1
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Mertens S, Huismans MA, Verissimo CS, Ponsioen B, Overmeer R, Proost N, van Tellingen O, van de Ven M, Begthel H, Boj SF, Clevers H, Roodhart JML, Bos JL, Snippert HJG. Drug-repurposing screen on patient-derived organoids identifies therapy-induced vulnerability in KRAS-mutant colon cancer. Cell Rep 2023; 42:112324. [PMID: 37000626 DOI: 10.1016/j.celrep.2023.112324] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/06/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Patient-derived organoids (PDOs) are widely heralded as a drug-screening platform to develop new anti-cancer therapies. Here, we use a drug-repurposing library to screen PDOs of colorectal cancer (CRC) to identify hidden vulnerabilities within therapy-induced phenotypes. Using a microscopy-based screen that accurately scores drug-induced cell killing, we have tested 414 putative anti-cancer drugs for their ability to switch the EGFRi/MEKi-induced cytostatic phenotype toward cytotoxicity. A majority of validated hits (9/37) are microtubule-targeting agents that are commonly used in clinical oncology, such as taxanes and vinca-alkaloids. One of these drugs, vinorelbine, is consistently effective across a panel of >25 different CRC PDOs, independent of RAS mutational status. Unlike vinorelbine alone, its combination with EGFR/MEK inhibition induces apoptosis at all stages of the cell cycle and shows tolerability and effective anti-tumor activity in vivo, setting the basis for a clinical trial to treat patients with metastatic RAS-mutant CRC.
Collapse
Affiliation(s)
- Sander Mertens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maarten A Huismans
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carla S Verissimo
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bas Ponsioen
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rene Overmeer
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Clinical Pharmacology, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Harry Begthel
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeanine M L Roodhart
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johannes L Bos
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugo J G Snippert
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
4
|
Rozario AM, Duwé S, Elliott C, Hargreaves RB, Moseley GW, Dedecker P, Whelan DR, Bell TDM. Nanoscale characterization of drug-induced microtubule filament dysfunction using super-resolution microscopy. BMC Biol 2021; 19:260. [PMID: 34895240 PMCID: PMC8665533 DOI: 10.1186/s12915-021-01164-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The integrity of microtubule filament networks is essential for the roles in diverse cellular functions, and disruption of its structure or dynamics has been explored as a therapeutic approach to tackle diseases such as cancer. Microtubule-interacting drugs, sometimes referred to as antimitotics, are used in cancer therapy to target and disrupt microtubules. However, due to associated side effects on healthy cells, there is a need to develop safer drug regimens that still retain clinical efficacy. Currently, many questions remain open regarding the extent of effects on cellular physiology of microtubule-interacting drugs at clinically relevant and low doses. Here, we use super-resolution microscopies (single-molecule localization and optical fluctuation based) to reveal the initial microtubule dysfunctions caused by nanomolar concentrations of colcemid. RESULTS We identify previously undetected microtubule (MT) damage caused by clinically relevant doses of colcemid. Short exposure to 30-80 nM colcemid results in aberrant microtubule curvature, with a trend of increased curvature associated to increased doses, and curvatures greater than 2 rad/μm, a value associated with MT breakage. Microtubule fragmentation was detected upon treatment with ≥ 100 nM colcemid. Remarkably, lower doses (< 20 nM after 5 h) led to subtle but significant microtubule architecture remodelling characterized by increased curvature and suppression of microtubule dynamics. CONCLUSIONS Our results support the emerging hypothesis that microtubule-interacting drugs induce non-mitotic effects in cells, and establish a multi-modal imaging assay for detecting and measuring nanoscale microtubule dysfunction. The sub-diffraction visualization of these less severe precursor perturbations compared to the established antimitotic effects of microtubule-interacting drugs offers potential for improved understanding and design of anticancer agents.
Collapse
Affiliation(s)
- Ashley M Rozario
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Sam Duwé
- Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Cade Elliott
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | | | - Gregory W Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, 3800, Australia
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, 3552, Australia.
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
5
|
Stoiber P, Scribani Rossi P, Pokharel N, Germany JL, York EA, Schaus SE, Hansen U. Factor quinolinone inhibitors alter cell morphology and motility by destabilizing interphase microtubules. Sci Rep 2021; 11:23564. [PMID: 34876605 PMCID: PMC8651680 DOI: 10.1038/s41598-021-02962-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Factor quinolinone inhibitors are promising anti-cancer compounds, initially characterized as specific inhibitors of the oncogenic transcription factor LSF (TFCP2). These compounds exert anti-proliferative activity at least in part by disrupting mitotic spindles. Herein, we report additional interphase consequences of the initial lead compound, FQI1, in two telomerase immortalized cell lines. Within minutes of FQI1 addition, the microtubule network is disrupted, resulting in a substantial, although not complete, depletion of microtubules as evidenced both by microtubule sedimentation assays and microscopy. Surprisingly, this microtubule breakdown is quickly followed by an increase in tubulin acetylation in the remaining microtubules. The sudden breakdown and partial depolymerization of the microtubule network precedes FQI1-induced morphological changes. These involve rapid reduction of cell spreading of interphase fetal hepatocytes and increase in circularity of retinal pigment epithelial cells. Microtubule depolymerization gives rise to FH-B cell compaction, as pretreatment with taxol prevents this morphological change. Finally, FQI1 decreases the rate and range of locomotion of interphase cells, supporting an impact of FQI1-induced microtubule breakdown on cell motility. Taken together, our results show that FQI1 interferes with microtubule-associated functions in interphase, specifically cell morphology and motility.
Collapse
Affiliation(s)
- Patrick Stoiber
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Pietro Scribani Rossi
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Niranjana Pokharel
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Jean-Luc Germany
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Emily A York
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Ulla Hansen
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Perużyńska M, Borzyszkowska-Ledwig A, Sośnicki JG, Struk Ł, Idzik TJ, Maciejewska G, Skalski Ł, Piotrowska K, Łukasik P, Droździk M, Kurzawski M. Synthesis and Anticancer Activity of Mitotic-Specific 3,4-Dihydropyridine-2(1 H)-thiones. Int J Mol Sci 2021; 22:2462. [PMID: 33671106 PMCID: PMC7957618 DOI: 10.3390/ijms22052462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/21/2023] Open
Abstract
Most anticancer drugs target mitosis as the most crucial and fragile period of rapidly dividing cancer cells. However the limitations of classical chemotherapeutics drive the search for new more effective and selective compounds. For this purpose structural modifications of the previously characterized pyridine aalog (S1) were incorporated aiming to obtain an antimitotic inhibitor of satisfactory and specific anticancer activity. Structure-activity relationship analysis of the compounds against a panel of cancer cell lines allowed to select a compound with a thiophene ring at C5 of a 3,4-dihydropyridine-2(1H)-thione (S22) with promising antiproliferative activity (IC50 equal 1.71 ± 0.58 µM) and selectivity (SI = 21.09) against melanoma A375 cells. Moreover, all three of the most active compounds from the antiproliferative study, namely S1, S19 and S22 showed better selectivity against A375 cells than reference drug, suggesting their possible lower toxicity and wider therapeutic index. As further study revealed, selected compounds inhibited tubulin polymerization via colchicine binding site in dose dependent manner, leading to aberrant mitotic spindle formation, cell cycle arrest and apoptosis. Summarizing, the current study showed that among obtained mitotic-specific inhibitors analogue with thiophene ring showed the highest antiproliferative activity and selectivity against cancer cells.
Collapse
Affiliation(s)
- Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (Ł.S.); (M.D.); (M.K.)
| | - Aleksandra Borzyszkowska-Ledwig
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland; (A.B.-L.); (J.G.S.); (Ł.S.); (T.J.I.)
| | - Jacek G. Sośnicki
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland; (A.B.-L.); (J.G.S.); (Ł.S.); (T.J.I.)
| | - Łukasz Struk
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland; (A.B.-L.); (J.G.S.); (Ł.S.); (T.J.I.)
| | - Tomasz J. Idzik
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland; (A.B.-L.); (J.G.S.); (Ł.S.); (T.J.I.)
| | - Gabriela Maciejewska
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Łukasz Skalski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (Ł.S.); (M.D.); (M.K.)
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (Ł.S.); (M.D.); (M.K.)
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (Ł.S.); (M.D.); (M.K.)
| |
Collapse
|
7
|
El-Zein R, Thaiparambil J, Abdel-Rahman SZ. 2-methoxyestradiol sensitizes breast cancer cells to taxanes by targeting centrosomes. Oncotarget 2020; 11:4479-4489. [PMID: 33400733 PMCID: PMC7721614 DOI: 10.18632/oncotarget.27810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Centrosomes amplification is a hallmark of cancer. We hypothesize that 2-methoxyestradiol (2-ME) sensitizes breast cancer (BC) cells to taxanes by targeting amplified centrosomes. We assessed the extent by which 2-ME together with paclitaxel (PTX) induces centrosome alterations with subsequent mitotic catastrophe in different BC subtypes. 2-ME induced a significant reduction in PTX IC50 values in all cells tested ranging from 28-44% (P < 0.05). Treatment with both PTX and 2-ME significantly increased the number of misaligned metaphases compared to PTX alone (34%, 100% and 52% for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). The number of cells with multipolar spindle formation was significantly increased (81%, 220% and 285% for MCF7, MDA-MB231 and SUM 149, respectively; P < 0.05). PTX and 2-ME treatment significantly increased interphase declustering in cancer cells (56% for MCF7, 208% for MDA-MB231 and 218% for SUM149, respectively; P < 0.05) and metaphase declustering (1.4-fold, 1.56-fold and 2.48-fold increase for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). This report is the first to document centrosome declustering as a mechanism of action of 2-ME and provides a potential approach for reducing taxane toxicity in cancer treated patients.
Collapse
Affiliation(s)
- Randa El-Zein
- Houston Methodist Cancer Center, Houston, TX 77030, USA
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77555, USA
| | | | - Sherif Z. Abdel-Rahman
- Department of Obstetrics and Gynecology, Maternal-Fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Cui YJ, Liu C, Ma CC, Ji YT, Yao YL, Tang LQ, Zhang CM, Wu JD, Liu ZP. SAR Investigation and Discovery of Water-Soluble 1-Methyl-1,4-dihydroindeno[1,2- c]pyrazoles as Potent Tubulin Polymerization Inhibitors. J Med Chem 2020; 63:14840-14866. [PMID: 33201714 DOI: 10.1021/acs.jmedchem.0c01345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking the previously discovered 1-methyl-1,4-dihydroindeno[1,2c]pyrazol derivative LL01 as a lead, systematic structural modifications were made at the phenolic 6- and 7-positions and the aniline at the 3-position of the indenopyrazole core to investigate the SARs and to improve water solubility. Among the designed indenopyrazoles ID01-ID33, a series of potent MTAs were identified. As the hydrochloride salt(s), ID09 and ID33 showed excellent aqueous solubility and favorable Log P value and displayed noteworthily low nanomolar potency against a variety of tumor cells, including those taxol-resistant ones. They inhibited tubulin polymerization, disrupted cellular microtubule networks by targeting the colchicine site, and promoted HepG2 cell cycle arrest and cell apoptosis. In the HepG2 xenograft mouse model, ID09 and ID33 effectively inhibited tumor growth at an oral dose of 25 mg/kg. At an intravenous (iv) injection dose of 10 mg/kg every other day, ID09 suppressed tumor growth by 68% without obvious toxicity.
Collapse
Affiliation(s)
- Ying-Jie Cui
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Chen-Chen Ma
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250012, P. R. China
| | - Ya-Ting Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Yi-Li Yao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Long-Qian Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Cheng-Mei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Jing-De Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
9
|
Exploiting immune-dependent effects of microtubule-targeting agents to improve efficacy and tolerability of cancer treatment. Cell Death Dis 2020; 11:361. [PMID: 32398657 PMCID: PMC7217828 DOI: 10.1038/s41419-020-2567-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Microtubule-targeting agents (MTAs), like taxanes and vinca alkaloids, are tubulin-binding drugs that are very effective in the treatment of various types of cancers. In cell cultures, these drugs appear to affect assembly of the mitotic spindle and to delay progression through mitosis and this correlates with their ability to induce cell death. Their clinical efficacy is, however, limited by resistance and toxicity. For these reasons, other spindle-targeting drugs, affecting proteins such as certain kinesins like Eg5 and CENP-E, or kinases like Plk1, Aurora A and B, have been developed as an alternative to MTAs. However, these attempts have disappointed in the clinic since these drugs show poor anticancer activity and toxicity ahead of positive effects. In addition, whether efficacy of MTAs in cancer treatment is solely due to their ability to delay mitosis progression remains controversial. Here we discuss recent findings indicating that the taxane paclitaxel can promote a proinflammatory response by activation of innate immunity. We further describe how this can help adaptive antitumor immune response and suggest, on this basis and on the recent success of immune checkpoint inhibitors in cancer treatment, that a combination therapy based on low doses of taxanes and immune checkpoint inhibitors may be of high clinical advantage in terms of wide applicability, reduced toxicity, and increased antitumor response.
Collapse
|
10
|
Campos-Fernández E, Barcelos L, Souza AG, Goulart LR, Alonso-Goulart V. Post-SELEX Optimization and Characterization of a Prostate Cancer Cell-Specific Aptamer for Diagnosis. ACS OMEGA 2020; 5:3533-3541. [PMID: 32118168 PMCID: PMC7045564 DOI: 10.1021/acsomega.9b03855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 05/27/2023]
Abstract
The RNA aptamer A4 binds specifically to tumor prostate cells. A4 was modified (mA4) by adding deoxyribonucleotides to its ends to remove the reactive 2' hydroxyl groups of RNA's sugar at the ends of the aptamer and to make it more stable to widespread RNase contamination in laboratories. Thus, mA4 would be more suitable to use in the clinical settings of prostate cancer (PCa). We aimed to characterize this optimized oligonucleotide to verify its potential as a diagnostic tool. The sequences and structures of A4 and mA4 were compared through in silico approaches to corroborate their similarity. Then, the degradation of mA4 was measured in appropriate media and human plasma for in vitro tests. In addition, the binding abilities of A4 to prostate cells were contrasted with those of mA4. The effects of mA4 were assessed on the viability, proliferation, and migration of human prostate cell lines RWPE-1 and PC-3 in three-dimensional (3D) cell cultures. mA4 showed configurational motifs similar to those of A4, displayed a half-life in plasma substantially higher than A4, and exhibited a comparable binding capacity to that of A4 and unaltered viability, proliferation, and migration of prostatic cells. Therefore, mA4 maintains the crucial 3D structures of A4 that would allow binding to its target, as suggested by in silico and binding analyses. mA4 may be a good PCa reporter as it does not change cellular parameters of prostate cells when incubated with it. Its additional deoxyribonucleotides make mA4 inherently more chemically stable than A4, avoiding its degradation and favoring its storage and handling for clinical applications. These characteristics support the potential of mA4 to be used in diagnostic systems for PCa.
Collapse
Affiliation(s)
- Esther Campos-Fernández
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| | - Letícia
S. Barcelos
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| | - Aline G. Souza
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| | - Luiz R. Goulart
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
- Department
of Medical Microbiology and Immunology, University of California-Davis, Davis 95616, California, United States
| | - Vivian Alonso-Goulart
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| |
Collapse
|
11
|
Mittal K, Aneja R. Spotlighting the hypoxia-centrosome amplification axis. Med Res Rev 2020; 40:1508-1513. [PMID: 32039498 DOI: 10.1002/med.21663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
The abysmal success rate of anticancer drugs in clinical trials, is in part, attributable to discordance between cultured cancer cells and patient tumors. While tumors in vivo, display a lower mitotic index, patient tumors portray much higher centrosomal aberrations, relative to in vitro cultured cells. The microenvironment too differs considerably between the in vitro and in vivo scenarios. Notably, another hallmark of cancer, hypoxia, is not recapitulated in cell lines cultured under normoxic conditions. These observations raise the possibility that hypoxia may be the missing link that explains the discordance between cell biological phenomena in vitro versus physiological conditions. Further, the interplay between hypoxia and centrosome amplification (CA) is relatively understudied. Recent research from our laboratory, geared toward examining the biological link between the two, has uncovered that hypoxia induces the expression of proteins (Plk4, Aurora A, Cyclin D) implicated in CA, in a hypoxia-inducible factor 1α (HIF-1α)-dependent context. Our studies evidence that hypoxia fuels CA that underlie intratumoral heterogeneity and metastatic potential of cancer cells. Given the advent of HIF-1α inhibitors, this research has ramifications in aiding patient risk stratification and designing new cancer drug therapies to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
12
|
1-Phenyl-dihydrobenzoindazoles as novel colchicine site inhibitors: Structural basis and antitumor efficacy. Eur J Med Chem 2019; 177:448-456. [DOI: 10.1016/j.ejmech.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
|
13
|
Jiang J, Zhang Q, Guo J, Fang S, Zhou R, Zhu J, Chen X, Zhou Y, Zheng C. Synthesis and biological evaluation of 7-methoxy-1-(3,4,5-trimethoxyphenyl)-4,5-dihydro-2H-benzo[e]indazoles as new colchicine site inhibitors. Bioorg Med Chem Lett 2019; 29:2632-2634. [DOI: 10.1016/j.bmcl.2019.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
|
14
|
Rovini A. Tubulin-VDAC Interaction: Molecular Basis for Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy. Front Physiol 2019; 10:671. [PMID: 31214047 PMCID: PMC6554597 DOI: 10.3389/fphys.2019.00671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Tubulin is a well-established target of microtubule-targeting agents (MTAs), a widely used class of chemotherapeutic drugs. Yet, aside from their powerful anti-cancer efficiency, MTAs induce a dose-limiting and debilitating peripheral neurotoxicity. Despite intensive efforts in the development of neuroprotective agents, there are currently no approved therapies to effectively manage chemotherapy-induced peripheral neuropathy (CIPN). Over the last decade, attempts to unravel the pathomechanisms underlying the development of CIPN led to the observation that mitochondrial dysfunctions stand as a common feature associated with axonal degeneration. Concomitantly, mitochondria emerged as crucial players in the anti-cancer efficiency of MTAs. The findings that free dimeric tubulin could be associated with mitochondrial membranes and interact directly with the voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane strongly suggested the existence of an interplay between both subcellular compartments. The biological relevance of the interaction between tubulin and VDAC came from subsequent in vitro studies, which found dimeric tubulin to be a potent modulator of VDAC and ultimately of mitochondrial membrane permeability to respiratory substrates. Therefore, one of the hypothetic mechanisms of CIPN implies that MTAs, by binding directly to the tubulin associated with VDAC, interferes with mitochondrial function in the peripheral nervous system. We review here the foundations of this hypothesis and discuss them in light of the current knowledge. A focus is set on the molecular mechanisms behind MTA interference with dimeric tubulin and VDAC interaction, the potential relevance of tubulin isotypes and availability as a free dimer in the specific context of MTA-induced CIPN. We further highlight the emerging interest for VDAC and its interacting partners as a promising therapeutic target in neurodegeneration.
Collapse
Affiliation(s)
- Amandine Rovini
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Contrasting effects of microtubule destabilizers versus stabilizers on induction of death in G1 phase of the cell cycle. Biochem Pharmacol 2019; 162:213-223. [DOI: 10.1016/j.bcp.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|
16
|
Kaul R, Risinger AL, Mooberry SL. Microtubule-Targeting Drugs: More than Antimitotics. JOURNAL OF NATURAL PRODUCTS 2019; 82:680-685. [PMID: 30835122 DOI: 10.1021/acs.jnatprod.9b00105] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nature has yielded numerous compounds that bind to tubulin/microtubules and disrupt microtubule function. Even with the advent of targeted therapies for cancer, natural products and their derivatives that target microtubules are some of the most effective drugs used in the treatment of solid tumors and hematological malignancies. For decades, these drugs were thought to work solely through their ability to inhibit mitosis. Accumulating evidence demonstrates that their actions are much more complex, in that they also have significant effects on microtubules in nondividing cells that inhibit a diverse range of signaling events important for carcinogenesis. The abilities of these drugs to inhibit oncogenic signaling likely underlies their efficacy, especially in solid tumors. In this review, we describe the role of microtubules in cells, the proliferation paradox of cells in culture as compared to cancers in patients, and evidence that microtubule-targeting drugs inhibit cellular signaling pathways important for tumorigenesis. The potential mechanisms behind differences in the clinical indications and efficacy of these natural-product-derived drugs are also discussed. Microtubules are an important target for structurally diverse natural products, and a fuller understanding of the mechanisms of action of these drugs will promote their optimal use.
Collapse
|
17
|
Pavana RK, Shah K, Gentile T, Dybdal-Hargreaves NF, Risinger AL, Mooberry SL, Hamel E, Gangjee A. Sterically induced conformational restriction: Discovery and preclinical evaluation of novel pyrrolo[3,2-d]pyrimidines as microtubule targeting agents. Bioorg Med Chem 2018; 26:5470-5478. [PMID: 30297118 DOI: 10.1016/j.bmc.2018.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022]
Abstract
The discovery, synthesis and biological evaluations of a series of nine N5-substituted-pyrrolo[3,2-d]pyrimidin-4-amines are reported. Novel compounds with microtubule depolymerizing activity were identified. Some of these compounds also circumvent clinically relevant drug resistance mechanisms (expression of P-glycoprotein and βIII tubulin). Compounds 4, 5, and 8-13 were one to two-digit nanomolar (IC50) inhibitors of cancer cells in culture. Contrary to recent reports (Banerjee et al. J. Med. Chem.2018, 61, 1704-1718), the conformation of the most active compounds determined by 1H NMR and molecular modeling are similar to that reported previously and in keeping with recently reported X-ray crystal structures. Compound 11, freely water soluble as the HCl salt, afforded statistically significant inhibition of tumor growth in three xenograft models [MDA-MB-435, MDA-MB-231 and NCI/ADR-RES] compared with controls. Compound 11 did not display indications of animal toxicity and is currently slated for further preclinical development.
Collapse
Affiliation(s)
- Roheeth Kumar Pavana
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Khushbu Shah
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Taylor Gentile
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Nicholas F Dybdal-Hargreaves
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - April L Risinger
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Susan L Mooberry
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
18
|
Delgado M, Chambers TC. Microtubules play an essential role in the survival of primary acute lymphoblastic leukemia cells advancing through G1 phase. Cell Cycle 2018; 17:1784-1796. [PMID: 29995568 DOI: 10.1080/15384101.2018.1496746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We recently reported that primary acute lymphoblastic leukemia (ALL) cells are susceptible to the microtubule depolymerizing agent vincristine (VCR) in G1 phase. This finding prompted testing another G1 phase-active compound, palbociclib (PCB), a highly selective inhibitor of cyclin-dependent kinases 4/6 (CDK4/6), alone and in combination with VCR. PCB used alone caused G1 arrest in ALL cells with no effect on cell viability, and similar results were obtained for the retinoblastoma (RB)-proficient T98G glioblastoma cell line. In contrast, HeLa cells failed to arrest in the presence of PCB, consistent with their lack of dependence on the CDK4/6-RB pathway. When ALL cells were pretreated with PCB, they became refractory to death in G1 phase induced by VCR treatment, whereas HeLa cells retained VCR sensitivity after PCB pretreatment. Immunofluorescence microscopy showed that PCB did not disrupt the microtubule network nor prevent VCR from doing so. Furthermore, ALL cells pretreated with PCB retained susceptibility to the Bcl-2/Bcl-xL inhibitor ABT-263, indicating that downstream apoptotic signaling was unaffected. When released from PCB-enforced arrest, ALL cells reinitiated cycling and regained sensitivity to VCR. ALL cells treated with cycloheximide also arrested in G1 phase and became insensitive to VCR, independently reinforcing conclusions derived from PCB-imposed arrest. Thus, primary ALL cells advancing through G1 phase are strictly dependent on functional microtubules for survival whereas microtubules are dispensable for G1-arrested cells. These findings provide novel insight into interphase microtubule function and, from a therapy standpoint, strongly caution against combining microtubule targeting agents and CDK4/6 inhibitors for ALL.
Collapse
Affiliation(s)
- Magdalena Delgado
- a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Timothy C Chambers
- a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
19
|
Kralova V, Hanušová V, Caltová K, Špaček P, Hochmalová M, Skálová L, Rudolf E. Flubendazole and mebendazole impair migration and epithelial to mesenchymal transition in oral cell lines. Chem Biol Interact 2018; 293:124-132. [PMID: 30075109 DOI: 10.1016/j.cbi.2018.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/28/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Benzimidazole anthelmintics flubendazole and mebendazole are microtubule-targeting drugs that showed considerable anti-cancer activity in different preclinical models. In this study, the effects of flubendazole and mebendazole on proliferation, migration and cadherin switching were studied in a panel of oral cell lines in vitro. Both compounds reduced the viability of the PE/CA-PJ15 and H376 oral squamous carcinoma cells and of the premalignant oral keratinocytes DOK with the IC50 values in the range of 0.19-0.26 μM. Normal oral keratinocytes and normal gingival fibroblasts were less sensitive to the treatment. Flubendazole and mebendazole also reduced the migration of the PE/CA-PJ15 cell in concentrations that had no anti-migratory effects on the normal gingival fibroblasts. Levels of the focal adhesion kinase FAK, Rho-A and Rac1 GTPases and the Rho guanine nucleotide exchange factor GEF-H1 were decreased in both PE/CA-PJ15 cells and gingival fibroblasts following treatment. Both drugs also interfered with cadherin switching in the model of TGF-β-induced epithelial to mesenchymal transition (EMT) in the DOK cell line. Levels of N-cadherin were reduced in the TGF-β induced cells co-treated with flubendazol and mebendazole in very low concentration (50 nM). These results suggest direct effects of both benzimidazoles on selected processes of EMT in oral cell lines such as cadherin switching as well as cellular migration.
Collapse
Affiliation(s)
- Vera Kralova
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic.
| | - Veronika Hanušová
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic
| | - Kateřina Caltová
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic
| | - Petr Špaček
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Martina Hochmalová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic
| |
Collapse
|
20
|
Miller JH, Field JJ, Kanakkanthara A, Owen JG, Singh AJ, Northcote PT. Marine Invertebrate Natural Products that Target Microtubules. JOURNAL OF NATURAL PRODUCTS 2018; 81:691-702. [PMID: 29431439 DOI: 10.1021/acs.jnatprod.7b00964] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Marine natural products as secondary metabolites are a potential major source of new drugs for treating disease. In some cases, cytotoxic marine metabolites target the microtubules of the eukaryote cytoskeleton for reasons that will be discussed. This review covers the microtubule-targeting agents reported from sponges, corals, tunicates, and molluscs and the evidence that many of these secondary metabolites are produced by bacterial symbionts. The review finishes by discussing the directions for future development and production of clinically relevant amounts of these natural products and their analogues through aquaculture, chemical synthesis, and biosynthesis by bacterial symbionts.
Collapse
Affiliation(s)
| | | | - Arun Kanakkanthara
- Department of Oncology and Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , Minnesota , United States
| | | | | | | |
Collapse
|
21
|
Gutiérrez-Escobar AJ, Méndez-Callejas G. Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:352-360. [PMID: 29246518 PMCID: PMC5828656 DOI: 10.1016/j.gpb.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/17/2017] [Accepted: 04/13/2017] [Indexed: 12/29/2022]
Abstract
Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment.
Collapse
Affiliation(s)
- Andrés Julián Gutiérrez-Escobar
- Grupo de Investigaciones Biomédicas y Genética Aplicada - GIBGA, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá 111166, Colombia.
| | - Gina Méndez-Callejas
- Grupo de Investigaciones Biomédicas y Genética Aplicada - GIBGA, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá 111166, Colombia
| |
Collapse
|
22
|
Markowitz D, Ha G, Ruggieri R, Symons M. Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism. Onco Targets Ther 2017; 10:5633-5642. [PMID: 29200877 PMCID: PMC5703169 DOI: 10.2147/ott.s143096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The cytotoxic effects of microtubule-targeting agents (MTAs) are often attributed to targeted effects on mitotic cells. In clinical practice, MTAs are combined with DNA-damaging agents such as ionizing radiation (IR) with the rationale that mitotic cells are highly sensitive to DNA damage. In contrast, recent studies suggest that MTAs synergize with IR by interfering with the trafficking of DNA damage response (DDR) proteins during interphase. These studies, however, have yet to demonstrate the functional consequences of interfering with interphase microtubules in the presence of IR. To address this, we combined IR with an established MTA, mebendazole (MBZ), to treat glioma cells exclusively during interphase. Materials and methods To test whether MTAs can sensitize interphase cells to IR, we treated GL261 and GBM14 glioma cells with MBZ during 3-9 hours post IR (when the mitotic index was 0%). Cell viability was measured using a WST-1 assay, and radiosensitization was quantified using the dose enhancement factor (DEF). The effect of MBZ on the DDR was studied via Western blot analysis of H2AX phosphorylation. To examine the effects of MTAs on intracellular transport of DDR proteins, Nbs1 and Chk2, cytoplasmic and nuclear fractionation studies were conducted following treatment of glioma cells with MBZ. Results Treatment with MBZ sensitized interphase cells to the effects of IR, with a maximal DEF of 1.34 in GL261 cells and 1.69 in GBM14 cells. Treatment of interphase cells with MBZ led to more sustained γH2AX levels post IR, indicating a delay in the DDR. Exposure of glioma cells to MBZ resulted in a dose-dependent sequestration of Chk2 and Nbs1 in the cytoplasm. Conclusion This study demonstrates that MBZ can sensitize cancer cells to IR independently of the induction of mitotic arrest. In addition, evidence is provided supporting the hypothesis that MTA-induced radiosensitization is mediated by inhibiting DDR protein accumulation into the nucleus.
Collapse
Affiliation(s)
- Daniel Markowitz
- Hofstra Northwell School of Medicine, Hempstead.,Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Grace Ha
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Rosamaria Ruggieri
- Hofstra Northwell School of Medicine, Hempstead.,Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Marc Symons
- Hofstra Northwell School of Medicine, Hempstead.,Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
23
|
Identification of pyrrolopyrimidine derivative PP-13 as a novel microtubule-destabilizing agent with promising anticancer properties. Sci Rep 2017; 7:10209. [PMID: 28860487 PMCID: PMC5579042 DOI: 10.1038/s41598-017-09491-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022] Open
Abstract
Despite the emergence of targeted therapies and immunotherapy, chemotherapy remains the gold-standard for the treatment of most patients with solid malignancies. Spindle poisons that interfere with microtubule dynamics are commonly used in chemotherapy drug combinations. However, their troublesome side effects and the emergence of chemoresistance highlight the need for identifying alternative agents. We performed a high throughput cell-based screening and selected a pyrrolopyrimidine molecule (named PP-13). In the present study, we evaluated its anticancer properties in vitro and in vivo. We showed that PP-13 exerted cytotoxic effects on various cancer cells, including those resistant to current targeted therapies and chemotherapies. PP-13 induced a transient mitotic blockade by interfering with both mitotic spindle organization and microtubule dynamics and finally led to mitotic slippage, aneuploidy and direct apoptotic death. PP-13 was identified as a microtubule-targeting agent that binds directly to the colchicine site in β-tubulin. Interestingly, PP-13 overcame the multidrug-resistant cancer cell phenotype and significantly reduced tumour growth and metastatic invasiveness without any noticeable toxicity for the chicken embryo in vivo. Overall, PP-13 appears to be a novel synthetic microtubule inhibitor with interesting anticancer properties and could be further investigated as a potent alternative for the management of malignancies including chemoresistant ones.
Collapse
|
24
|
Amplified centrosomes and mitotic index display poor concordance between patient tumors and cultured cancer cells. Sci Rep 2017; 7:43984. [PMID: 28272508 PMCID: PMC5341055 DOI: 10.1038/srep43984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Centrosome aberrations (CA) and abnormal mitoses are considered beacons of malignancy. Cancer cell doubling times in patient tumors are longer than in cultures, but differences in CA between tumors and cultured cells are uncharacterized. We compare mitoses and CA in patient tumors, xenografts, and tumor cell lines. We find that mitoses are rare in patient tumors compared with xenografts and cell lines. Contrastingly, CA is more extensive in patient tumors and xenografts (~35–50% cells) than cell lines (~5–15%), although CA declines in patient-derived tumor cells over time. Intratumoral hypoxia may explain elevated CA in vivo because exposure of cultured cells to hypoxia or mimicking hypoxia pharmacologically or genetically increases CA, and HIF-1α and hypoxic gene signature expression correlate with CA and centrosomal gene signature expression in breast tumors. These results highlight the importance of utilizing low-passage-number patient-derived cell lines in studying CA to more faithfully recapitulate in vivo cellular phenotypes.
Collapse
|
25
|
Chanez B, Gonçalves A, Badache A, Verdier-Pinard P. Eribulin targets a ch-TOG-dependent directed migration of cancer cells. Oncotarget 2016; 6:41667-78. [PMID: 26497677 PMCID: PMC4747180 DOI: 10.18632/oncotarget.6147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022] Open
Abstract
Non-cytotoxic concentrations of microtubule targeting agents (MTAs) interfere with the dynamics of interphase microtubules and affect cell migration, which could impair tumor angiogenesis and metastasis. The underlying mechanisms however are still ill-defined. We previously established that directed cell migration is dependent on stabilization of microtubules at the cell leading edge, which is controlled by microtubule +end interacting proteins (+TIPs). In the present study, we found that eribulin, a recently approved MTA interacting with a new class of binding site on β-tubulin, decreased microtubule growth speed, impaired their cortical stabilization and prevented directed migration of cancer cells. These effects were reminiscent of those observed when +TIP expression or cortical localization was altered. Actually, eribulin induced a dose-dependent depletion of EB1, CLIP-170 and the tubulin polymerase ch-TOG from microtubule +ends. Interestingly, eribulin doses that disturbed ch-TOG localization without significant effect on EB1 and CLIP-170 comets, had an impact on microtubule dynamics and directed migration. Moreover, knockdown of ch-TOG led to a similar inhibition of microtubule growth speed, microtubule capture and chemotaxis. Our data suggest that eribulin binding to the tip of microtubules and subsequent loss of ch-TOG is a priming event leading to alterations in microtubule dynamics and cancer cell migration.
Collapse
Affiliation(s)
- Brice Chanez
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Anthony Gonçalves
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| |
Collapse
|
26
|
Saxena R, Rida PCG, Kucuk O, Aneja R. Ginger augmented chemotherapy: A novel multitarget nontoxic approach for cancer management. Mol Nutr Food Res 2016; 60:1364-73. [PMID: 26842968 DOI: 10.1002/mnfr.201500955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/22/2023]
Abstract
Cancer, referred to as the 'disease of civilization', continues to haunt humanity due to its dreadful manifestations and limited success of therapeutic interventions such as chemotherapy in curing the disease. Although effective, chemotherapy has repeatedly demonstrated inadequacy in disease management due to its debilitating side effects arising from its deleterious nonspecific effects on normal healthy cells. In addition, development of chemoresistance due to mono-targeting often results in cessation of chemotherapy. This urgently demands development and implementation of multitargeted alternative therapies with mild or no side effects. One extremely promising strategy that yet remains untapped in the clinic is augmenting chemotherapy with dietary phytochemicals or extracts. Ginger, depository of numerous bioactive molecules, not only targets cancer cells but can also mitigate chemotherapy-associated side effects. Consequently, combination therapy involving ginger extract and chemotherapeutic agents may offer the advantage of being efficacious with reduced toxicity. Here we discuss the remarkable and often overlooked potential of ginger extract to manage cancer, the possibility of developing ginger-based combinational therapies, and the major roadblocks along with strategies to overcome them in clinical translation of such inventions. We are optimistic that clinical implementation of such combination regimens would be a much sought after modality in cancer management.
Collapse
Affiliation(s)
- Roopali Saxena
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
27
|
Martel-Frachet V, Keramidas M, Nurisso A, DeBonis S, Rome C, Coll JL, Boumendjel A, Skoufias DA, Ronot X. IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget 2016; 6:14669-86. [PMID: 26036640 PMCID: PMC4546496 DOI: 10.18632/oncotarget.4144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
We previously identified 1-(2,4-dimethoxyphenyl)-3-(1-methylindolyl) propenone (IPP51), a new chalcone derivative that is capable of inducing prometaphase arrest and subsequent apoptosis of bladder cancer cells. Here, we demonstrate that IPP51 selectively inhibits proliferation of tumor-derived cells versus normal non-tumor cells. IPP51 interfered with spindle formation and mitotic chromosome alignment. Accumulation of cyclin B1 and mitotic checkpoint proteins Bub1 and BubR1 on chromosomes in IPP51 treated cells indicated the activation of spindle-assembly checkpoint, which is consistent with the mitotic arrest. The antimitotic actions of other chalcones are often associated with microtubule disruption. Indeed, IPP51 inhibited tubulin polymerization in an in vitro assay with purified tubulin. In cells, IPP51 induced an increase in soluble tubulin. Furthermore, IPP51 inhibited in vitro capillary-like tube formation by endothelial cells, indicating that it has anti-angiogenic activity. Molecular docking showed that the indol group of IPP51 can be accommodated in the colchicine binding site of tubulin. This characteristic was confirmed by an in vitro competition assay demonstrating that IPP51 can compete for colchicine binding to soluble tubulin. Finally, in a human bladder xenograft mouse model, IPP51 inhibited tumor growth without signs of toxicity. Altogether, these findings suggest that IPP51 is an attractive new microtubule-targeting agent with potential chemotherapeutic value.
Collapse
Affiliation(s)
- Véronique Martel-Frachet
- Université Joseph Fourier, AGIM CNRS FRE, EPHE, GRENOBLE Cedex 9. Université Joseph Fourier, Grenoble, France
| | - Michelle Keramidas
- Unité INSERM/UJF U823, Centre de recherche Albert Bonniot, Grenoble, France
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet, Geneva, Switzerland
| | | | - Claire Rome
- Unité Inserm, Grenoble Institute of Neuroscience, Site Santé, Grenoble, France
| | - Jean-Luc Coll
- Unité INSERM/UJF U823, Centre de recherche Albert Bonniot, Grenoble, France
| | - Ahcène Boumendjel
- Université de Grenoble/CNRS, UMR, Département de Pharmacochimie Moléculaire, Grenoble Cedex, France
| | | | - Xavier Ronot
- Université Joseph Fourier, AGIM CNRS FRE, EPHE, GRENOBLE Cedex 9. Université Joseph Fourier, Grenoble, France
| |
Collapse
|
28
|
Lui C, Mok MTS, Henderson BR. Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome. Cancers (Basel) 2016; 8:cancers8050047. [PMID: 27144584 PMCID: PMC4880864 DOI: 10.3390/cancers8050047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT) growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy. In detergent-extracted cells, we discovered that APC was only weakly retained at the centrosome during interphase suggesting a rapid rate of exchange. This was confirmed in living cells by fluorescence recovery after photobleaching (FRAP), which identified two pools of green fluorescent protein (GFP)-APC: a major rapidly exchanging pool (~86%) and minor retained pool (~14%). The dynamic exchange rate of APC was unaffected by C-terminal truncations implicating a targeting role for the N-terminus. Indeed, we mapped centrosome localization to N-terminal armadillo repeat (ARM) domain amino acids 334–625. Interestingly, the rate of APC movement to the centrosome was stimulated by intact MTs, and APC dynamics slowed when MTs were disrupted by nocodazole treatment or knockdown of γ-tubulin. Thus, the rate of APC recycling at the centrosome is enhanced by MT growth, suggesting a positive feedback to stimulate its role in MT growth.
Collapse
Affiliation(s)
- Christina Lui
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Myth T S Mok
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
29
|
Colley HE, Muthana M, Danson SJ, Jackson LV, Brett ML, Harrison J, Coole SF, Mason DP, Jennings LR, Wong M, Tulasi V, Norman D, Lockey PM, Williams L, Dossetter AG, Griffen EJ, Thompson MJ. An Orally Bioavailable, Indole-3-glyoxylamide Based Series of Tubulin Polymerization Inhibitors Showing Tumor Growth Inhibition in a Mouse Xenograft Model of Head and Neck Cancer. J Med Chem 2015; 58:9309-33. [DOI: 10.1021/acs.jmedchem.5b01312] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Helen E. Colley
- School
of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Munitta Muthana
- Department
of Oncology, The University of Sheffield, Medical School, Beech
Hill Road, Sheffield S10
2RX, U.K
| | - Sarah J. Danson
- Academic
Unit of Clinical Oncology and Sheffield Experimental Medicine Centre, Weston Park Hospital, Whitham Road, Sheffield S10 2SJ, U.K
| | - Lucinda V. Jackson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Matthew L. Brett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Joanne Harrison
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Sean F. Coole
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Daniel P. Mason
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Luke R. Jennings
- School
of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Melanie Wong
- Charles River, 8−9 Spire
Green Centre, Harlow, Harlow, Essex CM19 5TR, U.K
| | - Vamshi Tulasi
- Charles River, 8−9 Spire
Green Centre, Harlow, Harlow, Essex CM19 5TR, U.K
| | - Dennis Norman
- Charles River, 8−9 Spire
Green Centre, Harlow, Harlow, Essex CM19 5TR, U.K
| | - Peter M. Lockey
- Charles River, 8−9 Spire
Green Centre, Harlow, Harlow, Essex CM19 5TR, U.K
| | - Lynne Williams
- Department
of Oncology, The University of Sheffield, Medical School, Beech
Hill Road, Sheffield S10
2RX, U.K
| | - Alexander G. Dossetter
- MedChemica Limited, Ebenezer House,
Ryecroft, Newcastle-Under-Lyme, Staffordshire ST5 2BE, U.K
| | - Edward J. Griffen
- MedChemica Limited, Ebenezer House,
Ryecroft, Newcastle-Under-Lyme, Staffordshire ST5 2BE, U.K
| | - Mark J. Thompson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
30
|
Das V, Štěpánková J, Hajdúch M, Miller JH. Role of tumor hypoxia in acquisition of resistance to microtubule-stabilizing drugs. Biochim Biophys Acta Rev Cancer 2015; 1855:172-82. [DOI: 10.1016/j.bbcan.2015.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/12/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
|
31
|
Chan A, Singh AJ, Northcote PT, Miller JH. Inhibition of human vascular endothelial cell migration and capillary-like tube formation by the microtubule-stabilizing agent peloruside A. Invest New Drugs 2015; 33:564-74. [DOI: 10.1007/s10637-015-0232-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/11/2015] [Indexed: 10/24/2022]
|
32
|
Centrosome-declustering drugs mediate a two-pronged attack on interphase and mitosis in supercentrosomal cancer cells. Cell Death Dis 2014; 5:e1538. [PMID: 25412316 PMCID: PMC4260758 DOI: 10.1038/cddis.2014.505] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 11/22/2022]
Abstract
Classical anti-mitotic drugs have failed to translate their preclinical efficacy into clinical response in human trials. Their clinical failure has challenged the notion that tumor cells divide frequently at rates comparable to those of cancer cells in vitro and in xenograft models. Given the preponderance of interphase cells in clinical tumors, we asked whether targeting amplified centrosomes, which cancer cells carefully preserve in a tightly clustered conformation throughout interphase, presents a superior chemotherapeutic strategy that sabotages interphase-specific cellular activities, such as migration. Herein we have utilized supercentrosomal N1E-115 murine neuroblastoma cells as a test-bed to study interphase centrosome declustering induced by putative declustering agents, such as Reduced-9-bromonoscapine (RedBr-Nos), Griseofulvin and PJ-34. We found tight ‘supercentrosomal' clusters in the interphase and mitosis of ~80% of patients' tumor cells with excess centrosomes. RedBr-Nos was the strongest declustering agent with a declustering index of 0.36 and completely dispersed interphase centrosome clusters in N1E-115 cells. Interphase centrosome declustering caused inhibition of neurite formation, impairment of cell polarization and Golgi organization, disrupted cellular protrusions and focal adhesion contacts—factors that are crucial prerequisites for directional migration. Thus our data illustrate an interphase-specific potential anti-migratory role of centrosome-declustering agents in addition to their previously acknowledged ability to induce spindle multipolarity and mitotic catastrophe. Centrosome-declustering agents counter centrosome clustering to inhibit directional cell migration in interphase cells and set up multipolar mitotic catastrophe, suggesting that disbanding the nuclear–centrosome–Golgi axis is a potential anti-metastasis strategy.
Collapse
|
33
|
Donthamsetty S, Brahmbhatt M, Pannu V, Rida PCG, Ramarathinam S, Ogden A, Cheng A, Singh KK, Aneja R. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis. Cell Cycle 2014; 13:2056-63. [PMID: 24799670 DOI: 10.4161/cc.29061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are implicated in centrosome duplication and spindle organization, the involvement of mtDNA encoded proteins in centrosome amplification (CA) remains elusive. Here we show that disruption of mitochondrial function by depletion of mtDNA induces robust CA and mitotic aberrations in osteosarcoma cells. We found that overexpression of Aurora A, Polo-like kinase 4 (PLK4), and Cyclin E was associated with emergence of amplified centrosomes. Supernumerary centrosomes in rho0 (mtDNA-depleted) cells resulted in multipolar mitoses bearing "real" centrosomes with paired centrioles at the multiple poles. This abnormal phenotype was recapitulated by inhibition of respiratory complex I in parental cells, suggesting a role for electron transport chain (ETC) in maintaining numeral centrosomal homeostasis. Furthermore, rho0 cells displayed a decreased proliferative capacity owing to a G 2/M arrest. Downregulation of nuclear-encoded p53 in rho0 cells underscores the importance of mitochondrial and nuclear genome crosstalk and may perhaps underlie the observed mitotic aberrations. By contrast, repletion of wild-type mtDNA in rho0 cells (cybrid) demonstrated a much lesser extent of CA and spindle multipolarity, suggesting partial restoration of centrosomal homeostasis. Our study provides compelling evidence to implicate the role of mitochondria in regulation of centrosome duplication, spindle architecture, and spindle pole integrity.
Collapse
Affiliation(s)
| | - Meera Brahmbhatt
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Vaishali Pannu
- Department of Biology; Georgia State University; Atlanta, GA USA
| | | | | | - Angela Ogden
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Alice Cheng
- Department of Biology; Georgia State University; Atlanta, GA USA
| | - Keshav K Singh
- Departments of Genetics, Pathology, and Environmental Health and Center for Free Radical Biology, Center for Aging, and UAB Comprehensive Cancer Center; University of Alabama at Birmingham; Birmingham, AL USA and Birmingham Veterans Affairs Medical Center; Birmingham, AL USA
| | - Ritu Aneja
- Department of Biology; Georgia State University; Atlanta, GA USA
| |
Collapse
|