1
|
Rudolph B, Davis JA, Hainzl D, Walles M. A general perspective for the conduct of radiolabelled distribution, metabolism, and excretion studies for antibody-drug conjugates. Xenobiotica 2024; 54:521-532. [PMID: 39329287 DOI: 10.1080/00498254.2024.2336576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 09/28/2024]
Abstract
Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals that combine the specificity of monoclonal antibodies (mAbs) with the cytotoxicity of small molecule drugs. 15 ADCs have been approved by regulatory authorities up to now, mainly for indications in oncology, however, this review paper will only focus on the 13 ADCs that have been approved by either the FDA or EMA.ADME (Absorption, Distribution, Metabolism, and Excretion) studies are essential for the development of small molecule drugs to evaluate their disposition properties. These studies help to select drug candidates, determine the optimal dosing regimen and help to identify potential safety concerns for the drug of interest in human. Tissue distribution studies are also important as they facilitate the understanding of the efficacy and safety for parent drug and its metabolites in preclinical and clinical studies.For biologics, ADME studies are usually not required. In this paper, we review the existing approval packages and literature for approved ADCs to determine the extent of ADME studies performed as part of ADC registration packages.We conclude that ADME studies are recommended for the development of ADCs if new linkers and payloads are used that have never been used in humans before as these studies provide valuable information on the pharmacokinetic properties, optimal dosing regimen, and potential safety concerns. However, for the development of ADCs with established linker payload combinations, radiolabelled ADME studies may not be necessary if the distribution, metabolism and excretion properties have been described before. Clinical radiolabelled ADME studies are not recommended where patients are treated for life threating diseases like for indications in oncology.
Collapse
Affiliation(s)
- Bettina Rudolph
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Basel, Switzerland
| | - John A Davis
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Cambridge, Massachusetts, USA
| | - Dominik Hainzl
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Cambridge, Massachusetts, USA
| | - Markus Walles
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Basel, Switzerland
| |
Collapse
|
2
|
Dhoundiyal S, Srivastava S, Kumar S, Singh G, Ashique S, Pal R, Mishra N, Taghizadeh-Hesary F. Radiopharmaceuticals: navigating the frontier of precision medicine and therapeutic innovation. Eur J Med Res 2024; 29:26. [PMID: 38183131 PMCID: PMC10768149 DOI: 10.1186/s40001-023-01627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
This review article explores the dynamic field of radiopharmaceuticals, where innovative developments arise from combining radioisotopes and pharmaceuticals, opening up exciting therapeutic possibilities. The in-depth exploration covers targeted drug delivery, delving into passive targeting through enhanced permeability and retention, as well as active targeting using ligand-receptor strategies. The article also discusses stimulus-responsive release systems, which orchestrate controlled release, enhancing precision and therapeutic effectiveness. A significant focus is placed on the crucial role of radiopharmaceuticals in medical imaging and theranostics, highlighting their contribution to diagnostic accuracy and image-guided curative interventions. The review emphasizes safety considerations and strategies for mitigating side effects, providing valuable insights into addressing challenges and achieving precise drug delivery. Looking ahead, the article discusses nanoparticle formulations as cutting-edge innovations in next-generation radiopharmaceuticals, showcasing their potential applications. Real-world examples are presented through case studies, including the use of radiolabelled antibodies for solid tumors, peptide receptor radionuclide therapy for neuroendocrine tumors, and the intricate management of bone metastases. The concluding perspective envisions the future trajectory of radiopharmaceuticals, anticipating a harmonious integration of precision medicine and artificial intelligence. This vision foresees an era where therapeutic precision aligns seamlessly with scientific advancements, ushering in a new epoch marked by the fusion of therapeutic resonance and visionary progress.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India.
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Gaaminepreet Singh
- Department of Physiology and Biophysics, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Radheshyam Pal
- Department of Pharmacology, Pandaveswar School of Pharmacy, Pandaveswar, 713346, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Gai Y, Li Y, Wu S, Xu L, Lu Y, Lan X, Xiang G, Ma X. Preparation and In Vitro Evaluation of a Gadolinium-Containing Vitamin E TPGS Micelle as a Potential Contrast Agent for MR Imaging. Pharmaceutics 2023; 15:pharmaceutics15020401. [PMID: 36839723 PMCID: PMC9963244 DOI: 10.3390/pharmaceutics15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The application of many currently evaluated macromolecular contrast agents for magnetic resonance imaging (MRI) has been limited because of their bio-incompatibility and toxicity. The aim of this study is to synthesize and characterize a new micelle-based TPGS gadolinium chelate as a biocompatible MRI contrast agent for prolonged blood circulation time and good tumor imaging contrast. The TPGS-gadolinium conjugate was prepared through the conjugation between TPGS-SA and bifunctional L-NETA-Gd chelate. The conjugate was characterized with regard to molecular weight, critical micellar concentration and particle sizes, cellular uptake, and in vitro cell MRI. Distributions of the MRI contrast agent in various organs were determined via intravenous injection of the agent into mice bearing xenograft tumors. The successfully prepared TPGS-L-NETA-Gd micelle exhibited improved cellular uptake in HepG2 cells and xenografts and high in vivo safety. Distributions of TPGS-L-NETA-Gd in mice showed enhanced cellular uptake up to 2 h after the contrast agent injection. Its in vitro and in vivo properties make it a favorable macromolecular MRI contrast agent for future in vivo imaging.
Collapse
Affiliation(s)
- Yongkang Gai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuying Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Shuangping Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ling Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Correspondence: (G.X.); (X.M.)
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- School of Pharmacy, Tongren Polytechnic College, Tongren 554300, China
- Correspondence: (G.X.); (X.M.)
| |
Collapse
|
4
|
Weller A, Hansen MB, Marie R, Hundahl AC, Hempel C, Kempen PJ, Frandsen HL, Parhamifar L, Larsen JB, Andresen TL. Quantifying the transport of biologics across intestinal barrier models in real-time by fluorescent imaging. Front Bioeng Biotechnol 2022; 10:965200. [PMID: 36159696 PMCID: PMC9500407 DOI: 10.3389/fbioe.2022.965200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Unsuccessful clinical translation of orally delivered biological drugs remains a challenge in pharmaceutical development and has been linked to insufficient mechanistic understanding of intestinal drug transport. Live cell imaging could provide such mechanistic insights by directly tracking drug transport across intestinal barriers at subcellular resolution, however traditional intestinal in vitro models are not compatible with the necessary live cell imaging modalities. Here, we employed a novel microfluidic platform to develop an in vitro intestinal epithelial barrier compatible with advanced widefield- and confocal microscopy. We established a quantitative, multiplexed and high-temporal resolution imaging assay for investigating the cellular uptake and cross-barrier transport of biologics while simultaneously monitoring barrier integrity. As a proof-of-principle, we use the generic model to monitor the transport of co-administrated cell penetrating peptide (TAT) and insulin. We show that while TAT displayed a concentration dependent difference in its transport mechanism and efficiency, insulin displayed cellular internalization, but was restricted from transport across the barrier. This illustrates how such a sophisticated imaging based barrier model can facilitate mechanistic studies of drug transport across intestinal barriers and aid in vivo and clinical translation in drug development.
Collapse
Affiliation(s)
- Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten B. Hansen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Adam C. Hundahl
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Hempel
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Paul J. Kempen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- The National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Lyngby, Denmark
| | - Henrik L. Frandsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jannik B. Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Jannik B. Larsen, ; Thomas L. Andresen,
| | - Thomas L. Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Jannik B. Larsen, ; Thomas L. Andresen,
| |
Collapse
|