1
|
Rodriguez AL, Qi A, Han A, Kling HE, Quitalig MC, Bender AM, Barbaro L, Whomble D, Lindsley CW, Niswender CM. Characterization of Novel and Known Activators of Cannabinoid Receptor Subtype 2 Reveals Mixed Pharmacology That Differentiates Mycophenolate Mofetil and GW-842,166X from MDA7. Int J Mol Sci 2025; 26:4956. [PMID: 40430094 PMCID: PMC12112332 DOI: 10.3390/ijms26104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
CB1 and CB2 cannabinoid receptors are members of the GPCR superfamily that modulate the effects of endocannabinoids. CB1 is the most abundant CB receptor in the central nervous system, while CB2 is present both peripherally and in the brain. CB2 plays a role in inflammation, as well as neurodegenerative and psychiatric disorders. To identify new ligands for CB2, we screened a library of FDA-approved drugs for activity at the receptor using a thallium flux assay, resulting in the discovery of the immunosuppressant mycophenolate mofetil as a potent, selective activator of CB2. Further characterization of the compound confirmed agonist activity in a variety of complementary assays, including PI hydrolysis, cAMP inhibition, and β-arrestin recruitment. Radioligand binding assays established a non-competitive interaction with the site occupied by [3H]CP55,940. CB2 agonists GW-842,166X and MDA7 were also profiled, revealing that GW-842,166X exhibits a similar activity profile to mycophenolate mofetil, whereas MDA7 presents a distinct profile. These differences provide insight into the complex CB2 pharmacology impacting preclinical and clinical studies, and ultimately, new treatment strategies for brain disorders.
Collapse
Affiliation(s)
- Alice L. Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Aidong Qi
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Allie Han
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Haley E. Kling
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marc C. Quitalig
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Aaron M. Bender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Barbaro
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Whomble
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M. Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; (A.L.R.); (A.Q.); (A.H.); (H.E.K.); (M.C.Q.); (A.M.B.); (L.B.); (D.W.); (C.W.L.)
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Acharya B, Sahu PK, Behera A, Feehan J, Mishra DP, Apostolopoulos V. Cannabinoids and the male reproductive system: Implications of endocannabinoid signaling pathways. Maturitas 2025; 192:108156. [PMID: 39602858 DOI: 10.1016/j.maturitas.2024.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The escalating use and legalization of cannabis (marijuana) in the United States reflect shifting societal attitudes and growing awareness of its potential therapeutic benefits. Historically viewed as a harmful psychoactive substance, contemporary research has shown the intricate pharmacology of cannabis, with its diverse array of cannabinoids and their interactions with the endocannabinoid system. Among these cannabinoids, Δ9-tetrahydrocannabinol is the primary psychoactive component, characterized by its activation of cannabinoid receptors. The discovery of endocannabinoids, including anandamide and 2-arachidonoylglycerol, illuminated the body's innate cannabinoid signaling pathways and their involvement in several physiological processes. Endocannabinoids exert both positive and negative effects on the male reproductive system. They facilitate erectile function by modulating neurotransmission and vasodilation, offering potential therapeutic avenues for conditions like erectile dysfunction and prostatitis. However, chronic exogenous cannabinoid use, mainly of tetrahydrocannabinol, poses risks to male reproductive health by disrupting spermatogenesis, causing hormonal imbalances, and potentially influencing cancer cell proliferation. Understanding endocannabinoid signaling in the male reproductive system is essential to fully comprehend both the therapeutic benefits and potential drawbacks of cannabis use. Further research is required on these mechanisms, to provide insights that can guide clinical practice and policy-making regarding cannabis use. In this narrative review, we highlight the need for additional research into how cannabinoids affect male reproductive health, particularly with prolonged use. Investigating cannabinoids' impacts on spermatogenesis, hormonal balance, and cancer cell proliferation can provide valuable insights for healthcare professionals.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| | - Prafulla Kumar Sahu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India; Department of Pharmacy, Keonjhar Institute of Medical Science & Research, Keonjhar, Odisha, India; IndQuench Life Science Innovations (OPC) Pvt. Ltd., Plot No: 31/761, Devika Bihar, Dasabatia, Tamando (P), Khurda (Dist), Bhubaneswar, Odisha-751028, India.
| | | | - Jack Feehan
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Durga Prasad Mishra
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
3
|
Wang F, Zang Z, Zhao Q, Xiaoyang C, Lei X, Wang Y, Ma Y, Cao R, Song X, Tang L, Deyholos MK, Zhang J. Advancement of Research Progress on Synthesis Mechanism of Cannabidiol (CBD). ACS Synth Biol 2024; 13:2008-2018. [PMID: 38900848 PMCID: PMC11264327 DOI: 10.1021/acssynbio.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Cannabis sativa L. is a multipurpose crop with high value for food, textiles, and other industries. Its secondary metabolites, including cannabidiol (CBD), have potential for broad application in medicine. With the CBD market expanding, traditional production may not be sufficient. Here we review the potential for the production of CBD using biotechnology. We describe the chemical and biological synthesis of cannabinoids, the associated enzymes, and the application of metabolic engineering, synthetic biology, and heterologous expression to increasing production of CBD.
Collapse
Affiliation(s)
- Fu Wang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qian Zhao
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Chunxiao Xiaoyang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiujuan Lei
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yingping Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yiqiao Ma
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Rongan Cao
- College
of Food Science, Heilongjiang Bayi Agricultural
University, Daqing 163319, China
| | - Xixia Song
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Lili Tang
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Michael K. Deyholos
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jian Zhang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
4
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Bo Y, Zhao X, Li L. Cardiotoxic effects of common and emerging drugs: role of cannabinoid receptors. Clin Sci (Lond) 2024; 138:413-434. [PMID: 38505994 DOI: 10.1042/cs20231156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.
Collapse
Affiliation(s)
- Yiming Bo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Smith MD, Darryl Quarles L, Demerdash O, Smith JC. Drugging the entire human proteome: Are we there yet? Drug Discov Today 2024; 29:103891. [PMID: 38246414 DOI: 10.1016/j.drudis.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Each of the ∼20,000 proteins in the human proteome is a potential target for compounds that bind to it and modify its function. The 3D structures of most of these proteins are now available. Here, we discuss the prospects for using these structures to perform proteome-wide virtual HTS (VHTS). We compare physics-based (docking) and AI VHTS approaches, some of which are now being applied with large databases of compounds to thousands of targets. Although preliminary proteome-wide screens are now within our grasp, further methodological developments are expected to improve the accuracy of the results.
Collapse
Affiliation(s)
- Micholas Dean Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN 37830, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - L Darryl Quarles
- Departments of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; ORRxD LLC, 3404 Olney Drive, Durham, NC 27705, USA
| | - Omar Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN 37830, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|