1
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Ramaraj JA, Narayan S. Anti-aging Strategies and Topical Delivery of Biopolymer-based Nanocarriers for Skin Cancer Treatment. Curr Aging Sci 2024; 17:31-48. [PMID: 36941817 DOI: 10.2174/1874609816666230320122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/07/2023] [Accepted: 01/23/2023] [Indexed: 03/23/2023]
Abstract
Environmental factors like UV radiation and epigenetic changes are significant factors for skin cancer that trigger early aging. This review provides essential information on cancer development concerning aging, the receptors involved, and the therapeutic targets. Biopolymers like polysaccharide, polyphenols, proteins, and nucleic acid plays a vital role in the regulation of normal cell homeostasis. Therefore, it is pertinent to explore the role of biopolymers as antiaging formulations and the possibility of these formulations being used against cancer via topical administrations. As UV radiation is one of the predominant factors in causing skin cancer, the association of receptors between aging and cancer indicated that insulin receptor, melatonin receptor, toll-like receptor, SIRT 1 receptor, tumor-specific T cell receptor and mitochondria-based targeting could be used to direct therapeutics for suppression of cancer and prevent aging. Biopolymer-based nanoformulations have tremendously progressed by entrapment of drugs like curcumin and resveratrol which can prevent cancer and aging simultaneously. Certain protein signaling or calcium and ROS signaling pathways are different for cancer and aging. The involvement of mitochondrial DNA mutation along with telomere shortening with a change in cellular energetics leading to genomic instability in the aging process can also induce mitochondrial dysfunction and epigenetic alterations leading to skin cancer. Therefore, the use of biopolymers as a topical supplement during the aging process can result in the prevention of cancer.
Collapse
Affiliation(s)
- Jino Affrald Ramaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
3
|
Zhou J, Liu K, Bauer C, Bendner G, Dietrich H, Slivka JP, Wink M, Wong MBF, Chan MKS, Skutella T. Modulation of Cellular Senescence in HEK293 and HepG2 Cells by Ultrafiltrates UPla and ULu Is Partly Mediated by Modulation of Mitochondrial Homeostasis under Oxidative Stress. Int J Mol Sci 2023; 24:6748. [PMID: 37047720 PMCID: PMC10095350 DOI: 10.3390/ijms24076748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Protein probes, including ultrafiltrates from the placenta (UPla) and lung (ULu) of postnatal rabbits, were investigated in premature senescent HEK293 and HepG2 cells to explore whether they could modulate cellular senescence. Tris-Tricine-PAGE, gene ontology (GO), and LC-MS/MS analysis were applied to describe the characteristics of the ultrafiltrates. HEK293 and HepG2 cells (both under 25 passages) exposed to a sub-toxic concentration of hydrogen peroxide (H2O2, 300 μM) became senescent; UPla (10 μg/mL), ULu (10 μg/mL), as well as positive controls lipoic acid (10 μg/mL) and transferrin (10 μg/mL) were added along with H2O2 to the cells. Cell morphology; cellular proliferation; senescence-associated beta-galactosidase (SA-β-X-gal) activity; expression of senescence biomarkers including p16 INK4A (p16), p21 Waf1/Cip1 (p21), HMGB1, MMP-3, TNF-α, IL-6, lamin B1, and phospho-histone H2A.X (γ-H2AX); senescence-related gene expression; reactive oxygen species (ROS) levels; and mitochondrial fission were examined. Tris-Tricine-PAGE revealed prominent detectable bands between 10 and 100 kDa. LC-MS/MS identified 150-180 proteins and peptides in the protein probes, and GO analysis demonstrated a distinct enrichment of proteins associated with "extracellular space" and "proteasome core complex". UPla and ULu modulated senescent cell morphology, improved cell proliferation, and decreased beta-galactosidase activity, intracellular and mitochondrial ROS production, and mitochondrial fission caused by H2O2. The results from this study demonstrated that UPla and Ulu, as well as lipoic acid and transferrin, could protect HEK293 and HepG2 cells from H2O2-induced oxidative damage via protecting mitochondrial homeostasis and thus have the potential to be explored in anti-aging therapies.
Collapse
Affiliation(s)
- Junxian Zhou
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Kang Liu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | | | - Gerald Bendner
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Heike Dietrich
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Mike K. S. Chan
- EW European Wellness International GmbH, 72184 Eutingen im Gäu, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Devi A, Dwibedi V, Rath SK, Khan ZA. Theories and Mechanism of Aging and Longevity Through Evolutionary Lens: a Coalition of Plant Anti-oxidants. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 32:291-320. [DOI: 10.1007/s43450-022-00254-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2025]
|
5
|
Amiri A, Kashani MHG, Ghorbanian MT. Expression of neurotrophic factor genes by human adipose stem cells post-induction by deprenyl. Anat Cell Biol 2021; 54:74-82. [PMID: 33526752 PMCID: PMC8017458 DOI: 10.5115/acb.19.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022] Open
Abstract
Human adipose stem cells (hASCs) were introduced as appropriate candidate due to advantages like ease of isolation, in vitro expansion and lack of immune response. Deprenyl (Dep) was used to induce bone marrow stem cells into neuron-like cells. We investigated the Dep effect on neurotrophin genes expression in hASCs and their differentiation into neuron-like cells. The cells were isolated from small pieces of abdominal adipose tissue and subjected to flow cytometry to confirm purification. The osteogenic and adipogenic differentiation were identified. The proliferation rate and neurotrophin genes expression of treated cells were evaluated by MTT, TH immunostaining and RT-PCR. hASCs had positive response to CD44, CD73, CD90, CD105 markers and negative response to CD34 and CD45 markers and differentiated into adipocytes and osteocytes. Exposure to 10–7 M of Dep for 24 hours caused a significant increase of viable cells and BDNF, NTF-3 genes expression as compared to cultured cells in serum free medium and had no effect on the expression of NGF and GDNF genes. Based on our results, Dep is able to induce BDNF, NTF-3 and NTF-4 genes expression and neroun-like morphology in hASCs.
Collapse
Affiliation(s)
- Arezoo Amiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | | | | |
Collapse
|
6
|
Croitor L, Petric MF, Szerb EI, Vlase G, Bourosh PN, Chumakov YM, Crisan ME. The role of 4-nitrobenzoic acid polymorphs in the crystallization process of organic acid–base multicomponent systems. CrystEngComm 2019. [DOI: 10.1039/c9ce01239g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An investigation of the role of 4-nitrobenzoic acid polymorphs in the crystallization process of dimethylethanolammonium 4-nitrobenzoate from solution and comprehensive characterization of time-dependent changes associated with solid-state transformations are presented.
Collapse
Affiliation(s)
- Lilia Croitor
- “Coriolan Dragulescu” Institute of Chemistry
- Romanian Academy
- Timisoara
- Romania
- Institute of Applied Physics
| | - Mihaela F. Petric
- “Coriolan Dragulescu” Institute of Chemistry
- Romanian Academy
- Timisoara
- Romania
| | - Elisabeta I. Szerb
- “Coriolan Dragulescu” Institute of Chemistry
- Romanian Academy
- Timisoara
- Romania
| | - Gabriela Vlase
- Research Centre: Thermal Analysis in Environmental Problems
- West University of Timisoara
- Timisoara
- Romania
| | | | - Yurii M. Chumakov
- Institute of Applied Physics
- Republic of Moldova
- Gebze Institute of Technology
- Cayirova
- Turkey
| | - Manuela E. Crisan
- “Coriolan Dragulescu” Institute of Chemistry
- Romanian Academy
- Timisoara
- Romania
| |
Collapse
|
7
|
Apetrei IM, Apetrei C. Highly sensitive voltamperometric determination of pyritinol using carbon nanofiber/gold nanoparticle composite screen-printed carbon electrode. Int J Nanomedicine 2017; 12:5177-5188. [PMID: 28860746 PMCID: PMC5560415 DOI: 10.2147/ijn.s138978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel and highly sensitive electrochemical method for the detection of pyritinol in pharmaceutical products and serum samples has been accomplished based on voltamperometric response of pyritinol in carbon nanofiber-gold nanoparticle (CNF-GNP)-modified screen-printed carbon electrode (SPCE). The electrochemical response of pyritinol to CNF-GNP-modified SPCE was studied by cyclic voltammetry and square-wave voltammetry (SWV). Under optimized working conditions, the novel sensor shows excellent voltamperometric response toward pyritinol. The SWV study shows significantly enhanced electrochemical response for pyritinol in CNF-GNP-modified SPCE providing high sensitivity to the novel sensor for pyritinol detection. The peak current for pyritinol is found to be linear with the concentration in the range 1.0×10-8-5.0×10-5 M with a detection limit of 6.23×10-9 M using SWV as the detection method. The viability of the new developed sensor for the analytical purposes was studied by performing experiments on various commercial pharmaceutical products and blood serum samples, which yielded adequate recoveries of pyritinol. The novel electrochemical sensor provides high sensitivity, enhanced selectivity, good reproducibility and practical applicability.
Collapse
Affiliation(s)
- Irina Mirela Apetrei
- Department of Pharmaceutical Sciences, Medical and Pharmaceutical Research Center, Faculty of Medicine and Pharmacy
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| |
Collapse
|
8
|
Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M. Geroprotectors: A Unified Concept and Screening Approaches. Aging Dis 2017; 8:354-363. [PMID: 28580190 PMCID: PMC5440114 DOI: 10.14336/ad.2016.1022] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/22/2016] [Indexed: 12/20/2022] Open
Abstract
Although the geroprotectors discovery is a new biomedicine trend and more than 200 compounds can slow aging and increase the lifespan of the model organism, there are still no geroprotectors on the market. The reasons may be partly related to the lack of a unified concept of geroprotector, accepted by the scientific community. Such concept as a system of criteria for geroprotector identification and classification can form a basis for an analytical model of anti-aging drugs, help to consolidate the efforts of various research initiatives in this area and compare their results. Here, we review the existing classification and characteristics of geroprotectors based on their effect on the survival of a group of individuals or pharmaceutics classes, according to the proposed mechanism of their geroprotective action or theories of aging. After discussing advantages and disadvantages of these approaches, we offer a new concept based on the maintenance of homeostatic capacity because aging can be considered as exponential shrinkage of homeostatic capacity leading to the onset of age-related diseases and death. Besides, we review the most promising current screening approaches to finding new geroprotectors. Establishing the classification of existing geroprotectors based on physiology and current understanding of the nature of aging is essential for putting the existing knowledge into a single system. This system could be useful to formulate standards for finding and creating new geroprotectors. Standardization, in turn, would allow easier comparison and combination of experimental data obtained by different research groups.
Collapse
Affiliation(s)
- Alexey Moskalev
- 1Laboratory of postgenomic studies, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,2Laboratory of genetics of aging and longevity, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,3Laboratory of molecular radiobiology and gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | - Elizaveta Chernyagina
- 2Laboratory of genetics of aging and longevity, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Anna Kudryavtseva
- 1Laboratory of postgenomic studies, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail Shaposhnikov
- 3Laboratory of molecular radiobiology and gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| |
Collapse
|
9
|
Roussel O, Tensorer L, Bouvot X, Balter C, Sabini S, Carlin MG. The development of new psychoactive substances in France. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2016.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut'ko V, Zhavoronkov A, Kennedy BK. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 2016; 15:407-15. [PMID: 26970234 PMCID: PMC4854916 DOI: 10.1111/acel.12463] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
In the coming decades, a massive shift in the aging segment of the population will have major social and economic consequences around the world. One way to offset this increase is to expedite the development of geroprotectors, substances that slow aging, repair age‐associated damage and extend healthy lifespan, or healthspan. While over 200 geroprotectors are now reported in model organisms and some are in human use for specific disease indications, the path toward determining whether they affect aging in humans remains obscure. Translation to the clinic is hampered by multiple issues including absence of a common set of criteria to define, select, and classify these substances, given the complexity of the aging process and their enormous diversity in mechanism of action. Translational research efforts would benefit from the formation of a scientific consensus on the following: the definition of ‘geroprotector’, the selection criteria for geroprotectors, a comprehensive classification system, and an analytical model. Here, we review current approaches to selection and put forth our own suggested selection criteria. Standardizing selection of geroprotectors will streamline discovery and analysis of new candidates, saving time and cost involved in translation to clinic.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
| | | | - Vasily Tsvetkov
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
- The Research Institute for Translational Medicine Pirogov Russian National Research Medical University Moscow 117997 Russia
| | - Alexander Fedintsev
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
| | - Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
| | - Vyacheslav Krut'ko
- Institute for Systems Analysis Russian Academy of Sciences Moscow 117312 Russia
| | - Alex Zhavoronkov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- D. Rogachev FRC Center for Pediatric Hematology, Oncology and Immunology Samory Machela 1 Moscow 117997 Russia
- The Biogerontology Research Foundation 2354 Chynoweth House, Trevissome Park, Blackwater, Truro Cornwall TR4 8UN UK
| | | |
Collapse
|
11
|
Silva CG, Monteiro J, Marques RRN, Silva AMT, Martínez C, Canle L. M, Faria JL. Photochemical and photocatalytic degradation of trans-resveratrol. Photochem Photobiol Sci 2013; 12:638-44. [DOI: 10.1039/c2pp25239b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Vaiserman AM, Pasyukova EG. Epigenetic drugs: a novel anti-aging strategy? Front Genet 2012; 3:224. [PMID: 23118737 PMCID: PMC3484325 DOI: 10.3389/fgene.2012.00224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/06/2012] [Indexed: 01/15/2023] Open
Affiliation(s)
- A M Vaiserman
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine Kiev, Ukraine
| | | |
Collapse
|
13
|
Verdaguer E, Junyent F, Folch J, Beas-Zarate C, Auladell C, Pallàs M, Camins A. Aging biology: a new frontier for drug discovery. Expert Opin Drug Discov 2012; 7:217-29. [DOI: 10.1517/17460441.2012.660144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
|
15
|
Camins A, Sureda FX, Junyent F, Verdaguer E, Folch J, Pelegri C, Vilaplana J, Beas-Zarate C, Pallàs M. Sirtuin activators: designing molecules to extend life span. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:740-9. [PMID: 20601277 DOI: 10.1016/j.bbagrm.2010.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/31/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Resveratrol (RESV) exerts important pharmacological effects on human health: in addition to its beneficial effects on type 2 diabetes and cardiovascular diseases, it also modulates neuronal energy homeostasis and shows antiaging properties. Although it clearly has free radical scavenger properties, the mechanisms involved in these beneficial effects are not fully understood. In this regard, one area of major interest concerns the effects of RESV on the activity of sirtuin 1 (SIRT1), an NAD(+)-dependent histone deacetylase that has been implicated in aging. Indeed, the role of SIRT1 is currently the subject of intense research due to the antiaging properties of RESV, which increases life span in various organisms ranging from yeast to rodents. In addition, when RESV is administered in experimental animal models of neurological disorders, it has similar beneficial effects to caloric restriction. SIRT1 activation could thus constitute a potential strategic target in neurodegenerative diseases and in disorders involving disturbances in glucose homeostasis, as well as in dyslipidaemias or cardiovascular diseases. Therefore, small SIRT1 activators such as SRT501, SRT2104, and SRT2379, which are currently undergoing clinical trials, could be potential drugs for the treatment of type 2 diabetes, obesity, and metabolic syndrome, among other disorders. This review summarises current knowledge about the biological functions of SIRT1 in aging and aging-associated diseases and discusses its potential as a pharmacological target.
Collapse
Affiliation(s)
- Antoni Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|