1
|
Ray SK, Mukherjee S. Neuropharmacology of Alcohol Addiction with Special Emphasis on Proteomic Approaches for Identification of Novel Therapeutic Targets. Curr Neuropharmacol 2023; 21:119-132. [PMID: 35959616 PMCID: PMC10193758 DOI: 10.2174/1570159x20666220811092906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol is a generic pharmacological agent with only a few recognized primary targets. Nmethyl- D-aspartate, gamma-aminobutyric acid, glycine, 5-hydroxytryptamine 3 (serotonin), nicotinic acetylcholine receptors, and L-type Ca2+ channels and G-protein-activated inwardly rectifying K channels are all involved. Following the first hit of alcohol on specific brain targets, the second wave of indirect effects on various neurotransmitter/neuropeptide systems begins, leading to the typical acute behavioral effects of alcohol, which range from disinhibition to sedation and even hypnosis as alcohol concentrations rise. Recent research has revealed that gene regulation is significantly more complex than previously thought and does not fully explain changes in protein levels. As a result, studying the proteome directly, which differs from the genome/transcriptome in terms of complexity and dynamicity, has provided unique insights into extraordinary advances in proteomic techniques that have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. Neuroproteomics has the potential to revolutionize alcohol research by allowing researchers to gain a better knowledge of how alcohol impacts protein structure, function, connections, and networks on a global scale. The amount of information collected from these breakthroughs can aid in identifying valuable biomarkers for early detection and improved prognosis of an alcohol use disorder and future pharmaceutical targets for the treatment of alcoholism.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Science, Bhopal, Madhya Pradesh 462020, India
| |
Collapse
|
2
|
Naveed M, Tallat A, Butt A, Khalid M, Shehzadi M, Bashir N, Malik KKU, Tufail S, Nouroz F. Neuroproteomics in Paving the Pathway for Drug Abuse Research. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666181127144621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroproteomics, as a sub-discipline of proteomics, has enlightened the pathway for the
study of different complicated diseases and brain disorders. Since four decades, various analytical and
quantitative techniques have been used to cure problems related to brain and memory. Brain has a
complex structure with various cells and cell types, the expressing proteins and suppressing factors too.
Drug addiction is one of the main health concerns as it causes physiological changes in brain and affects
its different parts. Some of these drugs like cocaine, marijuana, nicotine and alcohol not only
affect memory and brain cells but also lead to expression and suppression of unwanted and beneficial
proteins respectively. A variety of techniques involving separation techniques, quantification techniques
and analytical techniques are used along with the combination of bioinformatics and magical
tools for analyzing different aspects of brain parts especially proteome of the brain cells. Moreover,
different animal models preferably those resembling human beings are routinely used in neuroproteomics
to study the effects of different drugs on the brain proteome. Different experiments have already
been performed by the researchers on drug abuse that helped massively in estimating not only the effects
of drug addiction on the brain of highly complex organisms (human beings) but also to propose
different therapeutics.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Attha Tallat
- Department of Biotechnology, University of Gujrat, Sialkot Sub campus, Sialkot, Pakistan
| | - Ayesha Butt
- Department of Biotechnology, University of Gujrat, Sialkot Sub campus, Sialkot, Pakistan
| | - Maria Khalid
- Department of Biotechnology, University of Gujrat, Sialkot Sub campus, Sialkot, Pakistan
| | - Marium Shehzadi
- Department of Biotechnology, University of Gujrat, Sialkot Sub campus, Sialkot, Pakistan
| | - Nida Bashir
- Department of Biotechnology, University of Gujrat, Sialkot Sub campus, Sialkot, Pakistan
| | | | - Shafia Tufail
- Department of Biotechnology, University of Gujrat, Sialkot Sub campus, Sialkot, Pakistan
| | - Faisal Nouroz
- Department of Botany, Hazara University, Mansehra, Pakistan
| |
Collapse
|
3
|
From Synapse to Function: A Perspective on the Role of Neuroproteomics in Elucidating Mechanisms of Drug Addiction. Proteomes 2018; 6:proteomes6040050. [PMID: 30544849 PMCID: PMC6315754 DOI: 10.3390/proteomes6040050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Drug addiction is a complex disorder driven by dysregulation in molecular signaling across several different brain regions. Limited therapeutic options currently exist for treating drug addiction and related psychiatric disorders in clinical populations, largely due to our incomplete understanding of the molecular pathways that influence addiction pathology. Recent work provides strong evidence that addiction-related behaviors emerge from the convergence of many subtle changes in molecular signaling networks that include neuropeptides (neuropeptidome), protein-protein interactions (interactome) and post-translational modifications such as protein phosphorylation (phosphoproteome). Advancements in mass spectrometry methodology are well positioned to identify these novel molecular underpinnings of addiction and further translate these findings into druggable targets for therapeutic development. In this review, we provide a general perspective of the utility of novel mass spectrometry-based approaches for addressing critical questions in addiction neuroscience, highlighting recent innovative studies that exemplify how functional assessments of the neuroproteome can provide insight into the mechanisms of drug addiction.
Collapse
|
4
|
Vidal-Infer A, Aleixandre-Benavent R, Lucas-Domínguez R, Sixto-Costoya A. The availability of raw data in substance abuse scientific journals. JOURNAL OF SUBSTANCE USE 2018. [DOI: 10.1080/14659891.2018.1489905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio Vidal-Infer
- Department of History of Science and Information Science, School of Medicine, University of Valencia, Valencia, Spain
- UISYS Research Unit, (CSIC – University of Valencia), Valencia, Spain
| | - Rafael Aleixandre-Benavent
- UISYS Research Unit, (CSIC – University of Valencia), Valencia, Spain
- Ingenio (CSIC – Universitat Politècnica de València), Valencia, Spain
| | - Rut Lucas-Domínguez
- Department of History of Science and Information Science, School of Medicine, University of Valencia, Valencia, Spain
- UISYS Research Unit, (CSIC – University of Valencia), Valencia, Spain
| | - Andrea Sixto-Costoya
- Department of History of Science and Information Science, School of Medicine, University of Valencia, Valencia, Spain
- UISYS Research Unit, (CSIC – University of Valencia), Valencia, Spain
| |
Collapse
|
5
|
Gandhi S, Banga I, Maurya PK, Eremin SA. A gold nanoparticle-single-chain fragment variable antibody as an immunoprobe for rapid detection of morphine by dipstick. RSC Adv 2018; 8:1511-1518. [PMID: 35540925 PMCID: PMC9077121 DOI: 10.1039/c7ra12810j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticle (AuNP)-based optical assays are of significant interest since the molecular phenomenon can be examined easily with change in the color of AuNPs. Herein, we report the development of a dipstick using a AuNP-labeled single-chain fragment variable (scFv) antibody for the detection of morphine. The scFv antibodies for morphine were developed using phage display-based antibody library. Immunoglobulin variable regions of heavy (V H)- and light (V L)-chain genes were connected via a glycine-serine linker isolated from murine immune repertoire and cloned into the expression vector pIT2. The scFv was produced in Escherichia coli HB2151, yielding a functional protein with a molecular weight of approximately 32 kDa. The morphine scFv was labeled with gold nanoparticles and used as an optical immunoprobe in a dipstick. The competitive dipstick assay characterized the ability of the scFv antibody to recognize free morphine. The detection range was 1-1000 ng mL-1 with a limit of detection (LOD) of 5 ng mL-1 under optimal conditions, and the IC50 value was 14 ng mL-1 for morphine. The developed optical dipstick kit of scFv antibody was capable of specifically binding to free morphine and its analogs in a solution in less than 5 min and could be useful for on-site screening of a real sample in blood, urine, and saliva.
Collapse
Affiliation(s)
- Sonu Gandhi
- Institute of Biotechnology, Amity University Sector-125 Noida-201313 India +91 971 769 3116
| | - Ivneet Banga
- Institute of Biotechnology, Amity University Sector-125 Noida-201313 India +91 971 769 3116
| | - Pawan Kumar Maurya
- Institute of Biotechnology, Amity University Sector-125 Noida-201313 India +91 971 769 3116
- Universidade Federal de Sao Paulo, Neuroscience Sao Paulo Sao Paulo BR 04023-900 Brazil
| | - Sergei A Eremin
- Faculty of Chemistry, M.V.Lomonosov Moscow State University Leninsky Gory, 1 119991 Moscow Russia
| |
Collapse
|
6
|
Wang L, Wu N, Zhao TY, Li J. The potential biomarkers of drug addiction: proteomic and metabolomics challenges. Biomarkers 2016; 21:678-685. [PMID: 27328859 DOI: 10.1080/1354750x.2016.1201530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.
Collapse
Affiliation(s)
- Lv Wang
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ning Wu
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Tai-Yun Zhao
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Jin Li
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
7
|
Gorini G, Adron Harris R, Dayne Mayfield R. Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacology 2014; 39:104-30. [PMID: 23900301 PMCID: PMC3857647 DOI: 10.1038/npp.2013.182] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction.
Collapse
Affiliation(s)
- Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Wang J, Yuan W, Li MD. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 2011; 44:269-86. [PMID: 21922273 DOI: 10.1007/s12035-011-8202-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA
| | | | | |
Collapse
|
9
|
Kultima K, Sköld K, Borén M. Biomarkers of disease and post-mortem changes - Heat stabilization, a necessary tool for measurement of protein regulation. J Proteomics 2011; 75:145-59. [PMID: 21708298 DOI: 10.1016/j.jprot.2011.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/25/2011] [Accepted: 06/07/2011] [Indexed: 12/25/2022]
Abstract
This review focuses on post sampling changes and how the Stabilizor system has been used to control this natural biological process and potential implications on cancer-specific biomarkers due to post sampling changes. Tissue sampling is a major traumatic event that can have drastic effects within a very short timeframe at the molecular level [1] resulting in loss of sample quality due to post-mortem changes. A heat-stabilization technology, using the Stabilizor system, has been developed to quickly and permanently abolish the enzymatic activity that causes these changes post-sampling and so preserve sample quality. The Stabilizor system has been shown to give better sample quality when analyzing a variety of tissues in various proteomic workflows. In this paper we discuss the impact of using heat-stabilized tissue in different proteomic applications. Based on our observations regarding the overlap between commonly changing proteins and proteins found to change post-mortem we also highlight a group of proteins of particular interest in cancer studies.
Collapse
Affiliation(s)
- Kim Kultima
- Analytical Chemistry, Department of Physical and Analytical Chemistry, Uppsala University, 75124, Uppsala, Sweden
| | | | | |
Collapse
|
10
|
Vanguilder HD, Freeman WM. The hippocampal neuroproteome with aging and cognitive decline: past progress and future directions. Front Aging Neurosci 2011; 3:8. [PMID: 21647399 PMCID: PMC3102218 DOI: 10.3389/fnagi.2011.00008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/12/2011] [Indexed: 01/12/2023] Open
Abstract
Although steady progress on understanding brain aging has been made over recent decades through standard anatomical, immunohistochemical, and biochemical techniques, the biological basis of non-neurodegenerative cognitive decline with aging remains to be determined. This is due in part to technical limitations of traditional approaches, in which only a small fraction of neurobiologically relevant proteins, mRNAs or metabolites can be assessed at a time. With the development and refinement of proteomic technologies that enable simultaneous quantitative assessment of hundreds to thousands of proteins, neuroproteomic studies of brain aging and cognitive decline are becoming more widespread. This review focuses on the contributions of neuroproteomic investigations to advances in our understanding of age-related deficits of hippocampus-dependent spatial learning and memory. Accumulating neuroproteomic data demonstrate that hippocampal aging involves common themes of dysregulated metabolism, increased oxidative stress, altered protein processing, and decreased synaptic function. Additionally, growing evidence suggests that cognitive decline does not represent a "more aged" phenotype, but rather is associated with specific neuroproteomic changes that occur in addition to age-related alterations. Understanding if and how age-related changes in the hippocampal neuroproteome contribute to cognitive decline and elucidating the pathways and processes that lead to cognitive decline are critical objectives that remain to be achieved. Progress in the field and challenges that remain to be addressed with regard to animal models, behavioral testing, and proteomic reporting are also discussed.
Collapse
Affiliation(s)
- Heather D Vanguilder
- Department of Pharmacology, Penn State College of Medicine, Milton S. Hershey Medical Center Hershey, PA, USA
| | | |
Collapse
|
11
|
|
12
|
Freeman WM, Lull ME, Patel KM, Brucklacher RM, Morgan D, Roberts DCS, Vrana KE. Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration. BMC Neurosci 2010; 11:29. [PMID: 20187946 PMCID: PMC2837051 DOI: 10.1186/1471-2202-11-29] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/26/2010] [Indexed: 11/23/2022] Open
Abstract
Background Many studies of cocaine-responsive gene expression have focused on changes occurring during cocaine exposure, but few studies have examined the persistence of these changes with cocaine abstinence. Persistent changes in gene expression, as well as alterations induced during abstinence may underlie long-lasting drug craving and relapse liability. Results Whole-genome expression analysis was conducted on a rat cocaine binge-abstinence model that has previously been demonstrated to engender increased drug seeking and taking with abstinence. Gene expression changes in two mesolimbic terminal fields (mPFC and NAc) were identified in a comparison of cocaine-naïve rats with rats after 10 days of cocaine self-administration followed by 1, 10, or 100 days of enforced abstinence (n = 6-11 per group). A total of 1,461 genes in the mPFC and 414 genes in the NAc were altered between at least two time points (ANOVA, p < 0.05; ± 1.4 fold-change). These genes can be subdivided into: 1) changes with cocaine self-administration that do not persist into periods of abstinence, 2) changes with cocaine self-administration that persist with abstinence, 3) and those not changed with cocaine self-administration, but changed during enforced abstinence. qPCR analysis was conducted to confirm gene expression changes observed in the microarray analysis. Conclusions Together, these changes help to illuminate processes and networks involved in abstinence-induced behaviors, including synaptic plasticity, MAPK signaling, and TNF signaling.
Collapse
Affiliation(s)
- Willard M Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | |
Collapse
|