1
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Natural products targeting amyloid-β oligomer neurotoxicity in Alzheimer's disease. Eur J Med Chem 2024; 276:116684. [PMID: 39032401 DOI: 10.1016/j.ejmech.2024.116684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) constitutes a major global health issue, characterized by progressive neurodegeneration and cognitive impairment, for which no curative treatment is currently available. Current therapeutic approaches are focused on symptom management, highlighting the critical need for disease-modifying therapy. The hallmark pathology of AD involves the aggregation and accumulation of amyloid-β (Aβ) peptides in the brain. Consequently, drug discovery efforts in recent decades have centered on the Aβ aggregation cascade, which includes the transition of monomeric Aβ peptides into toxic oligomers and, ultimately, mature fibrils. Historically, anti-Aβ strategies focused on the clearance of amyloid fibrils using monoclonal antibodies. However, substantial evidence has highlighted the critical role of Aβ oligomers (AβOs) in AD pathogenesis. Soluble AβOs are now recognized as more toxic than fibrils, directly contributing to synaptic impairment, neuronal damage, and the onset of AD. Targeting AβOs has emerged as a promising therapeutic approach to mitigate cognitive decline in AD. Natural products (NPs) have demonstrated promise against AβO neurotoxicity through various mechanisms, including preventing AβO formation, enhancing clearance mechanisms, or converting AβOs into non-toxic species. Understanding the mechanisms by which anti-AβO NPs operate is useful for developing disease-modifying treatments for AD. In this review, we explore the role of NPs in mitigating AβO neurotoxicity for AD drug discovery, summarizing key evidence from biophysical methods, cellular assays, and animal models. By discussing how NPs modulate AβO neurotoxicity across various experimental systems, we aim to provide valuable insights into novel therapeutic strategies targeting AβOs in AD.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil
| |
Collapse
|
2
|
Jerom JP, Jalal A, Sajan AL, Soman R, Nair RH, Narayanan SP. In-vitro Neuro-2a cytotoxicity analysis and molecular docking investigation on potential anti-amyloid agents from Adiantum lunulatum. Heliyon 2024; 10:e38127. [PMID: 39381205 PMCID: PMC11458992 DOI: 10.1016/j.heliyon.2024.e38127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
In neurodegenerative diseases, amyloid formation by some proteins cause neuronal damage and loss. To prevent this neuronal damage and loss certain pharmaceuticals are available. Many of these pharmaceuticals act on the neurodegenerative disease symptoms but not on the root cause. This study helps to detect more effective agents which directly act on the root cause and reduce the risk of neurodegenerative diseases. To identify new anti-amyloid agents, the folk medicinally important plant Adiantum lunulatum was collected, authenticated, dried, extracted with ethanol and analyzed by GC-MS method. The screening of the identified phytochemicals was done using the webservers swissADME and ProTox-II. In-vitro MTT assay using Neuro-2a cell lines was carried out to determine the cytotoxicity of the extract. The interactions of these phytochemicals with the amyloid forming peptides and proteins were predicted using the molecular docking tools such as AutoDock Vina and BIOVIA discovery studio visualizer 2020. Through GC-MS analysis, 18 different volatile phytochemicals were identified from the ethanol extract. From this, 7 phytochemicals were selected based on the computational non-toxicity prediction. In-vitro cytotoxicity analysis of the ethanol extract using Neuro-2a cell lines detected the IC50 value of 0.09 mg/ml. Of these, the phytochemical P1 (trans, trans-9, 12-Octadecadienoic acid, propyl ester) interacts with tau, and huntingtin proteins, P2 (2-Pentadecanone, 6, 10, 14-trimethyl-) interacts with prion protein. The phytochemicals P1, P3 (Ethyl oleate), P4 (Octadecanoic acid, ethyl ester), and P5 (Phytol) interact with acetylcholinesterase. P2, P4, P5 and P6 (Henicosanal), interact with BACE-1. The phytochemical P3 interacts with γ- Secretase. The interaction of P2 and P5 with BACE-1 and P3 with γ- Secretase show better inhibition in inhibitory constant (K i ) analysis. These phytochemicals have been predicted to show significant potential against the formation or breakdown of peptide/protein amyloids, and further in-vitro studies are necessary to develop them into anti-amyloid agents.
Collapse
Affiliation(s)
| | - Ajmal Jalal
- School of Biosciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Ann Liya Sajan
- School of Biosciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Reshma Soman
- School of Biosciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| |
Collapse
|
3
|
Valotto Neto LJ, Reverete de Araujo M, Moretti Junior RC, Mendes Machado N, Joshi RK, dos Santos Buglio D, Barbalho Lamas C, Direito R, Fornari Laurindo L, Tanaka M, Barbalho SM. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants (Basel) 2024; 13:393. [PMID: 38671841 PMCID: PMC11047749 DOI: 10.3390/antiox13040393] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aging of the global population has increased the prevalence of neurodegenerative conditions. Bacopa monnieri (BM), an herb with active compounds, such as bacosides A and B, betulinic acid, loliolide, asiatic acid, and quercetin, demonstrates the potential for brain health. Limited research has been conducted on the therapeutic applications of BM in neurodegenerative conditions. This systematic review aims to project BM's beneficial role in brain disorders. BM has anti-apoptotic and antioxidant actions and can repair damaged neurons, stimulate kinase activity, restore synaptic function, improve nerve transmission, and increase neuroprotection. The included twenty-two clinical trials demonstrated that BM can reduce Nuclear Factor-κB phosphorylation, improve emotional function, cognitive functions, anhedonia, hyperactivity, sleep routine, depression, attention deficit, learning problems, memory retention, impulsivity, and psychiatric problems. Moreover, BM can reduce the levels of pro-inflammatory biomarkers and oxidative stress. Here, we highlight that BM provides notable therapeutic benefits and can serve as a complementary approach for the care of patients with neurodegenerative conditions associated with brain disorders. This review adds to the growing interest in natural products and their potential therapeutic applications by improving our understanding of the mechanisms underlying cognitive function and neurodegeneration and informing the development of new therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Luiz José Valotto Neto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Matheus Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Renato Cesar Moretti Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Nathalia Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Rakesh Kumar Joshi
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Daiane dos Santos Buglio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Medical School of Marilia (FAMEMA), Marília 17519-030, SP, Brazil;
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|