1
|
Thomas RM. Microbial molecules, metabolites, and malignancy. Neoplasia 2025; 60:101128. [PMID: 39827500 PMCID: PMC11787689 DOI: 10.1016/j.neo.2025.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Research elucidating the role of the microbiome in carcinogenesis has grown exponentially over the past decade. Initially isolated to associative studies on colon cancer development, the field has expanded to encompass nearly every solid and liquid malignancy that may afflict the human body. Investigations are rapidly progressing from association to causation and one particular area of causal effect relates to microbial metabolites and how they influence cancer development, progression, and treatment response. These metabolites can be produced de novo from individual members of the microbiome, whether that be bacteria, fungi, archaea, or other microbial organisms, or they can be through metabolic processing of dietary compounds or even host-derived molecules. In this review, contemporary research elucidating mechanisms whereby microbial-derived molecules and metabolites impact carcinogenesis and cancer treatment efficacy will be presented. While many of the examples focus on bacterial metabolites in colon carcinogenesis, this simply illustrates the accelerated nature of these investigations that occurred early in microbiome research but provides an opportunity for growth in other cancer areas. Indeed, research into the interaction of microbiome-derived metabolites in other malignancies is growing as well as investigations that involve non-bacterial metabolites. This review will provide the reader a framework to expand their knowledge regarding this complex and exciting field of cancer research.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
2
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Wu Y, Xie L, Liu Y, Xie L. Semi-supervised meta-learning elucidates understudied molecular interactions. Commun Biol 2024; 7:1104. [PMID: 39251833 PMCID: PMC11383949 DOI: 10.1038/s42003-024-06797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Many biological problems are understudied due to experimental limitations and human biases. Although deep learning is promising in accelerating scientific discovery, its power compromises when applied to problems with scarcely labeled data and data distribution shifts. We develop a deep learning framework-Meta Model Agnostic Pseudo Label Learning (MMAPLE)-to address these challenges by effectively exploring out-of-distribution (OOD) unlabeled data when conventional transfer learning fails. The uniqueness of MMAPLE is to integrate the concept of meta-learning, transfer learning and semi-supervised learning into a unified framework. The power of MMAPLE is demonstrated in three applications in an OOD setting where chemicals or proteins in unseen data are dramatically different from those in training data: predicting drug-target interactions, hidden human metabolite-enzyme interactions, and understudied interspecies microbiome metabolite-human receptor interactions. MMAPLE achieves 11% to 242% improvement in the prediction-recall on multiple OOD benchmarks over various base models. Using MMAPLE, we reveal novel interspecies metabolite-protein interactions that are validated by activity assays and fill in missing links in microbiome-human interactions. MMAPLE is a general framework to explore previously unrecognized biological domains beyond the reach of present experimental and computational techniques.
Collapse
Affiliation(s)
- You Wu
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA
| | - Li Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA
| | - Yang Liu
- Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA
| | - Lei Xie
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA.
- Department of Computer Science, Hunter College, The City University of New York, New York, NY, USA.
- Helen & Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
4
|
Raut S, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh E, Gururaja Rao S, Singh H. Chloride ions in health and disease. Biosci Rep 2024; 44:BSR20240029. [PMID: 38573803 PMCID: PMC11065649 DOI: 10.1042/bsr20240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.
Collapse
Affiliation(s)
- Satish K. Raut
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Kulwinder Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Liyah Varghese
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ekam R. Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
5
|
Tran NL, Jiang J, Ma M, Gadbois GE, Gulay KCM, Verano A, Zhou H, Huang CT, Scott DA, Bang AG, Tiriac H, Lowy AM, Wang ES, Ferguson FM. ZBTB11 Depletion Targets Metabolic Vulnerabilities in K-Ras Inhibitor Resistant PDAC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594824. [PMID: 38826238 PMCID: PMC11142081 DOI: 10.1101/2024.05.19.594824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Over 95% of pancreatic ductal adenocarcinomas (PDAC) harbor oncogenic mutations in K-Ras. Upon treatment with K-Ras inhibitors, PDAC cancer cells undergo metabolic reprogramming towards an oxidative phosphorylation-dependent, drug-resistant state. However, direct inhibition of complex I is poorly tolerated in patients due to on-target induction of peripheral neuropathy. In this work, we develop molecular glue degraders against ZBTB11, a C2H2 zinc finger transcription factor that regulates the nuclear transcription of components of the mitoribosome and electron transport chain. Our ZBTB11 degraders leverage the differences in demand for biogenesis of mitochondrial components between human neurons and rapidly-dividing pancreatic cancer cells, to selectively target the K-Ras inhibitor resistant state in PDAC. Combination treatment of both K-Ras inhibitor-resistant cell lines and multidrug resistant patient-derived organoids resulted in superior anti-cancer activity compared to single agent treatment, while sparing hiPSC-derived neurons. Proteomic and stable isotope tracing studies revealed mitoribosome depletion and impairment of the TCA cycle as key events that mediate this response. Together, this work validates ZBTB11 as a vulnerability in K-Ras inhibitor-resistant PDAC and provides a suite of molecular glue degrader tool compounds to investigate its function.
Collapse
Affiliation(s)
- Nathan L. Tran
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
- Cancer Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jiewei Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Min Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Gillian E. Gadbois
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Kevin C. M. Gulay
- Department of Surgery, Division of Surgical Oncology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Alyssa Verano
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Haowen Zhou
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - David A. Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anne G. Bang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Herve Tiriac
- Department of Surgery, Division of Surgical Oncology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Eric S. Wang
- Cancer Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Fleur M. Ferguson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
6
|
Vidović D, Waller A, Holmes J, Sklar LA, Schürer SC. Best practices for managing and disseminating resources and outreach and evaluating the impact of the IDG Consortium. Drug Discov Today 2024; 29:103953. [PMID: 38508231 PMCID: PMC11335350 DOI: 10.1016/j.drudis.2024.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The Illuminating the Druggable Genome (IDG) consortium generated reagents, biological model systems, data, informatic databases, and computational tools. The Resource Dissemination and Outreach Center (RDOC) played a central administrative role, organized internal meetings, fostered collaboration, and coordinated consortium-wide efforts. The RDOC developed and deployed a Resource Management System (RMS) to enable efficient workflows for collecting, accessing, validating, registering, and publishing resource metadata. IDG policies for repositories and standardized representations of resources were established, adopting the FAIR (findable, accessible, interoperable, reusable) principles. The RDOC also developed metrics of IDG impact. Outreach initiatives included digital content, the Protein Illumination Timeline (representing milestones in generating data and reagents), the Target Watch publication series, the e-IDG Symposium series, and leveraging social media platforms.
Collapse
Affiliation(s)
- Dušica Vidović
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anna Waller
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Jayme Holmes
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Autophagy, Inflammation, & Metabolism (AIM) Center, University of New Mexico, Albuquerque, NM, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA; Frost Institute for Data Science & Computing, University of Miami, Miami, FL, USA.
| |
Collapse
|