Sulfonamidophosphonates as new anti-mycobacterial chemotypes: Design, development of synthetic methodology, and biological evaluation. Bioorg Chem 2019; 82:246-252. [DOI: 10.1016/j.bioorg.2018.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/12/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
34
|
Tang XZ, Liang J, Zhang XJ, Sun RWY, Yan M, Chan ASC. Synthesis of multisubstituted arylsulfones via a one-pot, three-component [3 + 3] benzannulation reaction. Org Biomol Chem 2019; 17:4753-4760. [DOI: 10.1039/c9ob00394k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A one-pot, three-component [3 + 3] benzannulation reaction of α,β-unsaturated carbonyl compounds, bromoallylic sulfones, and sodium sulfinates provided multisubstituted arylsulfones with moderate to good yields.
Collapse
Affiliation(s)
- Xiang-Zheng Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Liang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xue-Jing Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | | | - Ming Yan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
35
|
Yamaguchi E, Taguchi N, Itoh A. Ruthenium polypyridyl complex-catalysed aryl alkoxylation of styrenes: improving reactivity using a continuous flow photo-microreactor. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00061e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, we reported the ruthenium polypyridyl complex-catalysed aryl alkoxylation reaction of styrenes with aryldiazonium salts.
Collapse
Affiliation(s)
| | - Nao Taguchi
- Gifu Pharmaceutical University
- Gifu 501-1196
- Japan
| | | |
Collapse
|
36
|
Fernandes AC, Petersen B, Møller L, Gernaey KV, Krühne U. Caught in-between: System for in-flow inactivation of enzymes as an intermediary step in "plug-and-play" microfluidic platforms. N Biotechnol 2018; 47:39-49. [PMID: 29684658 DOI: 10.1016/j.nbt.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 01/16/2023]
Abstract
The need for fast and comprehensive characterization of biocatalysts has pushed the development of new screening platforms based on microfluidics, capable of monitoring several parameters simultaneously, with new configurations of liquid handling, sample treatment and sensing. Modular microfluidics allows the integration of these newly developed approaches in a more flexible way towards increasing applicability of the microfluidic chips to different types of biocatalysts and reactions. A highly relevant operation in such a system is biocatalyst inactivation, which can enable the precise control of reaction time by avoiding the continuation of the reaction in another module or connecting tubes. Such control is important when different modules of reactors and/or sensing units are used and changed frequently. Here we describe the development, characterization and application of a module for rapid enzyme inactivation. The thermal inactivation platform developed is compared with a standard benchtop ThermoMixer in terms of inactivation efficiency for glucose oxidase and catalase. A higher activity loss was observed for enzyme inactivation under flow conditions (inactivation achieved at 120 s residence time at 338 K and 20 s residence time at 353 K) which indicated a high heat transfer to the fluid under dynamic conditions. Moreover, partial deactivation of the enzymes was observed for the continuous thermal inactivation module, when activity measurements were performed after 1 and 2 days following inactivation. The thermal inactivation unit presented can be easily integrated into modular microfluidic platforms and can be a useful addition for enzyme characterization and screening.
Collapse
Affiliation(s)
- Ana C Fernandes
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Benjamin Petersen
- Kemiteknik Workshop, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Lars Møller
- Kemiteknik Workshop, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Krist V Gernaey
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Ulrich Krühne
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
|
38
|
Maiti B, M M B, Chanda K. Evaluation of WO2014121383 A1: a process for preparation of rufinamide and intermediates. Expert Opin Ther Pat 2018; 29:7-10. [PMID: 30442041 DOI: 10.1080/13543776.2019.1549230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION There is great potential in the synthetic development of rufinamide to treat childhood-onset epilepsy known as Lennox-Gastaut syndrome (LGS). Areas covered: 1,4-disubstituted triazole ring formed by 1,3-dipolar cycloaddition reaction is an important structural motif widely used to construct diverse chemotypes in chemical, biological, and material fields. 1,2,3-triazole ring containing rufinamide, an antiepileptic drug developed by Novartis, is useful in combination with other antiepileptic medicaments for the treatment of childhood-onset epilepsy known as LGS. There are numerous synthetic methods used to construct the rufinamide through 1,3-dipolar cycloaddition. The application claims processes for the preparation of rufinamide and their intermediates. The synthetic strategy covered for the synthesis of rufinamide using activated acetylenic esters. The activation is done using N-hydroxy succinimide, N-hydroxyphthalimide, 1-hydroxy benzotriazole, and 4-nitro phenol. Expert opinion: The manufacturing route appears to follow the regioselective Cu catalyzed cycloaddtion of 2,6-difluro benzyl azide with or without isolated activated acetylenic esters in three steps that provide a good lead for new synthetic strategy for the rufinamide synthesis.
Collapse
Affiliation(s)
- Barnali Maiti
- a Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore , India
| | - Balamurali M M
- b Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology , Chennai , India
| | - Kaushik Chanda
- a Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore , India
| |
Collapse
|
39
|
Park AR, Yum EK. Introduction of Diverse Functional Groups to Isoquinolines by Microwave-assisted Transition Metal-catalyzed Coupling Reactions. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A. Reum Park
- Department of Chemistry; Chungnam National University; Daejon 34134 Korea
| | - Eul Kgun Yum
- Department of Chemistry; Chungnam National University; Daejon 34134 Korea
| |
Collapse
|
40
|
Zhang J, Yu P, Li SY, Sun H, Xiang SH, Wang JJ, Houk KN, Tan B. Asymmetric phosphoric acid-catalyzed four-component Ugi reaction. Science 2018; 361:361/6407/eaas8707. [PMID: 30213886 DOI: 10.1126/science.aas8707] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/25/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
The Ugi reaction constructs α-acylaminoamide compounds by combining an aldehyde or ketone, an amine, a carboxylic acid, and an isocyanide in a single flask. Its appealing features include inherent atom and step economy together with the potential to generate products of broad structural diversity. However, control of the stereochemistry in this reaction has proven to be a formidable challenge. We describe an efficient enantioselective four-component Ugi reaction catalyzed by a chiral phosphoric acid derivative that delivers more than 80 α-acylaminoamides in good to excellent enantiomeric excess. Experimental and computational studies establish the reaction mechanism and origins of stereoselectivity.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Shao-Yu Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - He Sun
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Joelle Wang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Bin Tan
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
41
|
Deka B, Thakuria R, Deb ML, Baruah PK. A revisit to the multi-component reaction of indole, aldehyde, and N-substituted aniline catalyzed by PMA–SiO2. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2290-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Magalhaes LG, Ferreira LLG, Andricopulo AD. Recent Advances and Perspectives in Cancer Drug Design. AN ACAD BRAS CIENC 2018; 90:1233-1250. [PMID: 29768576 DOI: 10.1590/0001-3765201820170823] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. With the increase in life expectancy, the number of cancer cases has reached unprecedented levels. In this scenario, the pharmaceutical industry has made significant investments in this therapeutic area. Despite these efforts, cancer drug research remains a remarkably challenging field, and therapeutic innovations have not yet achieved expected clinical results. However, the physiopathology of the disease is now better understood, and the discovery of novel molecular targets has refreshed the expectations of developing improved treatments. Several noteworthy advances have been made, among which the development of targeted therapies is the most significant. Monoclonal antibodies and antibody-small molecule conjugates have emerged as a worthwhile approach to improve drug selectivity and reduce adverse effects, which are the main challenges in cancer drug discovery. This review will examine the current panorama of drug research and development (R&D) with emphasis on some of the major advances brought to clinical trials and to the market in the past five years. Breakthrough discoveries will be highlighted along with the medicinal chemistry strategies used throughout the discovery process. In addition, this review will provide perspectives and updates on the discovery of novel molecular targets as well as drugs with innovative mechanisms of action.
Collapse
Affiliation(s)
- Luma G Magalhaes
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Leonardo L G Ferreira
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, 13563-120 São Carlos, SP, Brazil
| |
Collapse
|
43
|
|
44
|
Padmaja RD, Chanda K. A Short Review on Synthetic Advances toward the Synthesis of Rufinamide, an Antiepileptic Drug. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00373] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- R. D. Padmaja
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, India
| |
Collapse
|
45
|
Li LH, Jiang Y, Hao J, Wei Y, Shi M. N
2
-Selective Autocatalytic Ditriazolylation Reactions of Cyclopropenones and Tropone with N
1
-Sulfonyl-1,2,3-triazoles. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Long-Hai Li
- Department of Chemistry; Shanghai University; 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yu Jiang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Jian Hao
- Department of Chemistry; Shanghai University; 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry; University of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory of Organometallic Chemistry; University of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
46
|
Liu W, Yu Y, Fan B, Kuang C. Room-temperature oxidative Suzuki coupling reaction of 1,2,3-triazole N -oxides. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
|
48
|
Sun C, Yuan X, Li Y, Li X, Zhao Z. N 1-Selective alkenylation of 1-sulfonyl-1,2,3-triazoles with alkynes via gold catalysis. Org Biomol Chem 2017; 15:2721-2724. [PMID: 28281720 DOI: 10.1039/c7ob00142h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A N1-selective alkenylation of 1-sulfonyl-1,2,3-triazoles with alkynes via gold catalysis is reported. N1-Vinyl substituted 1,2,3-triazoles were selectively prepared in up to 92% yield through the sulfonyl group of 1,2,3-triazole derivatives transformed to alkenyl groups in a "one-pot two steps" manner. This method provided a new method for the synthesis of potentially biological-active vinyl-triazole building blocks.
Collapse
Affiliation(s)
- Chenyang Sun
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China.
| | - Xiao Yuan
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China.
| | - Yan Li
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China.
| | - Xiaoxiao Li
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China.
| | - Zhigang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China.
| |
Collapse
|
49
|
da Rosa R, de Moraes MH, Zimmermann LA, Schenkel EP, Steindel M, Bernardes LSC. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. Eur J Med Chem 2017; 128:25-35. [PMID: 28152426 DOI: 10.1016/j.ejmech.2017.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/18/2016] [Accepted: 01/21/2017] [Indexed: 12/23/2022]
Abstract
Chagas disease and leishmaniasis are neglected tropical diseases (NTDs) endemic in developing countries. Although there are drugs available for their treatment, efforts on finding new efficacious therapies are continuous. The natural lignans grandisin (1) and veraguensin (2) show activity against trypomastigote T. cruzi and their scaffold has been used as inspiration to design new derivatives with improved potency and chemical properties. We describe here the planning and microwave-irradiated synthesis of 26 isoxazole derivatives based on the structure of the lignans 1 and 2. In addition, the in vitro evaluation against culture trypomastigotes and intracellular amastigotes of T. cruzi and intracellular amastigotes of L. amazonensis and L. infantum is reported. Among the synthesized derivatives, compounds 17 (IC50 = 5.26 μM for T. cruzi), 29 (IC50 = 1.74 μM for T. cruzi) and 31 (IC50 = 1.13 μM for T. cruzi and IC50 = 5.08 μM for L. amazonensis) were the most active and were also evaluated against recombinant trypanothione reductase of T. cruzi in a preliminary study of their mechanism of action.
Collapse
Affiliation(s)
- Rafael da Rosa
- Pharmaceutical and Medicinal Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Milene Höehr de Moraes
- Protozoology Laboratory, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Lara Almida Zimmermann
- Pharmaceutical and Medicinal Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Eloir Paulo Schenkel
- Pharmaceutical and Medicinal Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Mario Steindel
- Protozoology Laboratory, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, 88040-900 SC, Brazil
| | - Lílian Sibelle Campos Bernardes
- Pharmaceutical and Medicinal Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, 88040-900 SC, Brazil.
| |
Collapse
|
50
|
Ma T, Sun C, Yuan X, Li X, Zhao Z. N-2-Selective gold-catalyzed alkylation of 1-sulfonyl-1,2,3-trizoles. RSC Adv 2017. [DOI: 10.1039/c6ra26521a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient new method was developed to synthesis N-2-alkyl-1,2,3-trizoles via gold catalyzed alkylation of 1-sulfonyl-1,2,3-trizoles with vinyl ethers.
Collapse
Affiliation(s)
- Ting Ma
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Chenyang Sun
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Xiao Yuan
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Xiaoxiao Li
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| | - Zhigang Zhao
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu 610041
- PR China
| |
Collapse
|