1
|
Yotsomnuk P, Rajendran AP, Sundaram DNM, Morales LC, Kucharski C, Nasrullah M, Skolpap W, Jiang X, Gibson SB, Brandwein J, Uludağ H. Lipopolymers as the Basis of Non-Viral Delivery of Therapeutic siRNA Nanoparticles in a Leukemia (MOLM-13) Model. Biomolecules 2025; 15:115. [PMID: 39858509 PMCID: PMC11763671 DOI: 10.3390/biom15010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.2k-PHPA-Lin9). The siRNAs utilized in this study were targeting the oncogenes FLT3 and KMT2A::MLLT3. Both lipopolymers gave similar-size siRNA complexes (210-220 nm) with positive ζ-potentials (+17 to +25 mV). While the binding efficiency of both lipopolymers to siRNA were similar, PEI1.2k-PHPA-Lin9 complexes were more resistant to heparin-induced dissociation. The quantitative analysis of gene silencing performed by qPCR as well as immunostaining/flow cytometry indicated significant reduction in both FLT3 expression and FLT3 protein after specific siRNA delivery. The desired inhibition of cell growth was attained with both FLT3 and KMT2A::MLLT3 siRNAs, and the combination provided more potent effects in both cell growth and colony formation assays. Induction of apoptosis was confirmed after specific siRNA treatments using the Annexin V assay. Using Luc(+) MOLM-13 cells, the growth of the xenografted cells was shown to be retarded with Prime-Fect-delivered FLT3 siRNA, unlike the siRNA delivered with PEI1.2k-PHPA-Lin9. These results demonstrate the potential of designed lipopolymers in implementing RNAi (via delivery of siRNA) for inhibition of leukemia growth and provide evidence for the feasibility of targeting different oncogenes using siRNA-mediated therapy.
Collapse
MESH Headings
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/pharmacology
- Humans
- Animals
- Nanoparticles/chemistry
- Mice
- Cell Line, Tumor
- Polyethyleneimine/chemistry
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors
- Lipids/chemistry
- Polymers/chemistry
- Gene Silencing
- Histone-Lysine N-Methyltransferase
Collapse
Affiliation(s)
- Panadda Yotsomnuk
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
- Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
| | - Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Daniel Nisakar Meenakshi Sundaram
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Luis Carlos Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
| | - Mohammad Nasrullah
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Wanwisa Skolpap
- Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
| | - Xiaoyan Jiang
- Department of Medical Genetics, Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Spencer B. Gibson
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada (M.N.)
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| |
Collapse
|
2
|
A targeting delivery system for effective genome editing in leukemia cells to reverse malignancy. J Control Release 2022; 343:645-656. [DOI: 10.1016/j.jconrel.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|
3
|
Muqier M, Xiao H, Yu X, Li Y, Bao M, Bao Q, Han S, Baigude H. Synthesis of PEGylated cationic curdlan derivatives with enhanced biocompatibility. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:465-480. [PMID: 34641765 DOI: 10.1080/09205063.2021.1992589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cationic polysaccharides have shown excellent ability of nucleic acids delivery. However, cationic curdlan derivatives with high degree of amination cause damage to the cell membrane and induce considerable cytotoxicity, limiting their in vivo application. Herein, we synthesized PEGylated 6-amino-6-deoxy-curdlan derivatives containing cleavable disulfide bonds. The resulting polymers (denote 6AC-2S PEGx) not only showed high affinity to siRNA but also exhibited significantly decreased cytotoxicity and hemolysis effect, while showing remarkable in vitro transfection efficiency. In vivo study demonstrated that 6AC-2S PEG40, which had a lower LD50 value than that of 6AC-100, did not cause liver damage, as the i.v. injection of 6AC-2S PEG40 to mouse did not increase serum level of ALT/AST. Furthermore, tissue distribution results showed that 6AC-2S PEG40 successfully delivered siRNA to liver, lung and spleen. Collectively, our data confirmed that PEGylation can increase the biocompatibility of cationic curdlan derivatives, which is a promising carrier for nucleic acid therapeutics.
Collapse
Affiliation(s)
- Muqier Muqier
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Hai Xiao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Xiang Yu
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Yifeng Li
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Mingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Qingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Shuqin Han
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Huricha Baigude
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
4
|
Yang C, Ma D, Lu L, Yang X, Xi Z. Synthesis of KUE-siRNA Conjugates for Prostate Cancer Cell-Targeted Gene Silencing. Chembiochem 2021; 22:2888-2895. [PMID: 34263529 DOI: 10.1002/cbic.202100243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Indexed: 11/06/2022]
Abstract
The delivery of siRNAs to selectively target cells poses a great challenge in RNAi-based cancer therapy. The lack of suitable cell-targeting methods seriously restricts the advance in delivering siRNAs to extrahepatic tissues. Based on prostate-specific membrane antigen (PSMA)-targeting ligands, we have synthesized a series of lysine-urea-glutamate (KUE)-siRNA conjugates and verified their effective cell uptake and gene silencing properties in prostate cancers. The results indicated that the KUE-siRNA conjugates could selectively enter PSMA+ LNCaP cells, eventually down-regulating STAT3 expression. Based on post-synthesis modification and receptor-mediated endocytosis, this strategy of constructing ligand-siRNA conjugates might provide a general method of siRNA delivery for cell-targeted gene silencing.
Collapse
Affiliation(s)
- Chao Yang
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Dejun Ma
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Liqing Lu
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Zhen Xi
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
5
|
Therapeutic delivery of siRNA with polymeric carriers to down-regulate STAT5A expression in high-risk B-cell acute lymphoblastic leukemia (B-ALL). PLoS One 2021; 16:e0251719. [PMID: 34157051 PMCID: PMC8219370 DOI: 10.1371/journal.pone.0251719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Overexpression and persistent activation of STAT5 play an important role in the development and progression of acute lymphoblastic leukemia (ALL), the most common pediatric cancer. Small interfering RNA (siRNA)-mediated downregulation of STAT5 represents a promising therapeutic approach for ALL to overcome the limitations of current treatment modalities such as high relapse rates and poor prognosis. However, to effectively transport siRNA molecules to target cells, development of potent carriers is of utmost importance to surpass hurdles of delivery. In this study, we investigated the use of lipopolymers as non-viral delivery systems derived from low molecular weight polyethylenimines (PEI) substituted with lauric acid (Lau), linoleic acid (LA) and stearic acid (StA) to deliver siRNA molecules to ALL cell lines and primary samples. Among the lipid-substituted polymers explored, Lau- and LA-substituted PEI displayed excellent siRNA delivery to SUP-B15 and RS4;11 cells. STAT5A gene expression was downregulated (36-92%) in SUP-B15 and (32%) in RS4;11 cells using the polymeric delivery systems, which consequently reduced cell growth and inhibited the formation of colonies in ALL cells. With regard to ALL primary cells, siRNA-mediated STAT5A gene silencing was observed in four of eight patient cells using our leading polymeric delivery system, 1.2PEI-Lau8, accompanied by the significant reduction in colony formation in three of eight patients. In both BCR-ABL positive and negative groups, three of five patients demonstrated marked cell growth inhibition in both MTT and trypan blue exclusion assays using 1.2PEI-Lau8/siRNA complexes in comparison with their control siRNA groups. Three patient samples did not show any positive results with our delivery systems. Differential therapeutic responses to siRNA therapy observed in different patients could result from variable genetic profiles and patient-to-patient variability in delivery. This study supports the potential of siRNA therapy and the designed lipopolymers as a delivery system in ALL therapy.
Collapse
|
6
|
Meenakshi Sundaram DN, Jiang X, Brandwein JM, Valencia-Serna J, Remant KC, Uludağ H. Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discov Today 2019; 24:1355-1369. [PMID: 31102734 DOI: 10.1016/j.drudis.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/25/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Chronic myeloid leukemia cells are armed with several resistance mechanisms that can make current drugs ineffective. A better understanding of resistance mechanisms is yielding new approaches to management of the disease. Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm the hallmark of which, the breakpoint cluster region-Abelson (BCR-ABL) oncogene, has been the target of tyrosine kinase inhibitors (TKIs), which have significantly improved the survival of patients with CML. However, because of an increase in TKI resistance, it is becoming imperative to identify resistance mechanisms so that drug therapies can be better prescribed and new agents developed. In this review, we discuss the various BCR-ABL-dependent and -independent mechanisms of resistance observed in CML, and the range of therapeutic solutions available to overcome such resistance and to ultimately improve the survival of patients with CML.
Collapse
Affiliation(s)
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Juliana Valencia-Serna
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - K C Remant
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Use of polymeric CXCR4 inhibitors as siRNA delivery vehicles for the treatment of acute myeloid leukemia. Cancer Gene Ther 2019; 27:45-55. [PMID: 31028289 DOI: 10.1038/s41417-019-0095-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults and is associated with poor long-term survival often owing to relapse. Current treatments for AML are associated with considerable toxicity and are frequently not effective after relapse. Thus, it is important to develop novel therapeutic strategies. Short interfering RNA (siRNA)-based therapeutics targeting key oncogenes have been proposed as treatments for AML. We recently developed novel siRNA delivery polycations (PCX) based on AMD3100 (plerixafor), an FDA-approved inhibitor of the CXC chemokine receptor 4 (CXCR4). Inhibitors of CXCR4 have been shown to sensitize leukemia cells to chemotherapy. Therefore, PCX has the potential to target leukemia cells via two mechanisms: inhibition of CXCR4 and delivery of siRNAs against critical genes. In this report, we show that PCX exerts a cytotoxic effect on leukemia cells more effectively than other CXCR4 inhibitors, including AMD3100. In addition, we show that PCX can deliver siRNAs against the transcription factor RUNX1 to mouse and human leukemia cells. Overall, our study provides the first evidence that dual-function PCX/siRNA nanoparticles can simultaneously inhibit CXCR4 and deliver siRNAs, targeting key oncogenes in leukemia cells and that PCX/siRNA has clinical potential for the treatment of AML.
Collapse
|
8
|
Luan X, Rahme K, Cong Z, Wang L, Zou Y, He Y, Yang H, Holmes JD, O'Driscoll CM, Guo J. Anisamide-targeted PEGylated gold nanoparticles designed to target prostate cancer mediate: Enhanced systemic exposure of siRNA, tumour growth suppression and a synergistic therapeutic response in combination with paclitaxel in mice. Eur J Pharm Biopharm 2019; 137:56-67. [PMID: 30779980 DOI: 10.1016/j.ejpb.2019.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/18/2018] [Accepted: 02/15/2019] [Indexed: 12/24/2022]
Abstract
Small interfering RNA (siRNA) has recently illustrated therapeutic potential for malignant disorders. However, the clinical application of siRNA-based therapeutics is significantly retarded by the paucity of successful delivery systems. Recently, multifunctional gold nanoparticles (AuNPs) as non-viral delivery carriers have shown promise for transporting chemotherapeutics, proteins/peptides, and genes. In this study, AuNPs capped with polyethylenimine (PEI) and PEGylated anisamide (a ligand known to target the sigma receptor) have been developed to produce a range of positively charged anisamide-targeted PEGylated AuNPs (namely Au-PEI-PEG-AA). The anisamide-targeted AuNPs effectively complexed siRNA via electrostatic interaction, and the resultant complex (Au110-PEI-PEG5000-AA.siRNA) illustrated favourable physicochemical characteristics, including particle size, surface charge, and stability. In vitro, anisamide-targeted AuNPs selectively bound to human prostate cancer PC-3 cells, inducing efficient endosomal escape of siRNA, and effective downregulation of the RelA gene. In vivo, prolonged systemic exposure of siRNA was achieved by anisamide-targeted AuNPs resulting in significant tumour growth suppression in a PC3 xenograft mouse model without an increase in toxicity. In addition, a combination of siRNA-mediated NF-κB knockdown using anisamide-targeted AuNPs with Paclitaxel produced a synergistic therapeutic response, thus providing a promising therapeutic strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xue Luan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon; Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
| | - Zhongcheng Cong
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Department of Pharmacy, The General Hospital of FAW, Changchun 130011, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yan He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Justin D Holmes
- Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; AMBER@CRANN, Trinity College Dublin, Dublin 2, Ireland
| | | | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Guo J, Luan X, Cong Z, Sun Y, Wang L, McKenna SL, Cahill MR, O'Driscoll CM. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. J Control Release 2018; 286:154-166. [DOI: 10.1016/j.jconrel.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
10
|
Nemati H, Ghahramani MH, Faridi-Majidi R, Izadi B, Bahrami G, Madani SH, Tavoosidana G. Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis. J Control Release 2017; 268:259-268. [DOI: 10.1016/j.jconrel.2017.10.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022]
|
11
|
Tushir-Singh J. Antibody-siRNA conjugates: drugging the undruggable for anti-leukemic therapy. Expert Opin Biol Ther 2016; 17:325-338. [PMID: 27977315 DOI: 10.1080/14712598.2017.1273344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Generating effective RNAi-based therapies with the potential to achieve leukemia remission remains critical unmet need. Despite a growing number of leukemia clinical trials, tissue specific delivery of therapeutic siRNA is a major roadblock in translating its clinical potential. The most recent reports in the antibody-siRNA-conjugates (ARCs) field add new dimensions to leukemic therapy, where a covalently ligated therapeutic antisense-RNA with the potential to repress the oncogenic transcript is selectively delivered into the cancer cells. Despite ARC localization to leukemic cells due to high affinity antigen-antibody interactions, multiple challenges exist to unlock the therapeutic potential of siRNA targeting. Areas covered: This review focuses on antibody and siRNA-based therapies for leukemia as well as potential antibody engineering-based strategies to generate an optimal ARC platform. Expert opinion: In vitro and clinical results have revealed that non-targeted delivery and inefficient cellular internalization of therapeutic siRNA are major contributing factors for the lack of efficacy in leukemia patients. Rational antibody design and selective protein engineering with the potential to neutralize siRNA charge, stabilize ARC complex, restrict off-targeted delivery, optimize endosomal escape, and extend serum half-life will generate clinically relevant leukemic therapies that are safe, selective, and effective.
Collapse
Affiliation(s)
- Jogender Tushir-Singh
- a Laboratory of Novel Biologics, Department of Biochemistry & Molecular Genetics , University of Virginia Cancer Center, University of Virginia School of Medicine , Charlottesville , VA , USA
| |
Collapse
|
12
|
Gaspar D, Zeugolis DI. Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discov Today 2016; 21:1341-1344. [DOI: 10.1016/j.drudis.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|