1
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
González‐Rodríguez M, Ait Eldjoudi D, Cordero‐Barreal A, Farrag M, Varela‐García M, Ruiz‐Fernández C, Torrijos‐Pulpón C, Lago F, García‐Caballero L, Farrag Y, Conde‐Aranda J, Pino J, Gualillo O. E74-like ETS transcription factor 3 expression and regulation in human intervertebral disc. JOR Spine 2025; 8:e70016. [PMID: 39877798 PMCID: PMC11774240 DOI: 10.1002/jsp2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/04/2024] [Accepted: 10/10/2024] [Indexed: 01/31/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is one of the main causes of chronic low back pain. The degenerative process is often initiated by an imbalance between catabolic and anabolic pathways. Despite the large socio-economic impact, the initiation and progress of disc degeneration are poorly understood. Although intervertebral disc (IVD) and articular joint are not identical, their degenerative roads are remarkably similar. We, and another authors, previously demonstrated that E-74-like factor 3 (ELF3), a transcription factor induced by inflammatory mediators in various cell types including chondrocytes, is a central contributing factor for cartilage degradation. Thus, we aim to explore, for the first time, the expression, modulation, and the role of ELF3 in human IVD cells. Methods The presence of ELF3 in healthy and degenerated IVD tissues was initially determined by immunohistochemistry in annulus fibrosus (AF) and nucleus pulposus (NP). mRNA and protein expression were measured, respectively, by RT-qPCR and Western blot in AF and NP IVD cells harvested from healthy individuals and IVDD patients. Overexpression of ELF3 was performed by transfection of AF IVDD cells with pESE-1: ELF3 expression vector or pCI: empty vector. Results Our results unveiled, for the first time, the expression of ELF3 in IVD tissues. ELF3 is notably upregulated in degenerated tissues compared to those from healthy patients. In addition, the stimulation of IVDD AF cells with various proinflammatory stimuli, showed marked increase in both mRNA and protein expression of ELF3. ELF3 overexpression in AF IVDD cells resulted in the upregulation of proinflammatory and catabolic genes such as PTGS2, NOS2, LCN2, IL-6, MMP13, and ADAMTS-5; whereas, ELF3 silencing resulted in the opposite results. Conclusions Our results support a novel role for ELF3 as a pro-inflammatory and pro-catabolic transcriptional mediator, whose targeting in IVD tissues might be of potential therapeutic relevance in disc degeneration.
Collapse
Affiliation(s)
- María González‐Rodríguez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - Alfonso Cordero‐Barreal
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - María Varela‐García
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Clara Ruiz‐Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Carlos Torrijos‐Pulpón
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7Santiago University Clinical HospitalSantiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares CIBERCVInstituto de Salud Carlos IIIMadridSpain
| | - Lucía García‐Caballero
- Department of Morphological Sciences. School of Medicine and DentistryUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - Javier Conde‐Aranda
- Molecular and Cellular GastroenterologyHealth Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- Department of Surgery and Medical‐Surgery SpecialitiesUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| |
Collapse
|
3
|
Abdelaziz A, El-Far YM, Abdel-Rahman N. Citronellal Alleviates Insulin Resistance in High-Fat Diet/Streptozocin Model: Role of Asprosin/Olfactory Receptor Axis. Mol Nutr Food Res 2025; 69:e202400654. [PMID: 39821628 DOI: 10.1002/mnfr.202400654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Ectopic olfactory receptors are expressed in nonolfactory tissues and perform diverse roles including regulation of glucose homeostasis. We explored the effect of citronellal treatment on olfactory receptor 4M1 subtype (OR4M1) signaling in insulin resistance and Type II diabetes in rats. We aimed to validate the anti-diabetic effect of citronellal through Asprosin/OR4M1 modulation. Exploring new antidiabetics and pharmacological targets is important to improve quality of life and limit complications. The model was established in Sprague-Dawley rats by a high-fat diet for 4 weeks followed by a single low-dose streptozotocin (STZ) (35 mg/kg/ip). One week after STZ injection, oral citronellal (100 mg/kg) was administered for 4 weeks. Citronellal lowered serum glucose and triglycerides and ameliorated OGTT and HOMA-IR results. Docking results revealed that citronellal blocked the Asprosin binding site at OR4M1. The hepatic expression of OR4M1 and Asprosin was reduced. Citronellal lowered cAMP levels causing attenuated levels of protein kinase A and downstream gluconeogenic enzymes: glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Citronellal also inhibited the expression of hepatic TLR-4 and inhibited JNK phosphorylation. Citronellal attenuated hepatic levels of NF-κB, p-NF-κB, and downstream proteins MCP-1 and TNF-α. These results suggest that citronellal alleviates insulin resistance by mitigating Asprosin/OR4M1 and Asprosin/TLR4/JNK signaling.
Collapse
Affiliation(s)
- Aya Abdelaziz
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yousra M El-Far
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Farrag Y, Farrag M, Varela-García M, Torrijos-Pulpón C, Capuozzo M, Ottaiano A, Lago F, Mera A, Pino J, Gualillo O. Adipokines as potential pharmacological targets for immune inflammatory rheumatic diseases: Focus on rheumatoid arthritis, osteoarthritis, and intervertebral disc degeneration. Pharmacol Res 2024; 205:107219. [PMID: 38763327 DOI: 10.1016/j.phrs.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Adipokines are a heterogeneous group of signalling molecules secreted prevalently by adipose tissue. Initially considered as regulators of energy metabolism and appetite, adipokines have been recognized for their substantial involvement in musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, and many others. Understanding the role of adipokines in rheumatic inflammatory and autoimmune diseases, as well as in other musculoskeletal diseases such as intervertebral disc degeneration, is crucial for the development of novel therapeutic strategies. Targeting adipokines, or their signalling pathways, may offer new opportunities for the treatment and management of these conditions. By modulating adipokines levels or activity, it may be possible to regulate inflammation, to maintain bone health, and preserve muscle mass, thereby improving the outcomes and quality of life for individuals affected by musculoskeletal diseases. The aim of this review article is to update the reader on the multifaceted role of adipokines in the main rheumatic diseases such as osteoarthritis and rheumatoid arthritis and to unravel the complex interplay among adipokines, cartilage metabolism, bone remodelling and muscles, which will pave the way for innovative therapeutic intervention in the future. For completeness, the role of adipokines in intervertebral disc degeneration will be also addressed.
Collapse
Affiliation(s)
- Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - María Varela-García
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Carlos Torrijos-Pulpón
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Maurizio Capuozzo
- Pharmaceutical Department, ASL-Napoli-3 Sud, Via Marittima 3, Ercolano 80056, Italy.
| | - Alessando Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Mera
- SERGAS, Servizo Galego de Saude, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela 15706, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain; University of Santiago de Compostela, Department of Surgery and Medical Surgical Specialties, Santiago University Clinical Hospital, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain.
| |
Collapse
|
6
|
Czerewaty M, Łączna M, Kiełbowski K, Bakinowska E, Dec P, Modrzejewski A, Kotrych D, Burszewski P, Safranow K, Pawlik A. The effect of plasma cytokines on the expression of adiponectin and its receptors in the synovial membrane of joints and the infrapatellar fat pad in patients with rheumatoid arthritis and osteoarthritis. Prostaglandins Other Lipid Mediat 2024; 172:106824. [PMID: 38438104 DOI: 10.1016/j.prostaglandins.2024.106824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that leads to joint destruction. Numerous pro-inflammatory mediators, including adipokines, play an important role in the pathogenesis of RA. OBJECTIVE The aim of the study was to investigate the relationships between selected plasma cytokines and expression of adiponectin and its receptors in the synovium and the infrapatellar fat pad in patients with RA and osteoarthritis (OA). METHODS Blood, synovium and fat pad samples from 18 patients with RA and 18 with OA were collected during joint replacement surgery. Spearman rank correlations between plasma concentrations of selected cytokines (IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 p40, IL-13, IL-17, G-CSF and GM-CSF) and the expression of adiponectin and its receptors were determined. Plasma levels of cytokines were determined using a magnetic bead-based multiplex assay, mRNA expression of adiponectin and its receptors were determined by real-time PCR. RESULTS In OA patients, there were significant positive correlations between adiponectin expression in the synovial membrane and plasma levels of IL-1β, IL-4, G-CSF and GM-CSF, as well as a significant positive correlation between adiponectin expression in the fat pad and plasma levels of GM-CSF. In addition, OA patients showed significant negative correlations between AdipoR1 and AdipoR2 expression in the synovial membrane and plasma IL-6 levels, as well as between AdipoR2 expression in the synovial membrane and plasma MCP-1 and TNF-α levels. In patients with RA, there were no significant correlations between adiponectin expression in the synovial membrane and infrapatellar fat pad and plasma levels of the cytokines studied. In addition, RA patients showed a statistically significant negative correlation between AdipoR1 expression in the synovial membrane and plasma levels of TNF-α, IL-7, IL-12 and IL-13, and a significant negative correlation between AdipoR1 expression in the infrapatellar fat pad and plasma levels of IL-1β. CONCLUSIONS Adiponectin and its receptors showed the correlations with several plasma cytokines, however, a thorough understanding of the role of adiponectin in RA and OA requires further investigation.
Collapse
Affiliation(s)
- Michał Czerewaty
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Łączna
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Dec
- Department of Plastic and Reconstructive Surgery, 109 Military Hospital, Szczecin, Poland
| | | | - Daniel Kotrych
- Department of Orthopedics, Traumatology and Orthopedic Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Burszewski
- Department of Plastic and Reconstructive Surgery, 109 Military Hospital, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
7
|
Bilski J, Brzozowski T. Special Issue "Adipokines, Myokines, and Physical Exercise in Health and Disease 2.0". Int J Mol Sci 2024; 25:940. [PMID: 38256013 PMCID: PMC10815892 DOI: 10.3390/ijms25020940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
We are pleased to present our Editorial to this Special Issue on "Adipokines, Myokines, and Physical Exercise in Health and Disease 2 [...].
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland
| |
Collapse
|
8
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
9
|
Maisha JA, El-Gabalawy HS, O’Neil LJ. Modifiable risk factors linked to the development of rheumatoid arthritis: evidence, immunological mechanisms and prevention. Front Immunol 2023; 14:1221125. [PMID: 37767100 PMCID: PMC10520718 DOI: 10.3389/fimmu.2023.1221125] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a common autoimmune disease that targets the synovial joints leading to arthritis. Although the etiology of RA remains largely unknown, it is clear that numerous modifiable risk factors confer increased risk to developing RA. Of these risk factors, cigarette smoking, nutrition, obesity, occupational exposures and periodontal disease all incrementally increase RA risk. However, the precise immunological mechanisms by which these risk factors lead to RA are not well understood. Basic and translational studies have provided key insights into the relationship between inflammation, antibody production and the influence in other key cellular events such as T cell polarization in RA risk. Improving our general understanding of the mechanisms which lead to RA will help identify targets for prevention trials, which are underway in at-risk populations. Herein, we review the modifiable risk factors that are linked to RA development and describe immune mechanisms that may be involved. We highlight the few studies that have sought to understand if modification of these risk factors reduces RA risk. Finally, we speculate that modification of risk factors may be an appealing avenue for prevention for some at-risk individuals, specifically those who prefer lifestyle interventions due to safety and economic reasons.
Collapse
Affiliation(s)
| | | | - Liam J. O’Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Farrag M, Ait Eldjoudi D, González-Rodríguez M, Cordero-Barreal A, Ruiz-Fernández C, Capuozzo M, González-Gay MA, Mera A, Lago F, Soffar A, Essawy A, Pino J, Farrag Y, Gualillo O. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne) 2023; 13:1101091. [PMID: 36686442 PMCID: PMC9849689 DOI: 10.3389/fendo.2022.1101091] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Adipose tissue malfunction leads to altered adipokine secretion which might consequently contribute to an array of metabolic diseases spectrum including obesity, diabetes mellitus, and cardiovascular disorders. Asprosin is a novel diabetogenic adipokine classified as a caudamin hormone protein. This adipokine is released from white adipose tissue during fasting and elicits glucogenic and orexigenic effects. Although white adipose tissue is the dominant source for this multitask adipokine, other tissues also may produce asprosin such as salivary glands, pancreatic B-cells, and cartilage. Significantly, plasma asprosin levels link to glucose metabolism, lipid profile, insulin resistance (IR), and β-cell function. Indeed, asprosin exhibits a potent role in the metabolic process, induces hepatic glucose production, and influences appetite behavior. Clinical and preclinical research showed dysregulated levels of circulating asprosin in several metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), polycystic ovarian syndrome (PCOS), non-alcoholic fatty liver (NAFLD), and several types of cancer. This review provides a comprehensive overview of the asprosin role in the etiology and pathophysiological manifestations of these conditions. Asprosin could be a promising candidate for both novel pharmacological treatment strategies and diagnostic tools, although developing a better understanding of its function and signaling pathways is still needed.
Collapse
Affiliation(s)
- Mariam Farrag
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- Euro-Mediterranean Master in neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María González-Rodríguez
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Program in Drug Research and Development, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Program in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Maurizio Capuozzo
- National Health Service, Local Health Authority ASL 3 Napoli Sud, Department of Pharmacy, Naples, Italy
| | - Miguel Angel González-Gay
- Hospital Universitario Marqués de Valdecilla, Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, University of Cantabria, Santander, Cantabria, Spain
| | - Antonio Mera
- SERGAS, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude), IDIS (Instituto de Investigación Sanitaria de Santiago), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ahmed Soffar
- Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amina Essawy
- Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|