1
|
Wei F, Yan Z, Zhang X, Wang Y, Wang M, Zhu Y, Xu K. LncRNA-NEAT1 inhibits the occurrence and development of pancreatic cancer through spongy miR-146b-5p/traf6. Biotechnol Genet Eng Rev 2024; 40:1094-1112. [PMID: 36951525 DOI: 10.1080/02648725.2023.2192059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
To investigate the inhibitory effect of LNCNA-NEA1 on pancreatic cancer development and progression via spongiosa miR-146b-5p/TRAF6, 60 pancreatic cancer patients diagnosed from December 2017 to December 2019 were selected as a general source of information. Real-time fluorescence quantitative polymerase chain reaction (RTFQ-PCR) was used to detect the expression level of NEAT1 in cancerous and adjacent non-cancerous tissues. Cell counting kit-8 (CCK-8) and transwell were used to determine the effect of LNCNA-NEA1 on the proliferation and migration of pancreatic cancer cells (Panc-1). The results of dual luciferase reporter gene assay showed that nea 1 could target and regulate the expression of spongy miR-146b-5p/TRAF6, and reducing the expression of spongy miR-146b-5p/TRAF6 could reverse the inhibitory effects of nea 1-siRNA on proliferation, migration and invasion of pancreatic cancer cells. Therefore, it was concluded that knockdown of nea 1 could inhibit the proliferation, migration and invasion of pancreatic cancer cells by upregulating the level of miR-146b-5p/TRAF6, and the expression of lnc RNA-nea 1 could be used as an indicator for preoperative diagnosis and postoperative prognosis of pancreatic cancer patients. .
Collapse
Affiliation(s)
- Feifei Wei
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, NanJing, China
| | - Zhiying Yan
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, NanJing, China
| | - Xianming Zhang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, NanJing, China
| | - Yaoyao Wang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, NanJing, China
| | - MiaoJing Wang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, NanJing, China
| | - Yingwei Zhu
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, NanJing, China
| | - Kequn Xu
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, NanJing, China
| |
Collapse
|
2
|
Gao Y, Ren J, Chen K, Guan G. Construction and validation of a prognostic signature for mucinous colonic adenocarcinoma based on N7-methylguanosine-related long non-coding RNAs. J Gastrointest Oncol 2024; 15:203-219. [PMID: 38482248 PMCID: PMC10932661 DOI: 10.21037/jgo-23-980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Mucinous colonic adenocarcinoma remains a challenging disease due to its high propensity for metastasis and recurrence. N7-methylguanosine (m7G) and long non-coding RNA (lncRNA) are closely associated with the occurrence and progression of tumors. However, research on m7G-related lncRNA in mucinous colonic adenocarcinoma is lacking. Therefore, we sought to explore the prognostic impact of m7G-related lncRNAs in mucinous adenocarcinoma (MC) patients. METHODS In this study, Pearson analysis was used to identify m7G-related lncRNAs from transcriptome data in The Cancer Genome Atlas (TCGA). Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression were used to further screen m7G-related lncRNAs and incorporate them into a prognostic signature. Based on the risk model, patients were divided into low- and high-risk groups and randomly assigned to the training set and test sets in a 6:4 ratio. Kaplan-Meier, receiver operating characteristic (ROC) curve, multivariate regression, and nomogram analyses were used to confirm the accuracy of the signature. The CIBERSORT algorithm was used to calculate the degree of immune cell infiltration (ICI). Finally, the correlation of the prognostic signature with tumor mutational burden (TMB) and immunophenotype score (IPS) was evaluated. RESULTS A total of 432 m7G-related lncRNAs were identified by Pearson analysis. Univariate Cox regression, LASSO regression and survival analysis were performed to further select six m7G-related lncRNAs (P<0.05): AC254629.1, LINC01133, LINC01134, MHENCR, SMIM2-AS1, and XACT. Based on the risk model, heat maps, Kaplan-Meier curves, and ROC curves were constructed, and the results showed that there were significant differences in expression levels and survival status between the two risk groups. The area under the ROC curve (AUC) values for 3-, 5-, and 10-year survival in the training set were 0.944, 0.957, and 1.000, respectively. And in the test set were 0.964, 1.000, and 1.000, respectively. Subsequently, univariate and multivariate regression analyses of clinical characteristics and risk score were performed. The results of risk score were [hazard ratio (HR): 6.458, 95% confidence interval (CI): 2.708-15.403, P<0.001; HR: 7.280, 95% CI: 2.500-21.203, P<0.001], respectively. Using the risk score as an independent prognostic factor, the AUC of it over 3, 5, and 10 years was 0.911, 0.955, and 0.961, respectively. Calibration plots for the nomogram show that the model calibration line is very close to the ideal calibration line, indicating good calibration. The level of ICI was significantly different in the different risk groups. Survival analysis showed that, regardless of TMB risk, patients with MC and a high-risk score consistently had a poor overall survival (OS). CONCLUSIONS The m7G-related lncRNA prognostic signature has potential value for the prognosis of mucinous colonic adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Colorectal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Colorectal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinjin Ren
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guoxian Guan
- Department of Colorectal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Colorectal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Yang Q, Tian H, Guo Z, Ma Z, Wang G. The role of noncoding RNAs in the tumor microenvironment of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1697-1706. [PMID: 37867435 PMCID: PMC10686793 DOI: 10.3724/abbs.2023231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading fatal malignancy worldwide. The tumor microenvironment (TME) can affect the survival, proliferation, migration, and even dormancy of cancer cells. Hypoxia is an important component of the TME, and hypoxia-inducible factor-1α (HIF-1α) is the most important transcriptional regulator. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), comprise a large part of the human transcriptome and play an important role in regulating the tumorigenesis of HCC. This review discusses the role of ncRNAs in hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), and angiogenesis in a hypoxic microenvironment, as well as the interactions between ncRNAs and key components of the TME. It further discusses their use as biomarkers and the potential clinical value of drugs, as well as the challenges faced in the future.
Collapse
Affiliation(s)
- Qianqian Yang
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Hui Tian
- Department of GeriatricsZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyi Guo
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Guangzhi Wang
- School of Medical ImagingWeifang Medical UniversityWeifang261053China
- Department of Medical Imaging CenterAffiliated Hospital of Weifang Medical UniversityWeifang261053China
| |
Collapse
|
4
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Bhal S, Kundu CN. Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics. Med Oncol 2023; 40:82. [PMID: 36662310 DOI: 10.1007/s12032-022-01905-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed. In this review, we have identified the interacting molecules of Wnt, Hh, and Notch pathways responsible for enhancing the malignant properties of CSCs. Analyzing the functions of these crosstalk molecules will help us to find an approach toward the development of new anti-cancer drugs for inhibition of CSCs growth and progression. Long non-coding RNAs (LncRNAs) play a significant role in various cellular processes, like chromatin remodeling, epigenetic modifications, transcriptional, and post-transcriptional regulations. Here, we have highlighted the research findings suggesting the involvement of LncRNAs in maintenance of the stemness properties of CSCs through modulation of the above-mentioned signaling pathways. We have also discussed about the different therapeutic approaches targeting those key players responsible for mediating the crosstalk between the pathways. Overall, this review article will surely help the cancer biologists to design novel anti-CSCs agents that will open up a new horizon in the field of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
6
|
Feng T, Yao Y, Luo L, Zou H, Xiang G, Wei L, Yang Q, Shi Y, Huang X, Lai C. ST8SIA6-AS1 contributes to hepatocellular carcinoma progression by targeting miR-142-3p/HMGA1 axis. Sci Rep 2023; 13:650. [PMID: 36635290 PMCID: PMC9837176 DOI: 10.1038/s41598-022-26643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (LIHC) accounts for 90% of all liver cancers and is a serious health concern worldwide. Long noncoding RNAs (lncRNAs) have been observed to sponge microRNAs (miRNAs) and participate in the biological processes of LIHC. This study aimed to evaluate the role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis in regulating LIHC progression. RT-qPCR and western blotting were performed to determine the levels of ST8SIA6-AS1, miR-142-3p, and HMGA1 in LIHC. The relationship between ST8SIA6-AS1, miR-142-3p, and HMGA1 was assessed using luciferase assay. The role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis was evaluated in vitro using LIHC cells. Expression of ST8SIA6-AS1 and HMGA1 was significantly upregulated, whereas that of miR-142-3p was markedly lowered in LIHC specimens and cells. ST8SIA6-AS1 accelerated cell growth, invasion, and migration and suppressed apoptosis in LIHC. Notably, ST8SIA6-AS1 inhibited HMGA1 expression by sponging miR-142-3p in LIHC cells. In conclusion, sponging of miR-142-3p by ST8SIA6-AS1 accelerated the growth of cells while preventing cell apoptosis in LIHC cells, and the inhibitory effect of miR-142-3p was abrogated by elevating HMGA1 expression. The ST8SIA6-AS1-miR-142-3p-HMGA1 axis represents a potential target for the treatment of patients with LIHC.
Collapse
Affiliation(s)
- Tianhang Feng
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Yutong Yao
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Le Luo
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Haibo Zou
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Guangming Xiang
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Lingling Wei
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Qinyan Yang
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Ying Shi
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Xiaolun Huang
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000, Sichuan, China. .,Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, Chengdu, 610000, Sichuan, China.
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
7
|
Sarkar S, Chowdhury SG, Karmakar P. Drugging non-coding RNAs-A new light of hope in senescence-related cancer therapy. Chem Biol Drug Des 2022; 101:1216-1228. [PMID: 36573649 DOI: 10.1111/cbdd.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022]
Abstract
Cancer is the most prevalent disease of concern worldwide for several decades. Diverse therapeutic aspects are in applications to control this phenomenal disease and also for decennaries. Among many causes and consequences of cancer, senescence has gained much interest in recent times. Senescence, also termed aging, is the natural process that induces cancer in neighboring cells through Senescence-Associated-Secretory Phenotypes (SASPs) production. As a cure or preventive measure of cancer progression, studies already light upon multiple proteins and their roles in associated pathways but the aspect of different non-coding RNAs (ncRNAs) is emerging recently and is under extensive research. Different approaches toward controlling senescence and inhibiting senescent cell accumulation are other aspects of cancer procurement. Thus, the role of ncRNA molecules in senescence and aging is getting much more interest as an alternate therapy for cancer treatment. In this review, at first, the roles of different ncRNAs related to several cellular processes are described. Then we tried to highlight the roles of different non-coding RNAs in senescence-induced cancer formation that extends with increasing age and emphasized non-coding RNAs as a therapeutic target solely or in combination with small molecules where drugging of small molecules targeting these non-coding RNAs can control cancer development.
Collapse
Affiliation(s)
- Swarupa Sarkar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
8
|
Roy A, Chatterjee O, Banerjee N, Roychowdhury T, Dhar G, Mukherjee G, Chatterjee S. Curcumin arrests G-quadruplex in the nuclear hyper-sensitive III 1 element of c-MYC oncogene leading to apoptosis in metastatic breast cancer cells. J Biomol Struct Dyn 2022; 40:10203-10219. [PMID: 34192476 DOI: 10.1080/07391102.2021.1940284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
c-MYC is deregulated in triple negative breast cancer (TNBC) pointing to be a promising biomarker for breast cancer treatment. Precise level of MYC expression is important in the control of cellular growth and proliferation. Designing of c-MYC-targeted antidotes to restore its basal level of cellular expression holds an optimistic approach towards anti-cancer treatment. MYC transcription is dominantly controlled by Nuclear Hypersensitive Element III-1 (NHEIII1) upstream of the promoter region possessing G-Quadruplex silencer element (Pu-27). We have investigated the selective binding-interaction profile of a natural phytophenolic compound Curcumin with native MYC G-quadruplex by conducting an array of biophysical experiments and in silico based Molecular Docking and Molecular Dynamic (MDs) simulation studies. Curcumin possesses immense anti-cancerous properties. We have observed significantly increased stability of MYC-G Quadruplex and thermodynamic spontaneity of Curcumin-MYC GQ binding with negative ΔG value. Transcription of MYC is tightly regulated by a complex mechanism involving promoters, enhancers and multiple transcription factors. We have used Curcumin as a model drug to understand the innate mechanism of controlling deregulated MYC back to its basal expression level. We have checked MYC-expression at transcriptional and translational level and proceeded for Chromatin Immuno-Precipitation assay (ChIP) to study the occupancy level of SP1, Heterogeneous nuclear ribonucleoprotein K (hnRNPK), Nucleoside Diphosphate Kinase 2 (NM23-H2) and Nucleolin at NHEIII1 upon Curcumin treatment of MDA-MB-231 cells. We have concluded that Curcumin binding tends to drive the equilibrium towards stable G-quadruplex formation repressing MYC back to its threshold-level. On retrospection of the synergistic effect of upregulated c-MYC and BCL-2 in cancer, we have also reported a new pathway [MYC-E2F-1-BCL-2-axis] through which Curcumin trigger apoptosis in cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, India
| | - Gopa Dhar
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | |
Collapse
|
9
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Zeng WJ, Zhang L, Cao H, Li D, Zhang H, Xia Z, Peng R. A novel inflammation-related lncRNAs prognostic signature identifies LINC00346 in promoting proliferation, migration, and immune infiltration of glioma. Front Immunol 2022; 13:810572. [PMID: 36311792 PMCID: PMC9609424 DOI: 10.3389/fimmu.2022.810572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a total of 13 inflammation-related lncRNAs with a high prognostic value were identified with univariate, multivariate Cox regression analysis, and LASSO analysis. LINC00346, which is one of the 13 lncRNAs identified, was positively associated with type 2 macrophage activation and the malignant degree of glioma. Fluorescence in situ hybridization (FISH) and immunohistochemical staining showed that LINC00346 was highly expressed in high-grade glioma, while type 2 macrophages key transcription factor STAT3 and surface marker CD204 were also highly expressed simultaneously. LINC00346 high-expression gliomas were more sensitive to the anti–PD-1 and anti-CTLA-4 therapy. LINC00346 was also associated with tumor proliferation and tumor migration validated by EdU, cell colony, formation CCK8, and transwell assays. These findings reveal novel biomarkers for predicting glioma prognosis and outline relationships between lncRNAs inflammation, and glioma, as well as possible immune checkpoint targets for glioma.
Collapse
Affiliation(s)
- Wen-Jing Zeng
- Department of Pharmarcy, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Dongjie Li
- Department of Geriatrics, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha Medical University, Changsha, China
- *Correspondence: Zhiwei Xia, ; Renjun Peng,
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhiwei Xia, ; Renjun Peng,
| |
Collapse
|
11
|
Zhou Y, Li J, Yang X, Song Y, Li H. Rhophilin rho GTPase binding protein 1-antisense RNA 1 (RHPN1-AS1) promotes ovarian carcinogenesis by sponging microRNA-485-5p and releasing DNA topoisomerase II alpha ( TOP2A). Bioengineered 2021; 12:12003-12022. [PMID: 34787052 PMCID: PMC8810118 DOI: 10.1080/21655979.2021.2002494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 10/29/2022] Open
Abstract
Ovarian cancer (OC) is the most common and lethal gynecological cancer worldwide. Long non-coding RNAs (lncRNAs) and sponging microRNAs (miRNAs) serve as key regulators in the biological processes of OC. We sought to evaluate the effect of the RHPN1-AS1-miR-485-5p-DNA topoisomerase II alpha (TOP2A) axis in regulating OC progression. RHPN1-AS1, miR-485-5p, and TOP2A levels in OC tissues and cells were determined by RT-qPCR. The interaction of RHPN1-AS1/miR-485-5p/TOP2A was assessed using luciferase, RNA immunoprecipitation, and RNA pull-down assays. RHPN1-AS1 silencing allowed us to explore its biological function by measuring cell viability, proliferation, migration, invasion, and apoptosis in OC cells. In vivo experiments were performed to verify the in vitro findings. We found that the RHPN1-AS1 and TOP2A levels were significantly enhanced, whereas the miR-485-5p levels were reduced in OC tissues and cells. RHPN1-AS1 silencing attenuated cell growth, facilitated apoptosis in OC cells, and inhibited tumor growth in vivo. Notably, RHPN1-AS1 negatively regulating miR-485-5p promoted the TOP2A expression in OC cells. In conclusion, RHPN1-AS1 sponging miR-485-5p accelerated the progression of OC by elevating TOP2A expression, which makes it a promising target for the treatment of OC patients.
Collapse
Affiliation(s)
- Yi Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Xiaoxin Yang
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Yu Song
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
12
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
He J, Yan H, Wei S, Chen G. LncRNA ST8SIA6-AS1 Promotes Cholangiocarcinoma Progression by Suppressing the miR-145-5p/MAL2 Axis. Onco Targets Ther 2021; 14:3209-3223. [PMID: 34040387 PMCID: PMC8139734 DOI: 10.2147/ott.s299634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor-promoting roles of ST8SIA6-AS1 and miR-145-5p have been found in several cancers, but their function in cholangiocarcinoma (CHOL) remains speculative. The purpose of this study was to examine the regulatory functions of the ST8SIA6-AS1/MAL2/miR-145-5p pathway in CHOL progression. METHODS RT-qPCR assay was used to detect ST8SIA6-AS1 expression in CHOL tissues and cell lines. Cell migration, apoptosis, invasion, and proliferation abilities were assessed by RIP, RNA pull-down, and luciferase assays. CCK-8, BrdU, transwell, and FITC assays to investigate the regulatory functions of ST8SIA6-AS1, miR-145-5p, and MAL2 function in CHOL cells. RESULTS Findings revealed the enrichment of ST8SIA6-AS1 in CHOL tissues and cell lines. It was also found that ST8SIA6-AS1 facilitated cell growth and migration, but it reduced the apoptosis level of the CHOL cells. The results of experiments showed that ST8SIA6-AS1 sponged miR-145-5p, thereby allowing MAL2 to exert its biological function on CHOL cells. CONCLUSION This research suggested that the ST8SIA6-AS1/miR-145-5p/MAL2 axis could enhance CHOL progression, which might be useful to improve the clinical outcomes of CHOL patients.
Collapse
Affiliation(s)
- Junchuang He
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| | - Hongxian Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| | - Sidong Wei
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| | - Guoyong Chen
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, People’s Republic of China
| |
Collapse
|