1
|
Shah-Abadi ME, Ariaei A, Moradi F, Rustamzadeh A, Tanha RR, Sadigh N, Marzban M, Heydari M, Ferdousie VT. In Silico Interactions of Natural and Synthetic Compounds with Key Proteins Involved in Alzheimer's Disease: Prospects for Designing New Therapeutics Compound. Neurotox Res 2023; 41:408-430. [PMID: 37086338 PMCID: PMC10122091 DOI: 10.1007/s12640-023-00648-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
Memory impairment is a result of multiple factors including amyloid-beta (Aβ) accumulation. Several receptors are mediated for Aβ transport and signaling. Moreover, blood lipids are involved in Aβ signaling pathway through these receptors. Mediated blood lipid level by statins aims to regulate Aβ signaling cascade. First, the structure of receptors was taken from the RCSB PDB database and prepared with MGLTools and AutoDock tool 4. Second, the ligand was prepared for docking through AutoDock Vina. The binding affinity was calculated, and the binding sites were determined through LigPlot+ software. Besides, pharmacokinetic properties were calculated through multiple software. Finally, a molecular dynamics (MD) simulation was conducted to evaluate ligands stability along with clustering analysis to evaluate proteins connection. Our molecular docking and dynamic analyses revealed silymarin as a potential inhibitor of acetylcholinesterase (AChE), P-glycoprotein, and angiotensin-converting enzyme 2 (ACE2) with 0.704, 0.85, and 0.83 Å for RMSD along with -114.27, -107.44, and -122.51 kcal/mol for free binding energy, respectively. Moreover, rosuvastatin and quercetin have more stability compared to silymarin and donepezil in complex with P-glycoprotein and ACE2, respectively. Eventually, based on clustering and pharmacokinetics analysis, silymarin, rosuvastatin, and quercetin are suggested to be involved in peripheral clearance of Aβ. The bioactivity effects of mentioned statins and antioxidants are predicted to be helpful in treating memory impairment in Alzheimer's disease (AD). Nevertheless, mentioned drug effect could be improved by nanoparticles to facilitate penetration of the blood-brain barrier (BBB).
Collapse
Affiliation(s)
| | - Armin Ariaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rastegar Rahmani Tanha
- Department of Neurosurgery, School of Medicine, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, Trauma and Injury Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Marzban
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mahdi Heydari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Gianazza E, Macchi C, Banfi C, Ruscica M. Proteomics and Lipidomics to unveil the contribution of PCSK9 beyond cholesterol lowering: a narrative review. Front Cardiovasc Med 2023; 10:1191303. [PMID: 37378405 PMCID: PMC10291627 DOI: 10.3389/fcvm.2023.1191303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.
Collapse
Affiliation(s)
- Erica Gianazza
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Pharmacometabolomics for the Study of Lipid-Lowering Therapies: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24043291. [PMID: 36834701 PMCID: PMC9960554 DOI: 10.3390/ijms24043291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Lipid-lowering therapies are widely used to prevent the development of atherosclerotic cardiovascular disease (ASCVD) and related mortality worldwide. "Omics" technologies have been successfully applied in recent decades to investigate the mechanisms of action of these drugs, their pleiotropic effects, and their side effects, aiming to identify novel targets for future personalized medicine with an improvement of the efficacy and safety associated with the treatment. Pharmacometabolomics is a branch of metabolomics that is focused on the study of drug effects on metabolic pathways that are implicated in the variation of response to the treatment considering also the influences from a specific disease, environment, and concomitant pharmacological therapies. In this review, we summarized the most significant metabolomic studies on the effects of lipid-lowering therapies, including the most commonly used statins and fibrates to novel drugs or nutraceutical approaches. The integration of pharmacometabolomics data with the information obtained from the other "omics" approaches could help in the comprehension of the biological mechanisms underlying the use of lipid-lowering drugs in view of defining a precision medicine to improve the efficacy and reduce the side effects associated with the treatment.
Collapse
|
4
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
5
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
6
|
Mostafa TM, Hegazy SK, Elshebini EM, Saif DS, Elabd AH. A comparative study on the anti-inflammatory effect of angiotensin-receptor blockers & statins on rheumatoid arthritis disease activity. Indian J Med Res 2021; 152:393-400. [PMID: 33380704 PMCID: PMC8061595 DOI: 10.4103/ijmr.ijmr_640_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background & objectives : Rheumatoid artherits (RA) is a refractory disease and the imbalance between pro- and anti-inflammatory cytokines in favor of pro-inflammatory cytokines has been implicated in pathogenesis of RA. In this context, the aim of the present study was to compare the anti-inflammatory and antioxidant effects of candesartan, an angiotensin-receptor blocker, and atorvastatin in RA patients. Methods : In this single-blinded parallel randomized placebo controlled study, the patients recruited between December 2017 and May 2018 were categorized into three groups: group 1 included 15 RA patients who served as control group and received traditional therapy (+ placebo); group 2 included 15 RA patients who received traditional therapy + candesartan (8 mg/day); and group 3 included 15 patients who received traditional therapy + atorvastatin (20 mg/day) for three months. Clinical status in RA patients was evaluated by Disease Activity Score 28 (DAS28), Health Assessment Questionnaire-Disability Index (HAQ-DI) and morning stiffness before and three months after treatment. All groups were subjected to biochemical analysis of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), tumour necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and malondialdehyde (MDA) before and three months after treatment. Results : Both candesartan and atorvastatin treated groups showed significant decrease in serum levels IL-1β and TNF-α, acute-phase reactants (CRP and ESR), number of swollen joint and patient global assessment. This was also associated with improvement in disease activity and quality of life regarding DAS28 and HAQ-DI as compared to baseline data and the control group. Atorvastatin group showed significant decrease in the serum level of oxidative stress marker (MDA). Interpretation & conclusions : Both candesartan and atorvastatin showed anti-inflammatory effect and immunomodulatory effects leading to improvement in clinical status and disease activity in RA patients. However, atorvastatin was superior to candesartan through its anti-oxidant effect.
Collapse
Affiliation(s)
- Tarek Mohamed Mostafa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sahar Kamal Hegazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Emad M Elshebini
- Division of Medicine Rheumatology & Immunology, Faculty of Medicine, Menoufia University, Menofia Governorate, Egypt
| | - Dalia S Saif
- Department of Rheumatology & Rehabilitation, Faculty of Medicine, Menoufia University, Menofia Governorate, Egypt
| | - Ahmed H Elabd
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Kamar SS, Latif NSA, Elrefai MFM, Amin SN. Gastroprotective effects of nebivolol and simvastatin against cold restraint stress-induced gastric ulcer in rats. Anat Cell Biol 2020; 53:301-312. [PMID: 32993280 PMCID: PMC7527116 DOI: 10.5115/acb.20.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Gastric ulcer is one of the most serious diseases. Nebivolol (Neb), a β1-blocker, exhibits vasodilator and anti-oxidative properties, simvastatin (Sim) antihyperlipidemic drug, exhibits anti-oxidative, anti-inflammatory properties and promote endogenous nitric oxide (NO) production. The aim of this study was to evaluate the gastroprotective effects of Neb and Sim against cold restraint stress (CRS)-induced gastric ulcer in rats. Rats were restrained, and maintained at 4°C for 3 hours. Animals were divided into six groups; control group, CRS group, and four treatment groups received ranitidine (Ran), Neb, Sim and both Neb and Sim. Treatments were given orally on a daily basis for 7 days prior to CRS. The gastroprotective effects of Neb and Sim were assessed biochemically by measuring variations in prostaglandins E2, NO, reduced glutathione and malondialdehyde, and functionally by estimating force of contractions of isolated rat fundus in the studied groups in response to acetylecholine stimulation and morphologically using hematoxylin and eosin staining, periodic acid Schiff's reaction and immunohistochemistry for cyclooxygenase 2 in gastric mucosa. CRS caused significant ulcerogenic effect. Alternatively, pretreatment with Ran, Neb, and Sim significantly corrected biochemical findings, pharmacological and histological studies.
Collapse
Affiliation(s)
- Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Bhanu SP, Pentyala S, Sankar DK. Incidence of hypoplastic posterior communicating artery and fetal posterior cerebral artery in Andhra population of India: a retrospective 3-Tesla magnetic resonance angiographic study. Anat Cell Biol 2020; 53:272-278. [PMID: 32647075 PMCID: PMC7527118 DOI: 10.5115/acb.20.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022] Open
Abstract
The posterior communicating arteries (PCoA) are important component of collateral circulation between the anterior and posterior part of circle of Willis (CW). The hypoplasia or aplasia of PCoA will reflect on prognosis of the neurological diseases. Precise studies of the incidence of hypoplastic PCoA in Andhra Pradesh population of India are hitherto unreported, since the present study was undertaken. Two hundred and thirty one magnetic resonance angiography (MRA) images were analyzed to identify the hypoplasia of PCoA and presence of fetal type of posterior cerebral artery (f-PCA) in patients with different neurological symptoms. All the patients underwent 3.0T MRI exposure. The results were statistically analysed. A total of 63 (27.3%) PCoA hypoplasia and 13 cases with f-PCA (5.6%) cases were identified. The hypoplastic PCoA was noted more in males than females (P<0.05) and right side hypoplasia was common than the left (P<0.04); bilateral hypoplasia of PCoA was seen in 37 cases out of 63 and is significant. The hypoplastic cases of the present study also were associated with variations of anterior cerebral arteries and one case was having vertebral artery hypoplasia. Incidence of PCoA as unilateral or bilateral with other associated anomalies of CW is more prone to develop stroke, migraine and cognitive dysfunction. Knowledge of these variations in the PCoA plays a pivotal role in diagnoses of neurological disorders and in neurovascular surgeries and angiographic point of view.
Collapse
Affiliation(s)
- Sharmila P Bhanu
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Suneetha Pentyala
- Department of of Radiology, Narayana Medical College & General Hospital, Nellore, Andhra Pradesh, India
| | - Devi K Sankar
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| |
Collapse
|
9
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Abdolmaleki A, Zahri S, Bayrami A. Rosuvastatin enhanced functional recovery after sciatic nerve injury in the rat. Eur J Pharmacol 2020; 882:173260. [PMID: 32534070 DOI: 10.1016/j.ejphar.2020.173260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 11/28/2022]
Abstract
Posttraumatic nerve recovery remains a challenge in regenerative medicine. As such, there is a need for agents that limit nerve damage and enhance nerve regeneration. Here we investigate rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase inhibitor, with anti-inflammatory and antioxidant properties. We explore its neuroprotective properties on sciatic nerve crush injury in male Wistar Rats. Rats were subjected to crush injury to the left sciatic nerve using a vessel clamp for 30 s. Rosuvastatin or vehicle was prepared daily and administrated by oral gavage for seven days post-injury. In rosuvastatin treatment groups, rosuvastatin was administrated at the doses of (5 or 10 mg/kg) in the treatment group. The control group was given a vehicle in the same manner. Behavioral, electrophysiological, morphological and molecular parameters were examined during the recovery process. Chronic administration of rosuvastatin at all doses after sciatic nerve crush markedly promoted nerve regeneration and significantly accelerated motor function recovery (P < 0.05). Electrophysiological, morphological and molecular parameters also improved in the rosuvastatin treatment groups compared to the controls. These findings suggest that neuroprotective effects of rosuvastatin could be due to its antioxidant and anti-inflammatory activity. It is clear that more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran; Bio Science and Biotechnology Research Center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran.
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
11
|
Sun Y, Chen L, Zhao S, Shi L, Li H, Tian W, Qi G. Effects of nanoparticle-mediated delivery of pitavastatin on atherosclerotic plaques in ApoE-knockout mice and THP-1-derived macrophages. Exp Ther Med 2020; 19:3787-3797. [PMID: 32346443 PMCID: PMC7185072 DOI: 10.3892/etm.2020.8632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
The treatment of atherosclerosis remains complex. Pitavastatin serves an important role in the prevention and treatment of atherosclerosis. The present study aimed to investigate the effects of nanoparticle (NP)-mediated delivery of pitavastatin into atherosclerotic plaques as a novel treatment method for atherosclerosis. The results of the present study demonstrated that pitavastatin-NP was more effective in attenuating the size of atherosclerotic plaques and enhancing the stability of plaques in vitro compared with pitavastatin alone. In an apolipoprotein E (ApoE)-knockout mouse model of atherosclerosis, a single intravenous injection of fluorescein isothiocyanate-NP resulted in the delivery of NP into atherosclerotic plaques for up to 7 days post-injection. In ApoE-knockout mice and THP-1-derived macrophages, pitavastatin-NP attenuated the development of atherosclerosis, which was associated with regulating lipid metabolism, and inhibited the secretion of inflammatory markers compared with pitavastatin alone. Additionally, the treatment advantages of pitavastatin-NP were independent of lipid lowering. The results demonstrated that pitavastatin-NP administration was more effective in attenuating the development of atherosclerotic plaques compared with systemic administration of pitavastatin.
Collapse
Affiliation(s)
- Yujiao Sun
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling Chen
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shijie Zhao
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Liye Shi
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hua Li
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wen Tian
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Abstract
Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Roberta Baetta
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Cristina Banfi
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| |
Collapse
|
13
|
Husain I, Khan S, Khan S, Madaan T, Kumar S, Najmi AK. Unfolding the pleiotropic facades of rosuvastatin in therapeutic intervention of myriads of neurodegenerative disorders. Clin Exp Pharmacol Physiol 2018; 46:283-291. [PMID: 30290001 DOI: 10.1111/1440-1681.13040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Rosuvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) reductase inhibitor, and one of the most popular antihyperlipidemic medications have been found to possess pharmacodynamic activities much different from its usual indication. Recent research studies have revealed the efficacy of rosuvastatin in attenuating neuroinflammation, reducing the progression of Alzheimer's disease, providing protection against cerebral ischaemia and spinal cord injury as well as ameliorating epilepsy. Mechanisms behind the neuroprotective potential of rosuvastatin can be attributed to its pleiotropic effects, independent of its ability to inhibit HMG-CoA reductase. These processes include modulation of several cellular pathways, isoprenylation, effects on oxidative stress, nitrosative levels, inflammation, and immune response. This review aims to assimilate and summarize recent findings on the pharmacological actions of rosuvastatin in attenuating neurological disorders in order to guide future research in this space.
Collapse
Affiliation(s)
- Ibraheem Husain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Tushar Madaan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sanjeev Kumar
- Hamdard Institute of Medical Sciences and Research, New Delhi, India
| | - Abul K Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
14
|
Hara Y, McKeehan N, Fillit HM. Translating the biology of aging into novel therapeutics for Alzheimer disease. Neurology 2018; 92:84-93. [PMID: 30530798 PMCID: PMC6340342 DOI: 10.1212/wnl.0000000000006745] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer disease (AD), a progressive neurodegenerative disease with currently no therapies that prevent, slow, or halt disease progression. Like other chronic diseases of old age, the progressive pathology of AD begins decades before the onset of symptoms. Many decades of research in biological gerontology have revealed common processes that are relevant to understanding why the aging brain is vulnerable to AD. In this review, we frame the development of novel therapeutics for AD in the context of biological gerontology. The many therapies currently in development based on biological gerontology principles provide promise for the development of a new generation of therapeutics to prevent and treat AD.
Collapse
Affiliation(s)
- Yuko Hara
- From the Alzheimer's Drug Discovery Foundation, New York, NY
| | | | - Howard M Fillit
- From the Alzheimer's Drug Discovery Foundation, New York, NY.
| |
Collapse
|
15
|
Pontremoli M, Brioschi M, Baetta R, Ghilardi S, Banfi C. Identification of DKK-1 as a novel mediator of statin effects in human endothelial cells. Sci Rep 2018; 8:16671. [PMID: 30420710 PMCID: PMC6232108 DOI: 10.1038/s41598-018-35119-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
This study shows that DKK-1, a member of the Dickkopf family and a regulator of the Wnt pathways, represents a novel target of statins which, through the inhibition of HMG-CoA reductase and of non-steroidal isoprenoid intermediates, exert extra-beneficial effect in preventing atherosclerosis beyond their effect on the lipid profile. We found that atorvastatin downregulates DKK-1 protein (−88.3 ± 4.1%) and mRNA expression (−90 ± 4.2%) through the inhibition of Cdc42, Rho and Rac geranylgeranylated proteins. Further, a combined approach based on the integration of label-free quantitative mass spectrometry based-proteomics and gene silencing allowed us to demonstrate that DKK-1 itself mediates, at least in part, statin effects on human endothelial cells. Indeed, DKK-1 is responsible for the regulation of the 21% of the statin-modulated proteins, which include, among others, clusterin/apoJ, plasminogen activator inhibitor type 1 (PAI-1), myristoylated alanine-rich C-kinase substrate (MARCKS), and pentraxin 3 (PTX3). The Gene Ontology enrichment annotation revealed that DKK-1 is also a potential mediator of the extracellular matrix organization, platelet activation and response to wounding processes induced by statin. Finally, we found that plasma level of DKK-1 from cholesterol-fed rabbits treated with atorvastatin (2.5 mg/kg/day for 8 weeks) was lower (−42 ± 23%) than that of control animals. Thus, DKK-1 is not only a target of statin but it directly regulates the expression of molecules involved in a plethora of biological functions, thus expanding its role, which has been so far restricted mainly to cancer.
Collapse
|
16
|
Wang XL, Sun W, Zhou YL, Li L. Rosuvastatin stabilizes atherosclerotic plaques by reducing CD40L overexpression-induced downregulation of P4Hα1 in ApoE -/- mice. Int J Biochem Cell Biol 2018; 105:70-77. [PMID: 30336263 DOI: 10.1016/j.biocel.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023]
Abstract
Background Cluster of differentiation 40 ligand (CD40L) and rosuvastatin (RSV) affect atherosclerotic plaque stability, but little is known about their roles in extracellular matrix (ECM) production. We investigated the effects of CD40L and RSV on pre-existing advanced plaques. Methods and results Pre-existing advanced plaques were induced in apolipoprotein E-knockout (ApoE-/-) mice by the surgical placement of carotid constrictive silastic collars. Two weeks after surgery, mice were divided into the following treatment groups: control, empty adenovirus, CD40L adenovirus, CD40L adenovirus + RSV, and RSV. Mice received adenovirus via two tail-vein injections (2 × 109 pfu each) and/or RSV via intragastric administration (5 mg/kg; daily for 4 weeks). Mice in the CD40L adenovirus group exhibited increased plaque disruption rates, increased relative plaque macrophage and lipid content, reduced plaque collagen content, and increased local inflammation compared to the other treatment groups, but no significant differences in plaque area were observed among the groups. Notably, in the atherosclerotic plaques of the CD40L adenovirus group, both the mRNA and protein expression of prolyl-4-hydroxylase alpha 1 (P4Hα1) was significantly decreased, leading to a consequent decrease in the protein expression of collagen types I and III. Treatment with RSV decreased the serum levels of CD40L in a lipid-independent fashion and attenuated the effects of CD40L overexpression, particularly with respect to P4Hα1 downregulation. Conclusions CD40L destabilized advanced plaques in the carotid arteries of ApoE-/- mice, in part by decreasing P4Hα1 expression, and consequently collagen expression. These destabilizing effects were attenuated by RSV.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wei Sun
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng, Shandong, 252000, China
| | - Yuan-Li Zhou
- Department of Health, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, China
| | - Li Li
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
17
|
Li Y, Wu T. Proteomic approaches for novel systemic lupus erythematosus (SLE) drug discovery. Expert Opin Drug Discov 2018; 13:765-777. [DOI: 10.1080/17460441.2018.1480718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Are statins beneficial for the treatment of pulmonary hypertension? Chronic Dis Transl Med 2017; 3:213-220. [PMID: 29354804 PMCID: PMC5747501 DOI: 10.1016/j.cdtm.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Indexed: 12/27/2022] Open
Abstract
Pulmonary hypertension (PH) is a condition characterized by vasoconstriction and vascular remodeling with a poor prognosis. The current medical treatments available are supportive care therapy and pulmonary vascular-targeted therapy. Targeted treatments for PH include prostacyclin analogs, endothelin receptor antagonists, and phosphodiesterase type 5 inhibitors; however, these treatments cannot reverse pulmonary vascular remodeling. Recently, many novel treatment options involving drugs such as statins have been emerging. In this review, we attempt to summarize the current knowledge of the role of statins in PH treatment and their potential clinical effects. Many basic researches have proved that statins can be helpful for the treatment of PH both in vitro and in experimental models. The main mechanisms underlying the effects of statins are restoration of endothelial function, attenuation of pulmonary vascular remodeling, regulation of gene expression, regulation of intracellular signaling processes involved in PH, anti-inflammatory responses, and synergy with other targeted drugs. Nevertheless, clinical researches, especially randomized controlled trials for PH are rare. The current clinical researches show contrasting results on the clinical effects of statins in patients with PH. Carefully designed randomized, controlled trials are needed to test the safety and efficacy of statins for PH treatment.
Collapse
|
19
|
DeSimone DC, DeSimone CV. Beyond Vasoprotection: Statins and Risk Reduction for Community-Acquired Staphylococcus aureus Bacteremia. Mayo Clin Proc 2017; 92:1463-1465. [PMID: 28982482 DOI: 10.1016/j.mayocp.2017.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022]
|
20
|
Bellomo F, Medina DL, De Leo E, Panarella A, Emma F. High-content drug screening for rare diseases. J Inherit Metab Dis 2017; 40:601-607. [PMID: 28593466 DOI: 10.1007/s10545-017-0055-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/26/2022]
Abstract
Per definition, rare diseases affect only a small number of subjects within a given population. Taken together however, they represent a considerable medical burden, which remains poorly addressed in terms of treatment. Compared to other diseases, obstacles to the development of therapies for rare diseases include less extensive physiopathology knowledge, limited number of patients to test treatments, and poor commercial interest from the industry. Recently, advances in high-throughput and high-content screening (HTS and HCS) have been fostered by the development of specific routines that use robot- and computer-assisted technologies to automatize tasks, allowing screening of a large number of compounds in a short period of time, using experimental model of diseases. These approaches are particularly relevant for drug repositioning in rare disease, which restricts the search to compounds that have already been tested in humans, thereby reducing the need for extensive preclinical tests. In the future, these same tools, combined with computational modeling and artificial neural network analyses, may also be used to predict individual clinical responses to drugs in a personalized medicine approach.
Collapse
Affiliation(s)
- F Bellomo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Piazza S. Onofrio, 4, 00165, Rome, Italy.
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy.
| | - D L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - E De Leo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - A Panarella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - F Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| |
Collapse
|
21
|
Nikolic T, Zivkovic V, Srejovic I, Stojic I, Jeremic N, Jeremic J, Radonjic K, Stankovic S, Obrenovic R, Djuric D, Jakovljevic V. Effects of atorvastatin and simvastatin on oxidative stress in diet-induced hyperhomocysteinemia in Wistar albino rats: a comparative study. Mol Cell Biochem 2017. [PMID: 28620818 DOI: 10.1007/s11010-017-3099-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Considering the well-known antioxidant properties of statins, it seems important to assess their impact on major markers of oxidative stress (superoxide anion radical, nitric oxide, and index of lipid peroxidation) to compare the antioxidative potentials of atorvastatin and simvastatin during the different degrees of hyperhomocysteinemia (HHcy) in rats. This study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. For 4 weeks, the animals were fed with one of the following diets: standard rodent chow, diet enriched in methionine with no deficiency in B vitamins (folic acid, B6, and B12), or diet enriched in methionine and deficient in B vitamins (folic acid, B6, and B12). At the same time, animals were treated with atorvastatin at doses of 3 mg/kg/day i.p. or simvastatin at doses of 5 mg/kg/day i.p. Levels of superoxide anion radical and TBARS were significantly decreased by administration of simvastatin in normal and high-homocysteine (Hcy) groups (p < 0.05). At 4 weeks after feeding with purified diets, the concentrations of the GSH, CAT, and SOD antioxidants were significantly affected among all groups (p < 0.05). Our results indicated that statin therapy had variable effects on the redox status in hyperhomocysteinemic rats, and simvastatin demonstrated stronger antioxidant effects than did atorvastatin.
Collapse
Affiliation(s)
- T Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - V Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Stojic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - J Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - K Radonjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - S Stankovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - R Obrenovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Djuric
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - V Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia. .,Department of Human Pathology, University IM Sechenov, 1st Moscow State Medical, Moscow, Russia.
| |
Collapse
|