1
|
Cheungpasitporn W, Krisanapan P, Suppadungsuk S, Thongprayoon C, Fülöp T, Miao J, Soliman KM, Ho YS. Research trends and performance of endothelin A receptor antagonist in kidney care: a bibliometric analysis. Ren Fail 2025; 47:2487212. [PMID: 40211733 PMCID: PMC11995767 DOI: 10.1080/0886022x.2025.2487212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Endothelin A receptor antagonists (ERAs) have emerged as pivotal therapeutic agents in managing pulmonary hypertension (PH) and various kidney disorders, including chronic kidney disease (CKD) and proteinuric glomerular diseases such as IgA nephropathy (IgAN) and focal segmental glomerulosclerosis (FSGS). Although initially developed for pulmonary applications, recent research has highlighted their renoprotective effects, expanding their role in nephrology. This study presents a comprehensive bibliometric analysis of global research trends, key contributors, and emerging applications of ERAs in kidney care over the past three decades. METHODS A bibliometric analysis was performed using the Science Citation Index Expanded database (1992-2023). Relevant kidney-related publications were identified through specific keyword searches. Author performance was assessed using the Y-index. RESULTS ERA-related research has shown significant growth, particularly in nephrology. The United States and the University of Groningen lead in publication volume and international collaborations, with H.J.L. Heerspink emerging as a key contributor. While PH remains the dominant research focus, nephrology applications are rapidly increasing, particularly in CKD, diabetic nephropathy (DN), and glomerular diseases. A major milestone was the accelerated FDA approval of sparsentan for IgAN in 2023, followed by full approval in 2024 based on confirmatory efficacy data. However, challenges such as fluid retention and cardiovascular risks remain, necessitating further investigation into optimized ERA therapies, including combination strategies with SGLT2 inhibitors. CONCLUSIONS The expanding role of ERAs in nephrology underscores their potential in treating proteinuric kidney diseases. Ongoing international collaborations are advancing research on ERA safety, efficacy, and novel therapeutic strategies, supporting their broader clinical application.
Collapse
Affiliation(s)
| | - Pajaree Krisanapan
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
- Department of Nephrology, Department of Internal Medicine, Thammasat University, Khlong Nueng, Thailand
| | - Supawadee Suppadungsuk
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Bang Pla, Thailand
| | - Charat Thongprayoon
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Tibor Fülöp
- Medical Services, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Jing Miao
- Department of Medicine, Division of Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Karim M. Soliman
- Medical Services, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Yuh-Shan Ho
- Trend Research Centre, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
Topouzis S, Papapetropoulos A, Alexander SPH, Cortese-Krott M, Kendall DA, Martemyanov K, Mauro C, Nagercoil N, Panettieri RA, Patel HH, Schulz R, Stefanska B, Stephens GJ, Teixeira MM, Vergnolle N, Wang X, Ferdinandy P. Novel drugs approved by the EMA, the FDA and the MHRA in 2024: A year in review. Br J Pharmacol 2025. [PMID: 39971274 DOI: 10.1111/bph.17458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/21/2025] Open
Abstract
In the past year, the European Medicines Agency (EMA), the Food and Drug Administration (FDA) and the Medicines and Healthcare Products Regulatory Agency (MHRA) authorised 53 novel drugs. While the 2024 harvest is not as rich as in 2023, when 70 new chemical entities were approved, the number of 'orphan' drug authorisations in 2024 (21) is similar to that of 2023 (24), illustrating the dynamic development of therapeutics in areas of unmet need. The 2024 approvals of novel protein therapeutics (15) and advanced therapy medicinal products (ATMPs, 6) indicate a sustained trend also noticeable in the 2023 new drugs reviewed in this journal last year (16 and 11, respectively). Clearly, the most striking characteristic of the 2024 drug yield is the creative pharmacological design, which allows these medicines to employ a novel approach to target a disease. Some notable examples are the first drug successfully using a 'dock-and-block' mechanism of inhibition (zenocutuzumab), the first approved drug for schizophrenia designed as an agonist of M1/M4 muscarinic receptors (xanomeline), the first biparatopic antibody (zanidatamab), binding two distinct epitopes of the same molecule, the first haemophilia therapy that instead of relying on external supplementation of clotting factors, restores Factor Xa activity by inhibiting TFPI (marstacimab), or the first ever authorised direct telomerase inhibitor (imetelstat) that reprogrammes the oncogenic drive of tumour cells. In addition, an impressive percentage of novel drugs were first in class (28 out of 53 or 53% of the total) and a substantial number can be considered disease agnostic, indicating the possibility of future approved extensions of their use for additional indications. The 2024 harvest demonstrates the therapeutic potential of innovative pharmacological design, which allows the effective targeting of intractable disorders and addresses crucial, unmet therapeutic needs.
Collapse
Affiliation(s)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Steve P H Alexander
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Miriam Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pneumology, Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Dave A Kendall
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Claudio Mauro
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | | | - Hemal H Patel
- VA San Diego Healthcare System and University of California/San Diego, San Diego, California, USA
| | | | | | | | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Xin Wang
- University of Manchester, Manchester, UK
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
3
|
Vassiliou AG, Roumpaki A, Keskinidou C, Athanasiou N, Tsipilis S, Jahaj E, Vrettou CS, Giannopoulou V, Halioti A, Ferentinos G, Dimopoulou I, Kotanidou A, Langleben D, Orfanos SE. Transpulmonary Plasma Endothelin-1 Arterial:Venous Ratio Differentiates Survivors from Non-Survivors in Critically Ill Patients with COVID-19-Induced Acute Respiratory Distress Syndrome. Int J Mol Sci 2024; 25:10640. [PMID: 39408968 PMCID: PMC11476705 DOI: 10.3390/ijms251910640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor produced by endothelial cells and cleared from circulating blood mainly in the pulmonary vasculature. In a healthy pulmonary circulation, the rate of local production of ET-1 is less than its rate of clearance. In the present study, we aimed to investigate whether the abnormal pulmonary circulatory handling of ET-1 relates to poor clinical outcomes in patients with coronavirus disease 2019 (COVID-19)-induced acute respiratory distress syndrome (ARDS). To this end, central venous and systemic arterial ET-1 plasma levels were simultaneously measured on Days 1 and 3 following ICU admission in mechanically ventilated COVID-19 patients with ARDS (COVID-19 ARDS, N = 18). Central venous and systemic arterial ET-1 plasma levels were also measured in two distinct SARS-CoV-2-negative mechanically ventilated critically ill patient groups, matched for age, sex, and critical illness severity, with ARDS (non-COVID-19 ARDS, N = 14) or without ARDS (non-COVID-19 non-ARDS, N = 20). Upon ICU admission, COVID-19-induced ARDS patients had higher systemic arterial and central venous ET-1 levels compared to the non-COVID-19 ARDS and non-COVID-19 non-ARDS patients (p < 0.05), yet a normal systemic arterial:central venous (A:V) ET-1 ratio [0.63 (0.49-1.02)], suggesting that pulmonary ET-1 clearance is intact in these patients. On the other hand, the non-COVID-19 ARDS patients demonstrated abnormal ET-1 handling [A:V ET-1 ratio 1.06 (0.93-1.20)], while the non-COVID-19 non-ARDS group showed normal ET-1 handling [0.79 (0.52-1.11)]. On Day 3, the A:V ratio in all three groups was <1. When the COVID-19 ARDS patients were divided based on 28-day ICU mortality, while their systemic arterial and central venous levels did not differ, the A:V ET-1 ratio was statistically significantly higher upon ICU admission in the non-survivors [0.95 (0.78-1.34)] compared to the survivors [0.57 (0.48-0.92), p = 0.027]. Our results highlight the potential importance of ET-1 as both a biomarker and a therapeutic target in critically ill COVID-19 patients. The elevated A:V ET-1 ratio in non-survivors suggests that the early disruption of pulmonary ET-1 handling may be a key marker of poor prognosis.
Collapse
Affiliation(s)
- Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Anastasia Roumpaki
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Nikolaos Athanasiou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Stamatios Tsipilis
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Edison Jahaj
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Charikleia S. Vrettou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Vassiliki Giannopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Asimenia Halioti
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Georgios Ferentinos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| | - David Langleben
- Center for Pulmonary Vascular Disease, Division of Cardiology, Azrieli Heart Center and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, “Evangelismos” Hospital, 10676 Athens, Greece; (A.R.); (C.K.); (N.A.); (S.T.); (E.J.); (C.S.V.); (V.G.); (A.H.); (G.F.); (I.D.); (A.K.)
| |
Collapse
|
4
|
Blazek O, Bakris GL. A review of novel endothelin antagonists and overview of non-steroidal mineralocorticoid antagonists for treating resistant hypertension: An update. Eur J Pharmacol 2024; 979:176752. [PMID: 39047966 DOI: 10.1016/j.ejphar.2024.176752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
Several agents are emerging from five different novel classes of antihypertensive medications. We will focus on endothelin antagonists and non-steroidal mineralocorticoid receptor antagonists. While several agents exist in this later class, only a couple have demonstrated superior efficacy in resistant hypertension management. Endothelin receptor antagonists are effective therapy for primary and resistant hypertension, but they are not widely used. This is due to side effects demonstrated in large clinical trials, specifically increased peripheral edema and worsening heart failure in some cases, as well as the availability of many alternative agents to manage blood pressure effectively. However, the relationship between endothelin and its close ties to hypertension is evolving. Recent pre-clinical work explores new applications of more selective endothelin receptor antagonists. They suggest that specific subtypes of hypertension may benefit more from endothelin receptor blockade than simply those with primary hypertension. We review this topic and other related data. Lastly, we also provide a brief overview of non-steroidal mineralocorticoid receptor antagonists as some in the class show promise as antihypertensive agents.
Collapse
Affiliation(s)
- Olivia Blazek
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, IL, USA.
| | - George L Bakris
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Watts SW, Townsend RR, Neubig RR. How New Developments in Pharmacology Receptor Theory Are Changing (Our Understanding of) Hypertension Therapy. Am J Hypertens 2024; 37:248-260. [PMID: 38150382 PMCID: PMC10941088 DOI: 10.1093/ajh/hpad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Many hypertension therapeutics were developed prior to major advances in drug receptor theory. Moreover, newer drugs may take advantage of some of the newly understood modalities of receptor function. GOAL The goal of this review is to provide an up-to-date summary of drug receptor theory. This is followed by a discussion of the drug classes recognized for treating hypertension to which new concepts in receptor theory apply. RESULTS We raise ideas for mechanisms of potential new antihypertensive drugs and whether they may take advantage of new theories in drug-receptor interaction.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan 48824-131, USA
| | - Raymond R Townsend
- Department of Nephrology and Hypertension, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan 48824-131, USA
| |
Collapse
|
6
|
Shokrollahi F, Pazoki A, Allami A, Aliakbari S, Ardali KR. Bosentan and Pulmonary Hypertension Caused by COVID-19: A Pilot Randomized Double-blind Clinical Study. Curr Vasc Pharmacol 2024; 22:437-446. [PMID: 38874033 DOI: 10.2174/0115701611299843240607061547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION/OBJECTIVE Coronavirus disease 2019 (COVID-19) has been the biggest pandemic in history, with severe complications, such as acute respiratory distress syndrome and pulmonary hypertension (PH). An endothelin-1 (ET-1) receptor antagonist, such as bosentan, may be beneficial in treating elevated ET-1 levels. Hence, our study aimed to evaluate the therapeutic effects of bosentan in patients with COVID-19-induced PH. METHODS A single-centre, randomized, double-blind study involving 72 participants was carried out; 36 received bosentan and the other 36 received a placebo. Pulmonary arterial pressure, tricuspid valve pressure gradient, and right atrial pressure were measured using echocardiography. The Cox proportional hazards regression model was used to investigate the impact of bosentan and patients' age on mortality during a 6-month follow-up period. RESULTS In-hospital mortality was significantly lower in the case group (13%) compared with the control group (33.3%) (P=0.003). Additionally, bosentan improved echocardiographic parameters, such as systolic pulmonary artery pressure and tricuspid regurgitation gradient (P=0.011 and P=0.003, respectively). Bosentan use was a significant predictor of long-term mortality rates for 600 days [age-adjusted hazard ratio of 5.24 (95% CI 1.34 to 20.46)]. CONCLUSION This study provided a mixed perspective on the use of bosentan therapy in patients with COVID-19-related PH. Bosentan effectively reduced in-hospital mortality and improved echocardiographic measures. However, the treatment group showed an increased requirement for supplemental oxygen therapy and long-term mortality. Further studies with larger sample sizes are necessary to elucidate the effects of bosentan in PH following COVID-19.
Collapse
Affiliation(s)
- Fahime Shokrollahi
- Clinical Research Development Unit, BouAlisina Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Pazoki
- Clinical Research Development Unit, BouAlisina Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abbas Allami
- Clinical Research Development Unit, BouAlisina Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahin Aliakbari
- Clinical Research Development Unit, BouAlisina Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kimia Rahimi Ardali
- Clinical Research Development Unit, BouAlisina Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|