1
|
Dutheuil G, Oukoloff K, Korac J, Lenoir F, El Bousmaqui M, Probst N, Lapin A, Nakhabina G, Sorlet C, Parmentier N, Karila D, Ghavtadze N, Casault P, Claridge S, Sapmaz S, Slater MJ, Fraser GL. Discovery, Optimization, and Preclinical Pharmacology of EP652, a METTL3 Inhibitor with Efficacy in Liquid and Solid Tumor Models. J Med Chem 2025; 68:2981-3003. [PMID: 39883878 DOI: 10.1021/acs.jmedchem.4c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
METTL3 is the RNA methyltransferase predominantly responsible for the addition of N6-methyladenosine (m6A), the most abundant modification to mRNA. The prevalence of m6A and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of EP652 as an in vivo proof-of-concept compound. EP652 potently inhibits the enzymatic activity of METTL3, has favorable PK parameters, and demonstrates efficacy in preclinical oncology models, indicating that pharmacological inhibition of METTL3 is a viable strategy for the treatment of liquid and solid tumors.
Collapse
Affiliation(s)
| | - Killian Oukoloff
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Julien Korac
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - François Lenoir
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Nicolas Probst
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Alexey Lapin
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Galina Nakhabina
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Catherine Sorlet
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Delphine Karila
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Nugzar Ghavtadze
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Paméla Casault
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Stephen Claridge
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Selma Sapmaz
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Martin J Slater
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Graeme L Fraser
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| |
Collapse
|
2
|
Zhang S, Cai S, Ye L, Shen L, Zhu C, Huang J, Wang Z, Chen H. METTL3 mediates m6A modification of hsa_circ_0072380 to regulate the progression of gestational diabetes mellitus. Gene 2024; 931:148894. [PMID: 39191355 DOI: 10.1016/j.gene.2024.148894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND m6A modification plays a vital role in gestational diabetes mellitus (GDM) progression. However, the role of METTL3 and differential m6A-modified circRNAs in GDMremainsto be investigated. METHODS Placental tissue samples from GDM patients and normal controls (NC) were collected to measure changes in m6A modification levels. MeRIP-seq on placental tissue was performed to detect differential m6A-modified circRNAs.High glucose (HG)-treated JEG3 cells were used to establish the GDM cell model. Differentially expressed circRNAs levels in GDM and NC groups were measured by qRT-PCR. We knocked down METTL3 to study its function. Additionally, we conducted functional recovery experiments. Dot blot assay was utilized to assess changes in m6A levels. MeRIP-qPCR was performed to evaluate the effect of knocking down METTL3 on m6A modification of hsa_circ_0072380 in JEG3 cells. RESULTS Compared with the NC group, the GDM group exhibited increased levels of m6A modification and METTL3 expression. Differences in m6A modification of circRNAs exist between the GDM and NC groups. Hsa_circ_0000994, hsa_circ_0058733, and hsa_circ_0072380 were significantly down-regulated in the GDM group while hsa_circ_0036376, hsa_circ_0000471, and hsa_circ_0001173 showed no significant differences between two groups. HG treatment promoted METTL3 expression and m6A level of JEG3 cells, and inhibited cell proliferation, migration, and invasion abilities. Knocking down METTL3 reversed these effects. After HG treatment, hsa_circ_0072380 was significantly down-regulated. Knocking down METTL3 led to up-regulation of hsa_circ_0072380, while knocking down hsa_circ_0072380 restored the function of SiMETTL3. Additionally, knocking down METTL3 significantly reduced the m6A modification of hsa_circ_0072380. CONCLUSION METTL3 mediated m6A modification of hsa_circ_0072380 to regulate GDM progression.
Collapse
Affiliation(s)
- Shaofeng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Shiqin Cai
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Lisha Ye
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Lixia Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Caixia Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Jingwan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| | - Haitian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| |
Collapse
|
3
|
Yu Z, Yang Y. METTL3 as a potential therapeutic target in gastric cancer. Front Oncol 2024; 14:1483435. [PMID: 39678510 PMCID: PMC11638058 DOI: 10.3389/fonc.2024.1483435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. N6-methyladenosine (m6A) modification is the most prominent epigenetic modification of eukaryotic mRNAs, and methyltransferase-like 3 (METTL3), a core component of the methyltransferase complex, catalyzes m6A modification. The results of previous studies indicate that the expression level of METTL3 is significantly elevated in gastric cancer tissues and cells. In addition, fluctuations in m6A levels induced by METTL3 are closely associated with the malignant progression of tumors as well as the poor prognosis of patients with gastric cancer. In this review, we focus on the potential mechanism of METTL3 in gastric cancer, and through our analysis, we suggest that targeting METTL3 could be a new therapeutic tool for treating GC.
Collapse
Affiliation(s)
| | - Yang Yang
- The First Affiliated Hospital of Guangxi University Of Chinese Medicine,
Nanning, Guangxi, China
| |
Collapse
|
4
|
Zhang M, Gou Z, Qu Y, Su X. The indispensability of methyltransferase-like 3 in the immune system: from maintaining homeostasis to driving function. Front Immunol 2024; 15:1456891. [PMID: 39416774 PMCID: PMC11479892 DOI: 10.3389/fimmu.2024.1456891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Methyltransferase-like 3(METTL3), recognized as the primary N6-methyladenosine methyltransferase, influences cellular functions such as proliferation, migration, invasion, differentiation, and fate determination by regulating gene expression post-transcriptionally. Recent studies have highlighted the indispensability of METTL3 in various immune cells such as hematopoietic stem/progenitor cells, innate immune cells (monocytes, macrophages, dendritic cells), and adaptive immune cells (thymic epithelial cell, T cells, natural killer cells). However, a comprehensive summary and analysis of these findings to elucidate the relationship between METTL3 and the immune system is yet to be undertaken. Therefore, in this review, we systematically collate reports detailing the mechanism underlying the role of METTL3 in regulating various immune processes and examine the modification of METTL3 and its potential implications. This review suggests that METTL3 plays an essential role in the immune system, ranging from maintaining homeostasis to regulating functions. Collectively, this review provides a comprehensive analysis of the relationship between METTL3 and the immune system, serving convenient researchers to understand the frontiers of immunological research and facilitate future clinical applications.
Collapse
Affiliation(s)
- Mingfu Zhang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
6
|
Liu X, Zhang Y, Liu Z, Gao Y, Yuan L, Zeng D, Tan F, Wan H, Pei Z. METTL3 as a novel diagnosis and treatment biomarker and its association with glycolysis, cuproptosis and ceRNA in oesophageal carcinoma. J Cell Mol Med 2024; 28:e18195. [PMID: 38429907 PMCID: PMC10907846 DOI: 10.1111/jcmm.18195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
METTL3 has been shown to be involved in regulating a variety of biological processes. However, the relationship between METTL3 expression and glycolysis, cuproptosis-related genes and the ceRNA network in oesophageal carcinoma (ESCA) remains unclear. ESCA expression profiles from databases were obtained, and target genes were identified using differential analysis and visualization. Immunohistochemistry (IHC) staining assessed METTL3 expression differences. Functional enrichment analysis using GO, KEGG and GSEA was conducted on the co-expression profile of METTL3. Cell experiments were performed to assess the effect of METTL3 interference on tumour cells. Correlation and differential analyses were carried out to assess the relationship between METTL3 with glycolysis and cuproptosis. qRT-PCR was used to validate the effects of METTL3 interference on glycolysis-related genes. Online tools were utilized to screen and construct ceRNA networks based on the ceRNA theory. METTL3 expression was significantly higher in ESCA compared to the controls. The IHC results were consistent with the above results. Enrichment analysis revealed that METTL3 is involved in multiple pathways associated with tumour development. Significant correlations were observed between METTL3 and glycolysis-related genes and cuproptosis-related gene. Experiments confirmed that interfered with METTL3 significantly inhibited glucose uptake and lactate production in tumour cells, and affected the expression of glycolytic-related genes. Finally, two potential ceRNA networks were successfully predicted and constructed. Our study establishes the association between METTL3 overexpression and ESCA progression. Additionally, we propose potential links between METTL3 and glycolysis, cuproptosis and ceRNA, presenting a novel targeted therapy strategy for ESCA.
Collapse
Affiliation(s)
- Xu‐Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem CellsTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Yu Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Zi‐Yue Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Ling‐Ling Yuan
- Department of PathologyTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Dao‐Bing Zeng
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Fan Tan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Hua‐Bing Wan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Zhi‐Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem CellsTaihe Hospital, Hubei University of MedicineShiyanChina
| |
Collapse
|
7
|
Huang Y, Xia W, Dong Z, Yang CG. Chemical Inhibitors Targeting the Oncogenic m 6A Modifying Proteins. Acc Chem Res 2023; 56:3010-3022. [PMID: 37889223 DOI: 10.1021/acs.accounts.3c00451] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Epigenetics is brought to RNA, introducing a new dimension to gene expression regulation. Among numerous RNA modifications, N6-methyladenosine (m6A) is an abundant internal modification on eukaryote mRNA first identified in the 1970s. However, the significance of m6A modification in mRNA had been long neglected until the fat mass and obesity-associated (FTO) enzyme was identified as the first m6A demethylase almost 40 years later. The m6A modification influences nearly every step of RNA metabolism and thus broadly affects gene expression at multiple levels, playing a critical role in many biological processes, including cancer progression, metastasis, and immune evasion. The m6A level is dynamically regulated by RNA epigenetic machinery comprising methyltransferases such as methyltransferase-like protein 3 (METTL3), demethylases FTO and AlkB human homologue 5 (ALKBH5), and multiple reader proteins. The understanding of the biology of RNA epigenetics and its translational drug discovery is still in its infancy. It is essential to further develop chemical probes and lead compounds for an in-depth investigation into m6A biology and the translational discovery of anticancer drugs targeting m6A modifying oncogenic proteins.In this Account, we present our work on the development of chemical inhibitors to regulate m6A in mRNA by targeting the FTO demethylase, and the elucidation of their mode of action. We reported rhein to be the first substrate competitive FTO inhibitor. Due to rhein's poor selectivity, we identified meclofenamic acid (MA) that selectively inhibits FTO compared with ALKBH5. Based on the structural complex of MA bound with FTO, we designed MA analogs FB23-2 and Dac51, which exhibit significantly improved activities compared with MA. For example, FB23-2 is specific to FTO inhibition in vitro among over 400 other oncogenic proteins, including kinases, proteases, and DNA and histone epigenetic proteins. Mimicking FTO depletion, FB23-2 promotes the differentiation/apoptosis of human acute myeloid leukemia (AML) cells and inhibits the progression of primary cells in xenotransplanted mice. Dac51 treatment impairs the glycolytic activity of tumor cells and restores the function of CD8+ T cells, thereby inhibiting the growth of solid tumors in vivo. These FTO inhibitors were and will continue to be used as probes to promote biological studies of m6A modification and as lead compounds to target FTO in anticancer drug discovery.Toward the end, we also include a brief review of ALKBH5 demethylase inhibitors and METTL3 methyltransferase modulators. Collectively, these small-molecule modulators that selectively target RNA epigenetic proteins will promote in-depth studies on the regulation of gene expression and potentially accelerate anticancer target discovery.
Collapse
Affiliation(s)
- Yue Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenyang Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Bedi R, Huang D, Li Y, Caflisch A. Structure-Based Design of Inhibitors of the m 6A-RNA Writer Enzyme METTL3. ACS BIO & MED CHEM AU 2023; 3:359-370. [PMID: 37599794 PMCID: PMC10436262 DOI: 10.1021/acsbiomedchemau.3c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 08/22/2023]
Abstract
Methyltransferase-like 3 (METTL3) and METTL14 form a heterodimeric complex that catalyzes the most abundant internal mRNA modification, N6-methyladenosine (m6A). METTL3 is the catalytic subunit that binds the co-substrate S-adenosyl methionine (SAM), while METTL14 is involved in mRNA binding. The m6A modification provides post-transcriptional level control over gene expression as it affects almost all stages of the mRNA life cycle, including splicing, nuclear export, translation, and decay. There is increasing evidence for an oncogenic role of METTL3 in acute myeloid leukemia. Here, we use structural and dynamic details of the catalytic subunit METTL3 for developing small-molecule inhibitors that compete with SAM. Starting from a hit identified by high-throughput docking, protein crystallography and molecular dynamics simulations were employed to guide the optimization of inhibitory activity. The potency was successfully improved by 8000-fold as measured by a homogeneous time-resolved fluorescence assay. The optimized compound is selective against the off-targets RNA methyltransferases METTL1 and METTL16.
Collapse
Affiliation(s)
- Rajiv
Kumar Bedi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Danzhi Huang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Yaozong Li
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|