1
|
Jiang L, Han X, Wang Y, Ding W, Sun Y, Zhou Y, Lin F. Anterior and posterior cerebral white matter show different patterns of microstructural alterations in young adult smokers. Brain Imaging Behav 2025; 19:195-203. [PMID: 39715889 DOI: 10.1007/s11682-024-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Neuroimaging studies revealed that smoking is associated with abnormal white matter (WM) microstructure. However, results are controversial, and the impact of smoking on the WM integrity in young smokers is still unclear. In this study, we used diffusion tensor imaging to investigate the smoking-related WM alterations in young adult smokers. One hundred and twenty-six subjects (60 current smokers and 66 nonsmokers) aged 18-29 years participated in the study. The tract-based spatial statistics with multiple diffusion indices was applied to explore diffusivity patterns associated with smoking. Correlation analysis was performed to evaluate relationships between fractional anisotropy (FA) and smoking-related variables in young adult smokers. Compared with nonsmokers, young adult smokers showed higher FA dominantly in the anterior cerebral WM regions, while lower FA mainly in the posterior cerebral WM areas. The dominant diffusivity pattern for regions with larger FA was characterized by lower radial and axial diffusion (Dr and Da), while in areas with smaller FA, higher Dr without significant difference in Da was the main diffusivity pattern. Moreover, diffusion indices in the genu and body of the corpus callosum were related with smoking-related variables. Our findings indicate that smoking may have differential effects on the WM integrity in the anterior and posterior parts of the brain, and may also accelerate brain aging in young adult smokers.
Collapse
Affiliation(s)
- Lei Jiang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China.
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
2
|
McCurdy LY, DeVito EE, Loya JM, Nich C, Zhai ZW, Kiluk BD, Potenza MN. Structural brain changes associated with cocaine use and digital cognitive behavioral therapy in cocaine use disorder treatment. DRUG AND ALCOHOL DEPENDENCE REPORTS 2024; 11:100246. [PMID: 38966567 PMCID: PMC11222934 DOI: 10.1016/j.dadr.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
Background Few studies have investigated changes in brain structure and function associated with recovery from cocaine use disorder (CUD), and fewer still have identified brain changes associated with specific CUD treatments, which could inform treatment development and optimization. Methods In this longitudinal study, T1-weighted magnetic resonance imaging scans were acquired from 41 methadone-maintained individuals with CUD (15 women) at the beginning of and after 12 weeks of outpatient treatment. As part of a larger randomized controlled trial, these participants were randomly assigned to receive (or not) computer-based training for cognitive behavioral therapy (CBT4CBT), and galantamine (or placebo). Results Irrespective of treatment condition, whole-brain voxel-based morphometry analyses revealed a significant decrease in right caudate body, bilateral cerebellum, and right middle temporal gyrus gray matter volume (GMV) at post-treatment relative to the start of treatment. Subsequent region of interest analyses found that greater reductions in right caudate and bilateral cerebellar GMV were associated with higher relative and absolute levels of cocaine use during treatment, respectively. Participants who completed more CBT4CBT modules had a greater reduction in right middle temporal gyrus GMV. Conclusions These results extend previous findings regarding changes in caudate and cerebellar GMV as a function of cocaine use and provide the first evidence of a change in brain structure as a function of engagement in digital CBT for addiction. These data suggest a novel potential mechanism underlying how CBT4CBT and CBT more broadly may exert therapeutic effects on substance-use-related behaviors through brain regions implicated in semantic knowledge.
Collapse
Affiliation(s)
- Li Yan McCurdy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Elise E. DeVito
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jennifer M. Loya
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Charla Nich
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Zu Wei Zhai
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Brian D. Kiluk
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
- The Connecticut Mental Health Center, New Haven, CT 06519, USA
- The Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA
| |
Collapse
|
3
|
Murnane KS, Edinoff AN, Cornett EM, Kaye AD. Updated Perspectives on the Neurobiology of Substance Use Disorders Using Neuroimaging. Subst Abuse Rehabil 2023; 14:99-111. [PMID: 37583934 PMCID: PMC10424678 DOI: 10.2147/sar.s362861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
Substance use problems impair social functioning, academic achievement, and employability. Psychological, biological, social, and environmental factors can contribute to substance use disorders. In recent years, neuroimaging breakthroughs have helped elucidate the mechanisms of substance misuse and its effects on the brain. Functional magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance spectroscopy (MRS) are all examples. Neuroimaging studies suggest substance misuse affects executive function, reward, memory, and stress systems. Recent neuroimaging research attempts have provided clinicians with improved tools to diagnose patients who misuse substances, comprehend the complicated neuroanatomy and neurobiology involved, and devise individually tailored and monitorable treatment regimens for individuals with substance use disorders. This review describes the most recent developments in drug misuse neuroimaging, including the neurobiology of substance use disorders, neuroimaging, and substance use disorders, established neuroimaging techniques, recent developments with established neuroimaging techniques and substance use disorders, and emerging clinical neuroimaging technology.
Collapse
Affiliation(s)
- Kevin S Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Amber N Edinoff
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| |
Collapse
|
4
|
Porrino LJ, Smith HR, Beveridge TJR, Miller MD, Nader SH, Nader MA. Residual deficits in functional brain activity after chronic cocaine self-administration in rhesus monkeys. Neuropsychopharmacology 2023; 48:290-298. [PMID: 34385608 PMCID: PMC9751134 DOI: 10.1038/s41386-021-01136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
Previous studies in humans and in animals have shown dramatic effects of cocaine on measures of brain function that persist into abstinence. The purpose of this study was to examine the neurobiological consequences of abstinence from cocaine, using a model that removes the potential confound of cocaine cues. Adult male rhesus monkeys self-administered cocaine (0.3 mg/kg/injection; N = 8) during daily sessions or served as food-reinforcement controls (N = 4). Two times per week, monkeys were placed in a neutral environment and presented with a cartoon video for ~30 min, sometimes pre- and sometimes post-operant session, but no reinforcement was presented during the video. After ~100 sessions and when the cocaine groups had self-administered 900 mg/kg cocaine, the final experimental condition was a terminal 2-[14C]-deoxyglucose procedure, which occurred in the neutral (cartoon video) environment; for half of the monkeys in each group, this occurred after 1 day of abstinence and for the others after 30 days of abstinence. Rates of local cerebral glucose metabolism were measured in 57 brain regions. Global rates of cerebral metabolism were significantly lower in animals 1 day and 30 days post-cocaine self-administration when compared to those of food-reinforced controls. Effects were larger in 30- vs. 1-day cocaine abstinence, especially in prefrontal, parietal and cingulate cortex, as well as dorsal striatum and thalamus. Because these measures were obtained from monkeys while in a neutral environment, the deficits in glucose utilization can be attributed to the consequences of cocaine exposure and not to effects of conditioned stimuli associated with cocaine.
Collapse
Affiliation(s)
- Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Mack D Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
5
|
King SG, Gaudreault PO, Malaker P, Kim JW, Alia-Klein N, Xu J, Goldstein RZ. Prefrontal-habenular microstructural impairments in human cocaine and heroin addiction. Neuron 2022; 110:3820-3832.e4. [PMID: 36206758 PMCID: PMC9671835 DOI: 10.1016/j.neuron.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The habenula (Hb) is central to adaptive reward- and aversion-driven behaviors, comprising a hub for higher-order processing networks involving the prefrontal cortex (PFC). Despite an established role in preclinical models of cocaine addiction, the translational significance of the Hb and its connectivity with the PFC in humans is unclear. Using diffusion tractography, we detailed PFC structural connectivity with the Hb and two control regions, quantifying tract-specific microstructural features in healthy and cocaine-addicted individuals. White matter was uniquely impaired in PFC-Hb projections in both short-term abstainers and current cocaine users. Abnormalities in this tract further generalized to an independent sample of heroin-addicted individuals and were associated, in an exploratory analysis, with earlier onset of drug use across the addiction subgroups, potentially serving as a predisposing marker amenable for early intervention. Importantly, these findings contextualize a plausible PFC-Hb circuit in the human brain, supporting preclinical evidence for its impairment in cocaine addiction.
Collapse
Affiliation(s)
- Sarah G King
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre-Olivier Gaudreault
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Yoshihara Y, Kato T, Watanabe D, Fukumoto M, Wada K, Oishi N, Nakakura T, Kuriyama K, Shirasaka T, Murai T. Altered white matter microstructure and neurocognitive function of HIV-infected patients with low nadir CD4. J Neurovirol 2022; 28:355-366. [PMID: 35776340 DOI: 10.1007/s13365-022-01053-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 10/17/2022]
Abstract
Altered white matter microstructure has been reported repeatedly using diffusion tensor imaging (DTI) in HIV-associated neurocognitive disorders. However, the associations between neurocognitive deficits and impaired white matter remains obscure due to frequent physical and psychiatric comorbidities in the patients. Severe immune suppression, reflected by low nadir CD4 T-cell counts, is reported to be associated with the neurocognitive deficits in the patients. In the present study, we examined white matter integrity using DTI and tract-based spatial statistics (TBSS), and neurocognitive functions using a battery of tests, in 15 HIV-infected patients with low nadir CD4, 16 HIV-infected patients with high nadir CD4, and 33 age- and sex-matched healthy controls. As DTI measures, we analyzed fractional anisotropy (FA) and mean diffusivity (MD). In addition, we investigated the correlation between white matter impairments and neurocognitive deficits. Among the three participant groups, the patients with low nadir CD4 showed significantly lower performance in processing speed and motor skills, and had significantly increased MD in widespread regions of white matter in both hemispheres. In the patients with low nadir CD4, there was a significant negative correlation between motor skills and MD in the right motor tracts, as well as in the corpus callosum. In summary, this study may provide white matter correlates of neurocognitive deficits in HIV-infected patients with past severe immune suppression as legacy effects.
Collapse
Affiliation(s)
- Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tadatsugu Kato
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Dai Watanabe
- AIDS Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masaji Fukumoto
- Department of Radiology, National Hospital Organization Higashi-Ohmi General Medical Center, Shiga, Japan
| | - Keiko Wada
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Nakakura
- Department of Psychology, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Keiko Kuriyama
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takuma Shirasaka
- AIDS Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Rasgado-Toledo J, Shah A, Ingalhalikar M, Garza-Villarreal EA. Neurite orientation dispersion and density imaging in cocaine use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110474. [PMID: 34758367 DOI: 10.1016/j.pnpbp.2021.110474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
Cocaine use disorder (CUD) is characterized by a compulsive search for cocaine. Several studies have shown that cocaine users exhibit cognitive deficits, including lack of inhibition and decision-making as well as brain volume and diffusion-based white-matter alterations in a wide variety of brain regions. However, the non-specificity of standard volumetric and diffusion-tensor methods to detect structural micropathology may lead to wrong conclusions. To better understand microstructural pathology in CUD, we analyzed 60 CUD participants (3 female) and 43 non-CUD controls (HC; 2 female) retrospectively from our cross-sectional Mexican SUD neuroimaging dataset (SUDMEX-CONN), using multi-shell diffusion-weighted imaging and the neurite orientation dispersion and density imaging (NODDI) analysis, which aims to more accurately model microstructural pathology. We used Viso values of NODDI that employ a three-compartment model in white (WM) and gray-matter (GM). These values were also correlated with clinical measures, including psychiatric severity status, impulsive behavior and pattern of cocaine and tobacco use in the CUD group. We found higher whole-brain microstructural pathology in WM and GM in CUD patients than controls. ROI analysis revealed higher Viso-NODDI values in superior longitudinal fasciculus, cingulum, hippocampus cingulum, forceps minor and Uncinate fasciculus, as well as in frontal and parieto-temporal GM structures. We also found correlations between significant ROI and impulsivity, onset age of cocaine use and weekly dosage with Viso-NODDI. However, we did not find correlations with psychopathology measures. Overall, although their clinical relevance remains questionable, microstructural pathology seems to be present in CUD both in gray and white matter.
Collapse
Affiliation(s)
- Jalil Rasgado-Toledo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro, Mexico
| | - Apurva Shah
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, India
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
8
|
Alballa T, Boone EL, Ma L, Snyder A, Moeller FG. Exploring the relationship between white matter integrity, cocaine use and GAD polymorphisms using Bayesian Model Averaging. PLoS One 2021; 16:e0254776. [PMID: 34310624 PMCID: PMC8312937 DOI: 10.1371/journal.pone.0254776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Past investigations utilizing diffusion tensor imaging (DTI) have demonstrated that cocaine use disorder (CUD) yields white matter changes, primarily in the corpus callosum. By applying Bayesian model averaging using multiple linear regression in DTI, we demonstrate there may exist relationships between the impaired white matter and glutamic acid decarboxylase (GAD) polymorphisms. This work explored the two-way and three-way interactions between GAD1a (SNP: rs1978340) and GAD1b (SNP: rs769390) polymorphisms and years of cocaine use (YCU). GAD1a was associated with more frontal white matter changes on its own but GAD1b was associated with more midbrain and cerebellar changes as well as a greater increase in white matter changes in the context of chronic cocaine use. The three-way interaction GAD1a|GAD1b|YCU appeared to be roughly an average of the polymorphism two-way interactions GAD1a|YCU and GAD1b|YCU. The three-way interaction demonstrated multiple regions including corpus callosum which featured fewer significant voxel changes, perhaps suggesting a small protective effect of having both polymorphisms on corpus callosum and cerebellar peduncle.
Collapse
Affiliation(s)
- Tmader Alballa
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Mathematical Sciences Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Edward L. Boone
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Liangsuo Ma
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrew Snyder
- C. Kenneth and Dianne Wright, Center for Clinical Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - F. Gerard Moeller
- Institute of Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- C. Kenneth and Dianne Wright, Center for Clinical Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
9
|
Tondo LP, Viola TW, Fries GR, Kluwe-Schiavon B, Rothmann LM, Cupertino R, Ferreira P, Franco AR, Lane SD, Stertz L, Zhao Z, Hu R, Meyer T, Schmitz JM, Walss-Bass C, Grassi-Oliveira R. White matter deficits in cocaine use disorder: convergent evidence from in vivo diffusion tensor imaging and ex vivo proteomic analysis. Transl Psychiatry 2021; 11:252. [PMID: 33911068 PMCID: PMC8081729 DOI: 10.1038/s41398-021-01367-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022] Open
Abstract
White matter (WM) abnormalities in patients with cocaine use disorder (CUD) have been studied; however, the reported effects on the human brain are heterogenous and most results have been obtained from male participants. In addition, biological data supporting the imaging findings and revealing possible mechanisms underlying the neurotoxic effects of chronic cocaine use (CU) on WM are largely restricted to animal studies. To evaluate the neurotoxic effects of CU in the WM, we performed an in vivo diffusion tensor imaging assessment of male and female cocaine users (n = 75) and healthy controls (HC) (n = 58). Moreover, we performed an ex vivo large-scale proteomic analysis using liquid chromatography-tandem mass spectrometry in postmortem brains of patients with CUD (n = 8) and HC (n = 12). Compared with the HC, the CUD group showed significant reductions in global fractional anisotropy (FA) (p < 0.001), and an increase in global mean (MD) and radial diffusion (RD) (both p < 0.001). The results revealed that FA, RD, and MD alterations in the CUD group were widespread along the major WM tracts, after analysis using the tract-based special statistics approach. Global FA was negatively associated with years of CU (p = 0.0421) and female sex (p < 0.001), but not with years of alcohol or nicotine use. Concerning the fibers connecting the left to the right prefrontal cortex, Brodmann area 9 (BA9), the CUD group presented lower FA (p = 0.006) and higher RD (p < 0.001) values compared with the HC group. A negative association between the duration of CU in life and FA values in this tract was also observed (p = 0.019). Proteomics analyses in BA9 found 11 proteins differentially expressed between cocaine users and controls. Among these, were proteins related to myelination and neuroinflammation. In summary, we demonstrate convergent evidence from in vivo diffusion tensor imaging and ex vivo proteomics analysis of WM disruption in CUD.
Collapse
Affiliation(s)
- Lucca Pizzato Tondo
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriel R Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruno Kluwe-Schiavon
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Mello Rothmann
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Renata Cupertino
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Pedro Ferreira
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Scott D Lane
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas Meyer
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joy M Schmitz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Race, Socioeconomic Status, and Cerebellum Cortex Fractional Anisotropy in Pre-Adolescents. ADOLESCENTS 2021; 1:70-94. [PMID: 34095893 DOI: 10.3390/adolescents1020007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction Cerebellum cortex fractional anisotropy is a proxy of the integrity of the cerebellum cortex. However, less is known about how it is shaped by race and socioeconomic status (SES) indicators such as parental education and household income. Purpose In a national sample of American pre-adolescents, this study had two aims: to test the effects of two SES indicators, namely parental education and household income, on cerebellum cortex fractional anisotropy, and to explore racial differences in these effects. Methods Using data from the Adolescent Brain Cognitive Development (ABCD) study, we analyzed the diffusion Magnetic Resonance Imaging (dMRI) data of 9565, 9-10-year-old pre-adolescents. The main outcomes were cerebellum cortex fractional anisotropy separately calculated for right and left hemispheres using dMRI. The independent variables were parental education and household income; both treated as categorical variables. Age, sex, ethnicity, and family marital status were the covariates. Race was the moderator. To analyze the data, we used mixed-effects regression models without and with interaction terms. We controlled for propensity score and MRI device. Results High parental education and household income were associated with lower right and left cerebellum cortex fractional anisotropy. In the pooled sample, we found significant interactions between race and parental education and household income, suggesting that the effects of parental education and household income on the right and left cerebellum cortex fractional anisotropy are all significantly larger for White than for Black pre-adolescents. Conclusions The effects of SES indicators, namely parental education and household income, on pre-adolescents' cerebellum cortex microstructure and integrity are weaker in Black than in White families. This finding is in line with the Marginalization-related Diminished Returns (MDRs), defined as weaker effects of SES indicators for Blacks and other racial and minority groups than for Whites.
Collapse
|
11
|
Suchting R, Beard CL, Schmitz JM, Soder HE, Yoon JH, Hasan KM, Narayana PA, Lane SD. A meta-analysis of tract-based spatial statistics studies examining white matter integrity in cocaine use disorder. Addict Biol 2021; 26:e12902. [PMID: 32267062 DOI: 10.1111/adb.12902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) studies have consistently shown diminished white matter (WM) integrity for individuals with cocaine use disorder (CUD). The present study used seed-based d mapping (SDM) to determine the extent to which a systematic difference in the WM integrity of cocaine users may exist (as compared with that of healthy controls). Articles from 2006 (when TBSS was first developed) to present were reviewed, with eight selected for inclusion. Meta-analysis found lower fractional anisotropy (FA) in the genu of the corpus callosum for cocaine users, with a small-to-moderate peak effect size (Hedge's g = -0.331). Sensitivity analyses mostly supported the robustness of the obtained difference. Differences detected at exploratory thresholds for significance suggested insult to WM integrity extending beyond the corpus callosum. The present results compliment a previous region-of-interest (ROI)-based meta-analysis of DTI studies in individuals with CUD. These findings have significant implications for the potential role of neuroprotective agents in the treatment of CUD and merit additional iteration as more studies accrue in the literature.
Collapse
Affiliation(s)
- Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | | | - Joy M. Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Heather E. Soder
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Jin H. Yoon
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Khader M. Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| | - Scott D. Lane
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School University of Texas Health Science Center at Houston Houston TX USA
| |
Collapse
|
12
|
Stewart JL, May AC, Paulus MP. Bouncing back: Brain rehabilitation amid opioid and stimulant epidemics. NEUROIMAGE-CLINICAL 2019; 24:102068. [PMID: 31795056 PMCID: PMC6978215 DOI: 10.1016/j.nicl.2019.102068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Frontoparietal event related potentials predict/track recovery. Frontostriatal functional magnetic resonance imaging signals predict/track recovery. Transcranial magnetic left prefrontal stimulation reduces craving and drug use.
Recent methamphetamine and opioid use epidemics are a major public health concern. Chronic stimulant and opioid use are characterized by significant psychosocial, physical and mental health costs, repeated relapse, and heightened risk of early death. Neuroimaging research highlights deficits in brain processes and circuitry that are linked to responsivity to drug cues over natural rewards as well as suboptimal goal-directed decision-making. Despite the need for interventions, little is known about (1) how the brain changes with prolonged abstinence or as a function of various treatments; and (2) how symptoms change as a result of neuromodulation. This review focuses on the question: What do we know about changes in brain function during recovery from opioids and stimulants such as methamphetamine and cocaine? We provide a detailed overview and critique of published research employing a wide array of neuroimaging methods – functional and structural magnetic resonance imaging, electroencephalography, event-related potentials, diffusion tensor imaging, and multiple brain stimulation technologies along with neurofeedback – to track or induce changes in drug craving, abstinence, and treatment success in stimulant and opioid users. Despite the surge of methamphetamine and opioid use in recent years, most of the research on neuroimaging techniques for recovery focuses on cocaine use. This review highlights two main findings: (1) interventions can lead to improvements in brain function, particularly in frontal regions implicated in goal-directed behavior and cognitive control, paired with reduced drug urges/craving; and (2) the targeting of striatal mechanisms implicated in drug reward may not be as cost-effective as prefrontal mechanisms, given that deep brain stimulation methods require surgery and months of intervention to produce effects. Overall, more studies are needed to replicate and confirm findings, particularly for individuals with opioid and methamphetamine use disorders.
Collapse
Affiliation(s)
- Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States.
| | - April C May
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
13
|
Hiebler-Ragger M, Unterrainer HF. The Role of Attachment in Poly-Drug Use Disorder: An Overview of the Literature, Recent Findings and Clinical Implications. Front Psychiatry 2019; 10:579. [PMID: 31507461 PMCID: PMC6720034 DOI: 10.3389/fpsyt.2019.00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Substance use disorders (SUDs) represent a worldwide epidemic with extensive costs to the individual and to society. Occasionally described as an attachment disorder, they have been linked to various impairments in self-regulation and social functioning. However, while there have been significant advances in the development and validation of treatment strategies for SUD in recent years, the components of these treatment approaches have yet to be fully explored. The characteristics of polydrug use disorder (PUD) especially need to be addressed in more detail, as this diagnosis is highly common in individuals seeking treatment, while simultaneously being associated with poor treatment success. Aim and Scope: This review aims at further exploring the relevance of attachment in PUD and its treatment. To this end, this review provides a concise summary of relevant theories on the development and treatment of SUD in general, including related parameters of attachment, emotion regulation, and neuroscience. Furthermore, several studies focused specifically on PUD are described in more detail. These studies explored the connections between attachment, personality structure, primary and higher emotions (including spirituality), as well as structural and functional neural parameters in inpatients with PUD as well as in healthy controls. Most notably, the described studies highlight that insecure attachment and impairments in personality structure are present in inpatients with PUD. In addition, these characteristics are paralleled by extensive impairments in white matter integrity, especially in tracts connected to facets of emotion regulation. Conclusions: Based on our findings, we emphasize conceptualization of PUD as an Attachment Disorder, on a behavioral as well as on a neural level. Furthermore, we point out the importance of an integrated bio-psycho-social approach in this research area. Consequently, future studies might more closely focus on the influence of attachment-based interventions on emotion regulation abilities as well as a potentially related neuroplasticity. Neuroplastic changes, which are still rather unexplored, might represent important parameters for the assessment of treatment outcomes especially in long-term SUD treatment.
Collapse
Affiliation(s)
- Michaela Hiebler-Ragger
- Department for Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
- Center for Integrative Addiction Research (CIAR), Gruener Kreis Society, Vienna, Austria
| | - Human-Friedrich Unterrainer
- Department for Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Austria
- Center for Integrative Addiction Research (CIAR), Gruener Kreis Society, Vienna, Austria
- Department of Religious Studies, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Beard CL, Schmitz JM, Soder HE, Suchting R, Yoon JH, Hasan KM, Narayana PA, Moeller FG, Lane SD. Regional differences in white matter integrity in stimulant use disorders: A meta-analysis of diffusion tensor imaging studies. Drug Alcohol Depend 2019; 201:29-37. [PMID: 31176066 PMCID: PMC6660908 DOI: 10.1016/j.drugalcdep.2019.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Converging lines of evidence from diffusion tensor imaging (DTI) studies reveal significant alterations in white matter (WM) microstructure in the prefrontal cortex of chronic stimulant users compared to controls, suggesting compromised axonal microstructure and/or myelin. METHODS A meta-analysis of DTI-based WM integrity was conducted for white matter regions across the corpus callosum and association fibers. Articles were sourced and selected using PRISMA guidelines for systematic review and meta-analysis. Inclusion and exclusion criteria were determined by the authors in order to best capture WM integrity among individuals with primary stimulant use in comparison to healthy control subjects. RESULTS Eleven studies that focused on region-of-interest (ROI)-based analysis of WM integrity were extracted from an initial pool of 113 independent studies. Analysis across ROIs indicated significantly lower fractional anisotropy (FA) values in stimulant use groups compared to controls with a small to moderate overall effect (Hedges' g = -0.37, 95% CI [-0.54, -0.20]). Eigenvalues were also analyzed, revealing a significant effect for radial diffusivity (RD; Hedges' g = 0.24, 95% CI [0.01, 0.47]) but not axial diffusivity (AD; Hedges' g = 0.05, 95% CI [-0.20, 0.29]) or mean diffusivity (MD; Hedges' g = 0.20, 95% CI [-0.01, 0.41]). Subgroup analyses based on specific ROIs, primary substance use, poly-substance use, and imaging technology were also explored. CONCLUSION Results of the present study suggest a consistent effect of compromised WM integrity for individuals with stimulant use disorders. Furthermore, no significant differences were found between cocaine and methamphetamine-based groups.
Collapse
Affiliation(s)
- Charlotte L Beard
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA; Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA.
| | - Heather E Soder
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Robert Suchting
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Jin H Yoon
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | | | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| |
Collapse
|
15
|
Hampton WH, Hanik IM, Olson IR. Substance abuse and white matter: Findings, limitations, and future of diffusion tensor imaging research. Drug Alcohol Depend 2019; 197:288-298. [PMID: 30875650 PMCID: PMC6440853 DOI: 10.1016/j.drugalcdep.2019.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Individuals who abuse substances often differ from nonusers in their brain structure. Substance abuse and addiction is often associated with atrophy and pathology of grey matter, but much less is known about the role of white matter, which constitutes over half of human brain volume. Diffusion tensor imaging (DTI), a method for non-invasively estimating white matter, is increasingly being used to study addiction and substance abuse. Here we review recent DTI studies of major substances of abuse (alcohol, opiates, cocaine, cannabis, and nicotine substance abuse) to examine the relationship, specificity, causality, and permanence of substance-related differences in white matter microstructure. Across substance, users tended to exhibit differences in the microstructure of major fiber pathways, such as the corpus callosum. The direction of these differences, however, appeared substance-dependent. The subsample of longitudinal studies reviewed suggests that substance abuse may cause changes in white matter, though it is unclear to what extent such alterations are permanent. While collectively informative, some studies reviewed were limited by methodological and technical approach. We therefore also provide methodological guidance for future research using DTI to study substance abuse.
Collapse
Affiliation(s)
- William H Hampton
- Department of Psychology, College of Liberal Arts, Temple University, United States
| | - Italia M Hanik
- Department of Psychology, College of Liberal Arts, Temple University, United States
| | - Ingrid R Olson
- Department of Psychology, College of Liberal Arts, Temple University, United States.
| |
Collapse
|
16
|
Regional elevations in microglial activation and cerebral glucose utilization in frontal white matter tracts of rhesus monkeys following prolonged cocaine self-administration. Brain Struct Funct 2019; 224:1417-1428. [PMID: 30747315 DOI: 10.1007/s00429-019-01846-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
It has been shown that exposure to cocaine can result in neuroinflammatory responses. Microglia, the resident CNS immune cells, undergo a transition to an activated state when challenged. In rodents, and possibly humans, cocaine exposure activates microglia. The goal of this study was to assess the extent and magnitude of microglial activation in rhesus monkeys with an extensive history of cocaine self-administration. Male rhesus monkeys (N = 4/group) were trained to respond on a fixed-interval 3-min schedule of food or 0.3 mg/kg/injection cocaine presentation (30 reinforcers/session) for 300 sessions. At the end of the final session, monkeys were administered 2-[14C]deoxyglucose intravenously and 45 min later euthanized. Brain sections were used for autoradiographic assessments of glucose utilization and for microglia activation with [3H]PK11195, a marker for the microglial 18-kDa translocator protein. There were no group differences in gray matter [3H]PK11195 binding, while binding was significantly greater in cocaine self-administration animals as compared to food controls in 8 of the 11 white matter tracts measured at the striatal level. Binding did not differ from control at other levels. There were also significant increases in white matter local cerebral glucose utilization at the striatal level, which were positively correlated with [3H]PK11195 binding. The present findings demonstrate an elevation in [3H]PK11195 binding in forebrain white matter tracts of nonhuman primates with a prolonged history of cocaine self-administration. These elevations were also associated with greater cerebral metabolic rates. These data suggest that white matter deficits may contribute to behavioral, motivational, and cognitive impairments observed in cocaine abusers.
Collapse
|
17
|
Tannous J, Mwangi B, Hasan KM, Narayana PA, Steinberg JL, Walss-Bass C, Moeller FG, Schmitz JM, Lane SD. Measures of possible allostatic load in comorbid cocaine and alcohol use disorder: Brain white matter integrity, telomere length, and anti-saccade performance. PLoS One 2019; 14:e0199729. [PMID: 30625144 PMCID: PMC6326479 DOI: 10.1371/journal.pone.0199729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 12/03/2022] Open
Abstract
Chronic cocaine and alcohol use impart significant stress on biological and cognitive systems, resulting in changes consistent with an allostatic load model of neurocognitive impairment. The present study measured potential markers of allostatic load in individuals with comorbid cocaine/alcohol use disorders (CUD/AUD) and control subjects. Measures of brain white matter (WM), telomere length, and impulsivity/attentional bias were obtained. WM (CUD/AUD only) was indexed by diffusion tensor imaging metrics, including radial diffusivity (RD) and fractional anisotropy (FA). Telomere length was indexed by the telomere to single copy gene (T/S) ratio. Impulsivity and attentional bias to drug cues were measured via eye-tracking, and were also modeled using the Hierarchical Diffusion Drift Model (HDDM). Average whole-brain RD and FA were associated with years of cocaine use (R2 = 0.56 and 0.51, both p < .005) but not years of alcohol use. CUD/AUD subjects showed more anti-saccade errors (p < .01), greater attentional bias scores (p < .001), and higher HDDM drift rates on cocaine-cue trials (Bayesian probability CUD/AUD > control = p > 0.99). Telomere length was shorter in CUD/AUD, but the difference was not statistically significant. Within the CUD/AUD group, exploratory regression using an elastic-net model determined that more years of cocaine use, older age, larger HDDM drift rate differences and shorter telomere length were all predictive of WM as measured by RD (model R2 = 0.79). Collectively, the results provide modest support linking CUD/AUD to putative markers of allostatic load.
Collapse
Affiliation(s)
- Jonika Tannous
- Program in Neuroscience, UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Benson Mwangi
- Department of Psychiatry & Behavioral Sciences, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Khader M. Hasan
- Department of Diagnostic and Interventional Imaging, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Ponnada A. Narayana
- Program in Neuroscience, UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Diagnostic and Interventional Imaging, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Joel L. Steinberg
- Department of Psychiatry, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Consuelo Walss-Bass
- Program in Neuroscience, UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Psychiatry & Behavioral Sciences, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - F. Gerard Moeller
- Department of Psychiatry, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joy M. Schmitz
- Department of Psychiatry & Behavioral Sciences, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Scott D. Lane
- Program in Neuroscience, UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Psychiatry & Behavioral Sciences, UTHealth McGovern Medical School, Houston, Texas, United States of America
| |
Collapse
|
18
|
Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ. The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0028. [PMID: 29352027 DOI: 10.1098/rstb.2017.0028] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Impairments in response inhibition and salience attribution (iRISA) have been proposed to underlie the clinical symptoms of drug addiction as mediated by cortico-striatal-thalamo-cortical networks. The bulk of evidence supporting the iRISA model comes from neuroimaging research that has focused on cortical and striatal influences with less emphasis on the role of the thalamus. Here, we highlight the importance of the thalamus in drug addiction, focusing on animal literature findings on thalamic nuclei in the context of drug-seeking, structural and functional changes of the thalamus as measured by imaging studies in human drug addiction, particularly during drug cue and non-drug reward processing, and response inhibition tasks. Findings from the animal literature suggest that the paraventricular nucleus of the thalamus, the lateral habenula and the mediodorsal nucleus may be involved in the reinstatement, extinction and expression of drug-seeking behaviours. In support of the iRISA model, the human addiction imaging literature demonstrates enhanced thalamus activation when reacting to drug cues and reduced thalamus activation during response inhibition. This pattern of response was further associated with the severity of, and relapse in, drug addiction. Future animal studies could widen their field of focus by investigating the specific role(s) of different thalamic nuclei in different phases of the addiction cycle. Similarly, future human imaging studies should aim to specifically delineate the structure and function of different thalamic nuclei, for example, through the application of advanced imaging protocols at higher magnetic fields (7 Tesla).This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Anna S Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Suzanne N Haber
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester, Rochester, NY, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Verdejo-Garcia A, Lorenzetti V, Manning V, Piercy H, Bruno R, Hester R, Pennington D, Tolomeo S, Arunogiri S, Bates ME, Bowden-Jones H, Campanella S, Daughters SB, Kouimtsidis C, Lubman DI, Meyerhoff DJ, Ralph A, Rezapour T, Tavakoli H, Zare-Bidoky M, Zilverstand A, Steele D, Moeller SJ, Paulus M, Baldacchino A, Ekhtiari H. A Roadmap for Integrating Neuroscience Into Addiction Treatment: A Consensus of the Neuroscience Interest Group of the International Society of Addiction Medicine. Front Psychiatry 2019; 10:877. [PMID: 31920740 PMCID: PMC6935942 DOI: 10.3389/fpsyt.2019.00877] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/06/2019] [Indexed: 01/01/2023] Open
Abstract
Although there is general consensus that altered brain structure and function underpins addictive disorders, clinicians working in addiction treatment rarely incorporate neuroscience-informed approaches into their practice. We recently launched the Neuroscience Interest Group within the International Society of Addiction Medicine (ISAM-NIG) to promote initiatives to bridge this gap. This article summarizes the ISAM-NIG key priorities and strategies to achieve implementation of addiction neuroscience knowledge and tools for the assessment and treatment of substance use disorders. We cover two assessment areas: cognitive assessment and neuroimaging, and two interventional areas: cognitive training/remediation and neuromodulation, where we identify key challenges and proposed solutions. We reason that incorporating cognitive assessment into clinical settings requires the identification of constructs that predict meaningful clinical outcomes. Other requirements are the development of measures that are easily-administered, reliable, and ecologically-valid. Translation of neuroimaging techniques requires the development of diagnostic and prognostic biomarkers and testing the cost-effectiveness of these biomarkers in individualized prediction algorithms for relapse prevention and treatment selection. Integration of cognitive assessments with neuroimaging can provide multilevel targets including neural, cognitive, and behavioral outcomes for neuroscience-informed interventions. Application of neuroscience-informed interventions including cognitive training/remediation and neuromodulation requires clear pathways to design treatments based on multilevel targets, additional evidence from randomized trials and subsequent clinical implementation, including evaluation of cost-effectiveness. We propose to address these challenges by promoting international collaboration between researchers and clinicians, developing harmonized protocols and data management systems, and prioritizing multi-site research that focuses on improving clinical outcomes.
Collapse
Affiliation(s)
- Antonio Verdejo-Garcia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Valentina Lorenzetti
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Canberra, ACT, Australia
| | - Victoria Manning
- Eastern Health Clinical School Turning Point, Eastern Health, Richmond, VIC, Australia.,Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
| | - Hugh Piercy
- Eastern Health Clinical School Turning Point, Eastern Health, Richmond, VIC, Australia.,Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
| | - Raimondo Bruno
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rob Hester
- School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - David Pennington
- San Francisco Veterans Affairs Health Care System (SFVAHCS), San Francisco, CA, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Serenella Tolomeo
- School of Medicine, University of St Andrews, Medical and Biological Science Building, North Haugh, St Andrews, United Kingdom.,Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Shalini Arunogiri
- Eastern Health Clinical School Turning Point, Eastern Health, Richmond, VIC, Australia.,Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
| | - Marsha E Bates
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, United States
| | | | - Salvatore Campanella
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Stacey B Daughters
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Christos Kouimtsidis
- Department of Psychiatry, Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, United Kingdom
| | - Dan I Lubman
- Eastern Health Clinical School Turning Point, Eastern Health, Richmond, VIC, Australia
| | - Dieter J Meyerhoff
- DVA Medical Center and Department of Radiology and Biomedical Imaging, University of California San Francisco, School of Medicine, San Francisco, CA, United States
| | - Annaketurah Ralph
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Tara Rezapour
- Department of Cognitive Psychology, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Hosna Tavakoli
- Department of Cognitive Psychology, Institute for Cognitive Sciences Studies, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Anna Zilverstand
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Douglas Steele
- Medical School, University of Dundee, Ninewells Hospital, Scotland, United Kingdom
| | - Scott J Moeller
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Martin Paulus
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, OK, United States
| | - Alex Baldacchino
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
20
|
He Q, Huang X, Turel O, Schulte M, Huang D, Thames A, Bechara A, Hser YI. Presumed structural and functional neural recovery after long-term abstinence from cocaine in male military veterans. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:18-29. [PMID: 29410011 PMCID: PMC5880688 DOI: 10.1016/j.pnpbp.2018.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Cumulative evidence suggests that cocaine use could alter the structure and function of different brain systems. However, the extent to which the altered brain structure and function possibly recover over time after cocaine abstinence remains less clear. The present study examines 39 male military veterans with different stages of cocaine addiction and long-term abstinence (from 1 year up to 30 years) and evaluates plausible changes in brain structure and function of specific brain regions that sub-serve addictions. These include the striatum that is involved in cocaine reward; the lateral prefrontal cortex (especially the dorsolateral PFC) that plays a major role in inhibitory control; the insula, which has been implicated in craving; and the medial orbitofrontal (OFC) and ventromedial prefrontal cortex (VMPFC) shown to play key roles in foresight and decision-making. The results suggest that there are differences in both brain structure (gray matter volume, GMV) and function between cocaine USERS and CONTROLS, with USERS showing plausible relative strengthening in neural systems for processing reward and craving, and relative weakening in neural systems involved in inhibitory control and decision-making. Examination of possible neural changes after abstinence suggests that presumed recovery occurs mostly in neural systems related to reward, craving, and inhibitory control, but to a lesser extent in neural systems related to decision-making. Given the limitations of the data in terms of a small sample size, as well as the lack of certainty about occasional use in the abstinent group, these results may be considered as preliminary. However, they are compelling in that they suggest that male military veterans cocaine USERS are indefinitely at a higher risk compared to CONTROLS for making lapses in judgment and decision-making leading to possible relapse, if reward salience and craving become more intense. Understanding the neurobiology of long-term cocaine abstinence in vulnerable populations and beyond could help devising better therapeutic strategies that prevent relapse.
Collapse
Affiliation(s)
- Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China; Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, United States; Integrated Substance Abuse Programs, University of California, Los Angeles, CA, United States; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Chongqing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.
| | - Xiaolu Huang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ofir Turel
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Marya Schulte
- Center for Advancing Longitudinal Drug Abuse Research, University of California, Los Angeles, CA, USA
| | - David Huang
- Center for Advancing Longitudinal Drug Abuse Research, University of California, Los Angeles, CA, USA
| | - April Thames
- Center for Advancing Longitudinal Drug Abuse Research, University of California, Los Angeles, CA, USA
| | - Antoine Bechara
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Yih-Ing Hser
- Center for Advancing Longitudinal Drug Abuse Research, University of California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Gray and white matter integrity influence TMS signal propagation: a multimodal evaluation in cocaine-dependent individuals. Sci Rep 2018; 8:3253. [PMID: 29459743 PMCID: PMC5818658 DOI: 10.1038/s41598-018-21634-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/30/2018] [Indexed: 01/16/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can stimulate cortical and subcortical brain regions. However, in order to reach subcortical targets, intact monosynaptic connections are required. The goal of this investigation was to evaluate the contribution of white matter integrity and gray matter volume to frontal pole TMS-evoked striatal activity in a large cohort of chronic cocaine users. 49 cocaine users received single pulses of TMS to the frontal pole while BOLD data were acquired – a technique known as interleaved TMS/fMRI. Diffusion tensor imaging and voxel-based morphometry were used to quantify white matter integrity and gray matter volume (GMV), respectively. Stepwise regression was used to evaluate the contribution of clinical and demographic variables to TMS-evoked BOLD. Consistent with previous studies, frontal pole TMS evoked activity in striatum and salience circuitry. The size of the TMS-evoked response was related to fractional anisotropy between the frontal pole and putamen and GMV in the left frontal pole and left ACC. This is the first study to demonstrate that the effect of TMS on subcortical activity is dependent upon the structural integrity of the brain. These data suggest that these structural neuroimaging data types are biomarkers for TMS-induced mobilization of the striatum.
Collapse
|
22
|
Unterrainer HF, Hiebler-Ragger M, Koschutnig K, Fuchshuber J, Tscheschner S, Url M, Wagner-Skacel J, Reininghaus EZ, Papousek I, Weiss EM, Fink A. Addiction as an Attachment Disorder: White Matter Impairment Is Linked to Increased Negative Affective States in Poly-Drug Use. Front Hum Neurosci 2017; 11:208. [PMID: 28503141 PMCID: PMC5408064 DOI: 10.3389/fnhum.2017.00208] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/10/2017] [Indexed: 01/19/2023] Open
Abstract
Substance use disorders (SUD) have been shown to be linked to various neuronal and behavioral impairments. In this study, we investigate whether there is a connection between the integrity of white matter (WM) and attachment styles as well as different affective states including spirituality in a group of patients diagnosed for poly-drug use disorder (PUD) in comparison to non-clinical controls. A total sample of 59 right-handed men, comprising the groups of patients with PUD (n = 19), recreational drug-using individuals (RUC; n = 20) as well as non-drug using controls were recruited (NUC; n = 20). For the behavioral assessment, we applied the Adult Attachment-Scale, the Affective Neuroscience Personality-Scale (short version) and the Multidimensional Inventory for Religious/Spiritual Well-Being. Diffusion Tensor Imaging was used to investigate differences in WM neural connectivity. Analyses revealed decreased Fractional Anisotropy and decreased Mean Diffusivity in PUD patients as compared to RUC and NUC. No differences were found between RUC and NUC. Additional ROI analyses suggested that WM impairment in the superior longitudinal fasciculus (SLF) and the superior corona radiata (SCR) was linked to more insecure attachment as well as to more negative affectivity. No substantial correlation was observed with spirituality. These findings are mainly limited by the cross-sectional design of the study. However, our preliminary results support the idea of addiction as an attachment disorder, both at neuronal and behavioral levels. Further research might be focused on the changes of insecure attachment patterns in SUD treatment and their correlation with changes in the brain.
Collapse
Affiliation(s)
- Human-Friedrich Unterrainer
- Institute of Psychology, University of GrazGraz, Austria.,Center for Integrative Addiction Research, Grüner Kreis SocietyVienna, Austria.,Department of Psychiatry and Psychotherapeutic Medicine, Medical University GrazGraz, Austria
| | - Michaela Hiebler-Ragger
- Center for Integrative Addiction Research, Grüner Kreis SocietyVienna, Austria.,Department of Psychiatry and Psychotherapeutic Medicine, Medical University GrazGraz, Austria
| | | | - Jürgen Fuchshuber
- Center for Integrative Addiction Research, Grüner Kreis SocietyVienna, Austria.,Department of Psychiatry and Psychotherapeutic Medicine, Medical University GrazGraz, Austria
| | | | - Maria Url
- Center for Integrative Addiction Research, Grüner Kreis SocietyVienna, Austria
| | - Jolana Wagner-Skacel
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University GrazGraz, Austria.,Department of Medical Psychology and Psychotherapy, Medical University GrazGraz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University GrazGraz, Austria
| | - Ilona Papousek
- Institute of Psychology, University of GrazGraz, Austria
| | | | - Andreas Fink
- Institute of Psychology, University of GrazGraz, Austria
| |
Collapse
|
23
|
Ma L, Steinberg JL, Wang Q, Schmitz JM, Boone EL, Narayana PA, Moeller FG. A preliminary longitudinal study of white matter alteration in cocaine use disorder subjects. Drug Alcohol Depend 2017; 173:39-46. [PMID: 28192722 PMCID: PMC5704923 DOI: 10.1016/j.drugalcdep.2016.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous diffusion tensor imaging (DTI) studies have consistently shown that subjects with cocaine use disorder (CocUD) had altered white matter microstructure in the corpus callosum. It is believed that these alterations are due to preexisting factors, chronic cocaine use, or both. However, there is no published longitudinal DTI study on human cocaine users yet which could shed light on the relationship between cocaine use and DTI findings. METHODS This study used a longitudinal design and DTI to test if the white matter microstructure shows quicker alteration in CocUD subjects than controls. DTI data were acquired from eleven CocUD subjects who participated a treatment study and eleven non-drug-using controls at baseline (Scan 1) and after ten weeks (Scan 2). The baseline fractional anisotropy (FA), a general measure of white matter microstucture, and the change in FA (ΔFA, equals Scan 1 FA minus Scan 2 FA) were both compared between groups. RESULTS The two groups did not show a difference in FA at baseline. The CocUD subjects had significantly greater ΔFA than the controls in the left splenium of the corpus callosum. In CocUD subjects, greater ΔFA in this region was associated with shorter lifetime cocaine use and greater number of positive cocaine urine samples collected during the treatment. CONCLUSION The finding in the left splenium is consistent with previous animal studies and provide indirect evidence about the effects of chronic cocaine use on white matter alterations. The subject sample size is small, therefore the results should be treated as preliminary.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Radiology, VCU, Richmond, VA, USA.
| | - Joel L. Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Qin Wang
- Department of Statistical Sciences and Operations Research, VCU, Richmond, Virginia, USA
| | - Joy M. Schmitz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center (UTHSC), Houston, Texas, USA
| | - Edward L Boone
- Department of Statistical Sciences and Operations Research, VCU, Richmond, Virginia, USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, UTHSC, Houston, Texas, USA
| | - F. Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA,Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA,Department of Neurology, VCU, Richmond, Virginia, USA
| |
Collapse
|
24
|
Shared microstructural features of behavioral and substance addictions revealed in areas of crossing fibers. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:188-195. [PMID: 28367515 DOI: 10.1016/j.bpsc.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Similarities between behavioral and substance addictions exist. However, direct neurobiological comparison between addictive disorders is rare. Determination of disorder-specificity (or lack thereof) of alterations within white-matter microstructures will advance understanding of the pathophysiology of addictions. METHODS We compared white-matter microstructural features between individuals with gambling disorder (GD; n=38), cocaine-use disorder (CUD; n=38) and healthy comparison (HC; n=38) participants, as assessed using diffusion-weighted magnetic resonance imaging (dMRI). To provide a more precise estimate of diffusion within regions of complex architecture (e.g., cortico-limbic tracts), analyses were conducted using a crossing-fiber model incorporating local-orientation modeling (tbss_x). Anisotropy estimates for primary and secondary fiber orientations were compared using ANOVAs corrected for multiple comparisons across space using threshold-free cluster enhancement (pFWE<.05). RESULTS A main effect of group on anisotropy of secondary fiber orientations within the left internal capsule, corona radiata, forceps major and posterior thalamic radiation, involving reduced anisotropy among GD and CUD participants in comparison to HC participants. No differences in anisotropy measures were found between GD and CUD individuals. CONCLUSIONS This is the first study to compare diffusion indices directly between behavioral and substance addictions and the largest dMRI study of GD. Our findings indicate similar white-matter microstructural alterations across addictions that cannot be attributed solely to exposure to drugs or alcohol and thus may be a vulnerability mechanism for addictive disorders.
Collapse
|
25
|
Recovery from chemotherapy-induced white matter changes in young breast cancer survivors? Brain Imaging Behav 2017; 12:64-77. [DOI: 10.1007/s11682-016-9665-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Blum K, Simpatico T, Febo M, Rodriquez C, Dushaj K, Li M, Braverman ER, Demetrovics Z, Oscar-Berman M, Badgaiyan RD. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs. Mol Neurobiol 2016; 54:3753-3758. [PMID: 27246565 DOI: 10.1007/s12035-016-9934-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/10/2016] [Indexed: 01/27/2023]
Abstract
The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli's effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Box 100183, Gainesville, FL, 32610-0183, USA. .,Department of Psychiatry and Human Global Mental Health Institute, Center for Clinical & Translational Science, University of Vermont, Burlington, VT, USA. .,Division of Neuroscience -Based Therapy, Summit Estate Recovery Center, Las Gatos, CA, USA. .,Division of Addition Services, Dominion Diagnostics, LLC, North Kingstown, RI, USA. .,PATH Foundation NY, New York, NY, USA. .,IGENE, LLC, Austin, TX, USA. .,Division of Applied Clinical Research, Dominion Diagnostics, LLC, North Kingstown, RI, USA. .,Department of Clinical Psychology and Addiction, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary. .,Division of Neuroscience Research & Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA.
| | - Thomas Simpatico
- Department of Psychiatry and Human Global Mental Health Institute, Center for Clinical & Translational Science, University of Vermont, Burlington, VT, USA
| | - Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Box 100183, Gainesville, FL, 32610-0183, USA
| | | | | | - Mona Li
- PATH Foundation NY, New York, NY, USA
| | | | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Marlene Oscar-Berman
- Departments of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine and Boston VA Healthcare System, Boston, MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.,Neuromodulation Program, University of Minnesota Twin City Campus, Minneapolis, MN, USA.,Laboratory of Advanced Radiochemistry, University of Minnesota Twin City Campus, Minneapolis, MN, USA
| |
Collapse
|
27
|
Persistent Microstructural Deficits of Internal Capsule in One-Year Abstinent Male Methamphetamine Users: a Longitudinal Diffusion Tensor Imaging Study. J Neuroimmune Pharmacol 2016; 11:523-30. [PMID: 27115910 DOI: 10.1007/s11481-016-9673-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
White matter (WM) alterations have been reported in methamphetamine (MA) users. However, knowledge about longitudinal changes in WM during abstinence from MA remains unknown. The present study aimed to examine how WM changes in long-term MA abstinent, in particular, whether the WM deficits would recover as the duration of abstinence extended. Twenty male MA dependent individuals and 19 healthy controls (HCs) were recruited and participated in both clinical assessments and diffusion tensor imaging (DTI) scans. The MA group underwent two DTI scans, a baseline scan with a duration of abstinence of 6.4 months and and a follow-up scan with a duration of abstinence of 13.0 months. Tract-Based Spatial Statistics was utilized to conduct baseline DTI analysis of MA group compared with HCs. The clusters with significant group differences of factional anisotropy (FA) were extracted as region of interests (ROIs). Mean values of DTI measurements (FA, mean diffusivity, axial diffusivity and radial diffusivity) were calculated within the ROIs in each subject's native space at baseline and follow-up. The MA group showed significant lower FA in the right internal capsule and superior corona radiate than HCs. The deficits did not recover when the duration of abstinence from MA reached 13 months. No significant correlations were found between FA and clinical measurements. Our results suggested persistent microstructure deficits of WM tracts surrounding the basal ganglia in MA dependent individuals.
Collapse
|
28
|
Li W, Zhu J, Li Q, Ye J, Chen J, Liu J, Li Z, Li Y, Yan X, Wang Y, Wang W. Brain white matter integrity in heroin addicts during methadone maintenance treatment is related to relapse propensity. Brain Behav 2016; 6:e00436. [PMID: 27110449 PMCID: PMC4834937 DOI: 10.1002/brb3.436] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/06/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cognitive deficits caused by heroin-induced white matter (WM) impairments hinder addicts' engagement in and benefit from treatment. The predictive value of WM integrity in heroin addicts during methadone maintenance treatment (MMT) for future relapse is unclear. METHODS Forty-eight MMT patients were given baseline diffusion tensor imaging scans and divided into heroin relapsers (HR, 25 cases) and abstainers (HA, 23 cases) according to the results of 6-month follow-up. Intergroup comparisons were performed for fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The correlation between diffusion tensor imaging indices and the degree of heroin relapse was analyzed. RESULTS Compared with HA group, HR group had reduced FA in the right retrolenticular part, left anterior and posterior limb of internal capsule, bilateral anterior corona radiata, and right external capsule. Three out of the six regions showed increased RD, with no changes in AD. The FA and AD values in the left posterior limb of internal capsule correlated negatively with the heroin-positive urinalysis rate within follow-up. CONCLUSIONS Lower WM integrity in MMT patients may add to neurobiological factors associated with relapse to heroin use. Strategies for improving WM integrity provide a new perspective to prevent future relapse to heroin abuse.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jia Zhu
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Qiang Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jianjun Ye
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jiajie Chen
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Jierong Liu
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Zhe Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Yongbin Li
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Xuejiao Yan
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Yarong Wang
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| | - Wei Wang
- Department of Radiology Tangdu Hospital The Fourth Military Medical University Xi'an Shaanxi China
| |
Collapse
|
29
|
Blum K, Febo M, Fahlke C, Archer T, Berggren U, Demetrovics Z, Dushaj K, Badgaiyan RD. Hypothesizing Balancing Endorphinergic and Glutaminergic Systems to Treat and Prevent Relapse to Reward Deficiency Behaviors: Coupling D-Phenylalanine and N-Acetyl-L-Cysteine (NAC) as a Novel Therapeutic Modality. ACTA ACUST UNITED AC 2015; 2. [PMID: 26900600 PMCID: PMC4760695 DOI: 10.23937/2378-3656/1410076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA; Division of Nutrigenomics, LaVita RDS, LLC, Draper, UT, USA; Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA; Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, Los Gatos, CA, USA; Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA; Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Claudia Fahlke
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - U Berggren
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Budapest, Hungary
| | - Kristina Dushaj
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | | |
Collapse
|
30
|
Ma L, Steinberg JL, Moeller FG, Johns SE, Narayana PA. Effect of cocaine dependence on brain connections: clinical implications. Expert Rev Neurother 2015; 15:1307-1319. [PMID: 26512421 PMCID: PMC4651809 DOI: 10.1586/14737175.2015.1103183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine dependence (CD) is associated with several cognitive deficits. Accumulating evidence, based on human and animal studies, has led to models for interpreting the neural basis of cognitive functions as interactions between functionally related brain regions. In this review, we focus on magnetic resonance imaging (MRI) studies using brain connectivity techniques as related to CD. The majority of these brain connectivity studies indicated that cocaine use is associated with altered brain connectivity between different structures, including cortical-striatal regions and default mode network. In cocaine users some of the altered brain connectivity measures are associated with behavioral performance, history of drug use, and treatment outcome. The implications of these brain connectivity findings to the treatment of CD and the pros and cons of the major brain connectivity techniques are discussed. Finally potential future directions in cocaine use disorder research using brain connectivity techniques are briefly described.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- Department of Radiology, VCU, Richmond, Virginia, USA
| | - Joel L. Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - F. Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- Department of Psychiatry, VCU, Richmond, Virginia, USA
- Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA
- Department of Neurology, VCU, Richmond, Virginia, USA
| | - Sade E. Johns
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston (UTHealth), Texas, USA
| |
Collapse
|
31
|
Tang VM, Lang DJ, Giesbrecht CJ, Panenka WJ, Willi T, Procyshyn RM, Vila-Rodriguez F, Jenkins W, Lecomte T, Boyda HN, Aleksic A, MacEwan GW, Honer WG, Barr AM. White matter deficits assessed by diffusion tensor imaging and cognitive dysfunction in psychostimulant users with comorbid human immunodeficiency virus infection. BMC Res Notes 2015; 8:515. [PMID: 26423806 PMCID: PMC4590729 DOI: 10.1186/s13104-015-1501-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psychostimulant drug use is commonly associated with drug-related infection, including the human immunodeficiency virus (HIV). Both psychostimulant use and HIV infection are known to damage brain white matter and impair cognition. To date, no study has examined white matter integrity using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) in chronic psychostimulant users with comorbid HIV infection, and determined the relationship of white matter integrity to cognitive function. METHODS Twenty-one subjects (mean age 37.5 ± 9.0 years) with a history of heavy psychostimulant use and HIV infection (8.7 ± 4.3 years) and 22 matched controls were scanned on a 3T MRI. Fractional anisotropy (FA) values were calculated with DTI software. Four regions of interest were manually segmented, including the genu of the corpus callosum, left and right anterior limbs of the internal capsule, and the anterior commissure. Subjects also completed a neurocognitive battery and questionnaires about physical and mental health. RESULTS The psychostimulant using, HIV positive group displayed decreased white matter integrity, with significantly lower FA values for all white matter tracts (p < 0.05). This group also exhibited decreased cognitive performance on tasks that assessed cognitive set-shifting, fine motor speed and verbal memory. FA values for the white matter tracts correlated with cognitive performance on many of the neurocognitive tests. CONCLUSIONS White matter integrity was thus impaired in subjects with psychostimulant use and comorbid HIV infection, which predicted worsened cognitive performance on a range of tests. Further study on this medical comorbidity is required.
Collapse
Affiliation(s)
- Victor M Tang
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - Donna J Lang
- Department of Radiology, University of British Columbia, 3350-950 W 10th Avenue, Vancouver, V5Z1M9, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Chantelle J Giesbrecht
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, V5A1S6, Canada.
| | - William J Panenka
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Taylor Willi
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Ric M Procyshyn
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - Willough Jenkins
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - Tania Lecomte
- Département de Psychologie, Université de Montréal, Montreal, QC, Canada.
| | - Heidi N Boyda
- British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada. .,Department of Pharmacology, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| | - Ana Aleksic
- British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada. .,Department of Pharmacology, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| | - G William MacEwan
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada.
| | - William G Honer
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, V6T2A1, Canada. .,British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada.
| | - Alasdair M Barr
- British Columbia Mental Health & Addictions Research Institute, 938 W 28th Avenue, Vancouver, V5Z4H4, Canada. .,Department of Pharmacology, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
32
|
Blum K, Thompson B, Demotrovics Z, Femino J, Giordano J, Oscar-Berman M, Teitelbaum S, Smith DE, Roy AK, Agan G, Fratantonio J, Badgaiyan RD, Gold MS. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:46-64. [PMID: 26306329 PMCID: PMC4545669 DOI: 10.17756/jrds.2015-008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the "psycho-social-spiritual trio," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when "science meets recovery," and in doing so, can further redeem joy in recovery.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Addiction Research and Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- IGENE, LLC., Austin, TX, USA
- RDSolutions, Del Mar, CA, USA
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Benjamin Thompson
- Behavioral Neuroscience Program, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Zsolt Demotrovics
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
| | - John Femino
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Meadows Edge Recovery Center, North Kingstown, RI, USA
| | - John Giordano
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Scott Teitelbaum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David E. Smith
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Institute of Health & Aging, University of California at San Francisco, San Francisco, CA, USA
| | | | - Gozde Agan
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
| | | | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, CA, USA
| |
Collapse
|
33
|
Ma L, Steinberg JL, Keyser-Marcus L, Ramesh D, Narayana PA, Merchant RE, Moeller FG, Cifu DX. Altered white matter in cocaine-dependent subjects with traumatic brain injury: A diffusion tensor imaging study. Drug Alcohol Depend 2015; 151:128-34. [PMID: 25841982 PMCID: PMC4447586 DOI: 10.1016/j.drugalcdep.2015.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a useful technique for non-invasively investigating the microstructural organization of white matter (WM), and the most consistent DTI finding regarding cocaine-related WM alterations is in the corpus callosum (CC). WM injury has also been observed in subjects with traumatic brain injury (TBI), including in the CC. METHODS We used DTI to test if the WM microstructure is relatively more impaired in cocaine-dependent subjects who had suffered a mild TBI (mTBI). Fractional anisotropy (FA), which reflects the degree of alignment of cellular structures within fiber tracts and their structural integrity, was compared across cocaine-dependent subjects with mTBI (COCTBI group, n = 9), matched cocaine-dependent subjects without TBI (COC group, n = 12), and matched healthy controls (CTL group, n = 12). RESULTS The COCTBI group had significantly lower FA in the genu, body, and splenium of CC, than the CTL group whenever the education was controlled or not. The COC group had significantly lower FA in the left and right anterior corona radiata than the CTL group only when the education was controlled. There was no significant difference in FA between the COC and COCTBI groups. CONCLUSION Cocaine dependence (or mTBI) related WM impairments in the CC were not detectable in this small subject sample. The significant finding in the CC suggests that the concurrence of cocaine dependence and mTBI might result in more severe damage to the CC, which could even be detected in small sample size.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Radiology, VCU, Richmond, VA, USA.
| | - Joel L. Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Lori Keyser-Marcus
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Divya Ramesh
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA,Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, Texas, USA
| | - Randall E Merchant
- Department of Anatomy and Neurobiology, VCU, Richmond, Virginia, USA,Department of Neurosurgery, VCU, Richmond, Virginia, USA
| | - F. Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA,Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, VCU, Richmond, Virginia, USA
| |
Collapse
|
34
|
Blum K, Liu Y, Wang W, Wang Y, Zhang Y, Oscar-Berman M, Smolen A, Febo M, Han D, Simpatico T, Cronjé FJ, Demetrovics Z, Gold MS. rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgrad Med 2014; 127:232-41. [PMID: 25526228 DOI: 10.1080/00325481.2015.994879] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, Willuhn et al. reported that cocaine use and even non-substance-related addictive behavior increases as dopaminergic function is reduced. Chronic cocaine exposure has been associated with decreases in D2/D3 receptors and was also associated with lower activation of cues in occipital cortex and cerebellum, in a recent PET study by Volkow's et al. Therefore, treatment strategies, like dopamine agonist therapy, that might conserve dopamine function may be an interesting approach to relapse prevention in psychoactive drug and behavioral addictions. To this aim, we evaluated the effect of KB220Z™ on reward circuitry of 10 heroin addicts undergoing protracted abstinence (average 16.9 months). In a randomized placebo-controlled crossover study of KB220Z, five subjects completed a triple-blinded experiment in which the subject, the person administering the treatment, and the person evaluating the response to treatment were blinded to the treatment that any particular subject was receiving. In addition, nine subjects were genotyped utilizing the GARSDX™ test. We preliminarily report that KB220Z induced an increase in BOLD activation in caudate-accumbens-dopaminergic pathways compared to placebo following 1-hour acute administration. Furthermore, KB220Z also reduced resting-state activity in the putamen of abstinent heroin addicts. In the second phase of this pilot study of all 10 abstinent heroin-dependent subjects, we observed that three brain regions of interest were significantly activated from resting state by KB220Z compared to placebo (p < 0.05). Increased functional connectivity was observed in a putative network that included the dorsal anterior cingulate, medial frontal gyrus, nucleus accumbens, posterior cingulate, occipital cortical areas, and cerebellum. These results and other quantitative electroencephalogy (qEEG) study results suggest a putative anti-craving/anti-relapse role of KB220Z in addiction by direct or indirect dopaminergic interaction. Due to small sample size, we caution definitive interpretation of these preliminary results, and confirmation with additional research and ongoing rodent and human studies of KB220Z is required.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, FL , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Qiu YW, Su HH, Lv XF, Jiang GH. Abnormal white matter integrity in chronic users of codeine-containing cough syrups: a tract-based spatial statistics study. AJNR Am J Neuroradiol 2014; 36:50-6. [PMID: 25104290 DOI: 10.3174/ajnr.a4070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Codeine-containing cough syrups have become one of the most popular drugs of abuse in young people in the world. Chronic codeine-containing cough syrup abuse is related to impairments in a broad range of cognitive functions. However, the potential brain white matter impairment caused by chronic codeine-containing cough syrup abuse has not been reported previously. Our aim was to investigate abnormalities in the microstructure of brain white matter in chronic users of codeine-containing syrups and to determine whether these WM abnormalities are related to the duration of the use these syrups and clinical impulsivity. MATERIALS AND METHODS Thirty chronic codeine-containing syrup users and 30 matched controls were evaluated. Diffusion tensor imaging was performed by using a single-shot spin-echo-planar sequence. Whole-brain voxelwise analysis of fractional anisotropy was performed by using tract-based spatial statistics to localize abnormal WM regions. The Barratt Impulsiveness Scale 11 was surveyed to assess participants' impulsivity. Volume-of-interest analysis was used to detect changes of diffusivity indices in regions with fractional anisotropy abnormalities. Abnormal fractional anisotropy was extracted and correlated with clinical impulsivity and the duration of codeine-containing syrup use. RESULTS Chronic codeine-containing syrup users had significantly lower fractional anisotropy in the inferior fronto-occipital fasciculus of the bilateral temporo-occipital regions, right frontal region, and the right corona radiata WM than controls. There were significant negative correlations among fractional anisotropy values of the right frontal region of the inferior fronto-occipital fasciculus and the right superior corona radiata WM and Barratt Impulsiveness Scale total scores, and between the right frontal region of the inferior fronto-occipital fasciculus and nonplan impulsivity scores in chronic codeine-containing syrup users. There was also a significant negative correlation between fractional anisotropy values of the right frontal region of the inferior fronto-occipital fasciculus and the duration of codeine-containing syrup use in chronic users. CONCLUSIONS Chronic codeine-containing syrup abuse may be associated with disruptions in brain WM integrity. These WM microstructural deficits may be linked to higher impulsivity in chronic codeine-containing syrup users.
Collapse
Affiliation(s)
- Y-W Qiu
- From the Department of Medical Imaging (Y.-w.Q., H.-h.S., G.-h.J.), Guangdong No. 2 Provincial People's Hospital, Guangzhou, China Department of Medical Imaging (Y.-w.Q.), The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - H-H Su
- From the Department of Medical Imaging (Y.-w.Q., H.-h.S., G.-h.J.), Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
| | - X-F Lv
- Departments of Medical Imaging and Interventional Radiology (X.-f.L.), Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - G-H Jiang
- From the Department of Medical Imaging (Y.-w.Q., H.-h.S., G.-h.J.), Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
36
|
Bell RP, Garavan H, Foxe JJ. Neural correlates of craving and impulsivity in abstinent former cocaine users: Towards biomarkers of relapse risk. Neuropharmacology 2014; 85:461-70. [PMID: 24951856 DOI: 10.1016/j.neuropharm.2014.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/26/2014] [Accepted: 05/06/2014] [Indexed: 01/12/2023]
Abstract
A significant hindrance to effective treatment of addiction is identifying those most likely to relapse. Cocaine addiction is characterized by deficits in inhibitory control and elevated reactivity to cocaine cues, both hypothesized to be integral to development of addiction and propensity to relapse. It follows that reduction of both impulsivity and cue-reactivity following abstinence is protective against relapse, and that persistence of these factors increases vulnerability. Using functional magnetic resonance imaging, we examined neural activation patterns in dorsal and ventral striatum in abstinent cocaine dependent (CD) individuals (N=20) and non-using controls (N=19) as they performed a cocaine craving task. We also examined activations in nodes of the response inhibition circuit (RIC) as they performed an inhibition task. At the between-groups level, no differences in RIC or striatal activation were seen in former users, in contrast to previous investigations in current users, suggesting large-scale functional recovery with abstinence. However, at the individual participant-level, abstinent CD individuals displayed an association between cocaine cue-related neural activations in the right ventral striatum and compulsive cocaine craving scores. Compulsive craving scores were also negatively correlated with duration of abstinence. Further, there was an association between motor impulsivity scores and inhibition-related activations in the right inferior frontal gyrus and pre-supplementary motor area in abstinent CD individuals. Thus, while former users as a group did not show deficits in inhibitory function or cocaine-cue reactivity, participant-level results pointed to activation patterns in a minority of these individuals that likely contributes to enduring relapse vulnerability.
Collapse
Affiliation(s)
- Ryan P Bell
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Hugh Garavan
- University of Vermont, Department of Psychiatry, 1 South Prospect St, Burlington, VT 05401, USA; The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA; The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| |
Collapse
|
37
|
Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration. Drug Alcohol Depend 2014; 137:143-7. [PMID: 24529965 PMCID: PMC4000724 DOI: 10.1016/j.drugalcdep.2014.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroimaging studies of cocaine users have demonstrated white matter abnormalities associated with behavioral measures of impulsivity and decision-making deficits. The underlying bases for this dysregulation in white matter structure and function have yet to be determined. The aim of the present studies was to investigate the influence of prolonged cocaine self-administration on the levels of myelin-associated proteins and mRNAs in nonhuman primate white matter. METHODS Rhesus monkeys (N=4) self-administered cocaine (0.3mg/kg/inj, 30 reinforcers per session) for 300 sessions. Control animals (N=4) responded for food. Following the final session monkeys were euthanized and white matter tissue at three brain levels was processed for immunoblotting analysis of proteolipid protein (PLP) and myelin basic protein (MBP), as well as for in situ hybridization histochemical analysis of PLP and MBP mRNAs. RESULTS Both MBP and PLP immunoreactivities in white matter at the level of the precommissural striatum were significantly lower in tissue from monkeys self-administering cocaine as compared to controls. No significant differences were seen for either protein at the levels of the prefrontal cortex or postcommissural striatum. In addition, no differences were observed in expression of mRNA for either protein. CONCLUSIONS These preliminary findings, in a nonhuman model of prolonged cocaine self-administration, provide further evidence that compromised myelin may underlie the deficits in white matter integrity described in studies of human cocaine users.
Collapse
|
38
|
Cadet JL, Bisagno V, Milroy CM. Neuropathology of substance use disorders. Acta Neuropathol 2014; 127:91-107. [PMID: 24292887 PMCID: PMC7453825 DOI: 10.1007/s00401-013-1221-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/20/2013] [Indexed: 01/23/2023]
Abstract
Addictions to licit and illicit drugs are chronic relapsing brain disorders that affect circuits that regulate reward, motivation, memory, and decision-making. Drug-induced pathological changes in these brain regions are associated with characteristic enduring behaviors that continue despite adverse biopsychosocial consequences. Repeated exposure to these substances leads to egocentric behaviors that focus on obtaining the drug by any means and on taking the drug under adverse psychosocial and medical conditions. Addiction also includes craving for the substances and, in some cases, involvement in risky behaviors that can cause death. These patterns of behaviors are associated with specific cognitive disturbances and neuroimaging evidence for brain dysfunctions in a diverse population of drug addicts. Postmortem studies have also revealed significant biochemical and/or structural abnormalities in some addicted individuals. The present review provides a summary of the evidence that has accumulated over the past few years to implicate brain dysfunctions in the varied manifestations of drug addiction. We thus review data on cerebrovascular alterations, brain structural abnormalities, and postmortem studies of patients who abuse cannabis, cocaine, amphetamines, heroin, and "bath salts". We also discuss potential molecular, biochemical, and cellular bases for the varied clinical presentations of these patients. Elucidation of the biological bases of addiction will help to develop better therapeutic approaches to these patient populations.
Collapse
Affiliation(s)
- Jean Lud Cadet
- NIDA Intramural Research Program, Molecular Neuropsychiatry Research Branch, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA,
| | | | | |
Collapse
|
39
|
Bough KJ, Amur S, Lao G, Hemby SE, Tannu NS, Kampman KM, Schmitz JM, Martinez D, Merchant KM, Green C, Sharma J, Dougherty AH, Moeller FG. Biomarkers for the development of new medications for cocaine dependence. Neuropsychopharmacology 2014; 39:202-19. [PMID: 23979119 PMCID: PMC3857653 DOI: 10.1038/npp.2013.210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 01/20/2023]
Abstract
There has been significant progress in personalized drug development. In large part, this has taken place in the oncology field and been due to the ability of researchers/clinicians to discover and develop novel drug development tools (DDTs), such as biomarkers. In cancer treatment research, biomarkers have permitted a more accurate pathophysiological characterization of an individual patient, and have enabled practitioners to target mechanistically the right drug, to the right patient, at the right time. Similar to cancer, patients with substance use disorders (SUDs) present clinically with heterogeneous symptomatology and respond variably to therapeutic interventions. If comparable biomarkers could be identified and developed for SUDs, significant diagnostic and therapeutic advances could be made. In this review, we highlight current opportunities and difficulties pertaining to the identification and development of biomarkers for SUDs. We focus on cocaine dependence as an example. Putative diagnostic, pharmacodynamic (PD), and predictive biomarkers for cocaine dependence are discussed across a range of methodological approaches. A possible cocaine-dependent clinical outcome assessment (COA)--another type of defined DDT--is also discussed. At present, biomarkers for cocaine dependence are in their infancy. Much additional research will be needed to identify, validate, and qualify these putative tools prior to their potential use for medications development and/or application to clinical practice. However, with a large unmet medical need and an estimated market size of several hundred million dollars per year, if developed, biomarkers for cocaine dependence will hold tremendous value to both industry and public health.
Collapse
Affiliation(s)
- Kristopher J Bough
- Division of Basic Neuroscience and Behavioral Research, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Shashi Amur
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Guifang Lao
- Division of Pharmacotherapies and Medical Consequences, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Scott E Hemby
- Department of Physiology & Pharmacology, Wake Forest University, Winston-Salem, NC, USA
| | - Nilesh S Tannu
- Department of Psychiatry and Behavioral Sciences, University of Texas—Houston Medical School, Houston, TX, USA
| | - Kyle M Kampman
- Department of Psychiatry, University of Pennsylvania—School of Medicine, Philadelphia, PA, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, University of Texas—Houston Medical School, Houston, TX, USA
| | - Diana Martinez
- Department of Psychiatry, Columbia University/New York State University, New York, NY, USA
| | | | - Charles Green
- Department of Pediatrics, University of Texas—Houston Medical School, Houston, TX, USA
| | - Jyoti Sharma
- Department of Cardiovascular Medicine, University of Texas—Houston Medical School, Houston, TX, USA
| | - Anne H Dougherty
- Department of Cardiovascular Medicine, University of Texas—Houston Medical School, Houston, TX, USA
| | - F Gerard Moeller
- Department of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University Medical School, Richmond, VA, USA
| |
Collapse
|
40
|
Garavan H, Brennan KL, Hester R, Whelan R. The neurobiology of successful abstinence. Curr Opin Neurobiol 2013; 23:668-74. [PMID: 23510740 PMCID: PMC3706547 DOI: 10.1016/j.conb.2013.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
Abstract
This review focuses on the neurobiological processes involved in achieving successful abstinence from drugs of abuse. While there is clinical and public health value in knowing if the deficits associated with drug use correct with abstinence, studying the neurobiology that underlies successful abstinence can also illuminate the processes that enable drug-dependent individuals to successfully quit. Here, we review studies on human addicts that assess the neurobiological changes that arise with abstinence and the neurobiological predictors of successfully avoiding relapse. The literature, while modest in size, suggests that abstinence is associated with improvement in prefrontal structure and function, which may underscore the importance of prefrontally mediated cognitive control processes in avoiding relapse. Given the implication that the prefrontal cortex may be an important target for therapeutic interventions, we also review evidence indicating the efficacy of cognitive control training for abstinence.
Collapse
Affiliation(s)
- H Garavan
- Department of Psychiatry, University of Vermont, USA.
| | | | | | | |
Collapse
|
41
|
Connolly CG, Bell RP, Foxe JJ, Garavan H. Dissociated grey matter changes with prolonged addiction and extended abstinence in cocaine users. PLoS One 2013; 8:e59645. [PMID: 23527239 PMCID: PMC3601087 DOI: 10.1371/journal.pone.0059645] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/16/2013] [Indexed: 11/19/2022] Open
Abstract
Extensive evidence indicates that current and recently abstinent cocaine abusers compared to drug-naïve controls have decreased grey matter in regions such as the anterior cingulate, lateral prefrontal and insular cortex. Relatively little is known, however, about the persistence of these deficits in long-term abstinence despite the implications this has for recovery and relapse. Optimized voxel based morphometry was used to assess how local grey matter volume varies with years of drug use and length of abstinence in a cross-sectional study of cocaine users with various durations of abstinence (1–102 weeks) and years of use (0.3–24 years). Lower grey matter volume associated with years of use was observed for several regions including anterior cingulate, inferior frontal gyrus and insular cortex. Conversely, higher grey matter volumes associated with abstinence duration were seen in non-overlapping regions that included the anterior and posterior cingulate, insular, right ventral and left dorsal prefrontal cortex. Grey matter volumes in cocaine dependent individuals crossed those of drug-naïve controls after 35 weeks of abstinence, with greater than normal volumes in users with longer abstinence. The brains of abstinent users are characterized by regional grey matter volumes, which on average, exceed drug-naïve volumes in those users who have maintained abstinence for more than 35 weeks. The asymmetry between the regions showing alterations with extended years of use and prolonged abstinence suggest that recovery involves distinct neurobiological processes rather than being a reversal of disease-related changes. Specifically, the results suggest that regions critical to behavioral control may be important to prolonged, successful, abstinence.
Collapse
Affiliation(s)
- Colm G Connolly
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | |
Collapse
|
42
|
Bell RP, Foxe JJ, Ross LA, Garavan H. Intact inhibitory control processes in abstinent drug abusers (I): a functional neuroimaging study in former cocaine addicts. Neuropharmacology 2013; 82:143-50. [PMID: 23474013 DOI: 10.1016/j.neuropharm.2013.02.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Neuroimaging studies in current cocaine dependent (CD) individuals consistently reveal cortical hypoactivity across regions of the response inhibition circuit (RIC). Dysregulation of this critical executive network is hypothesized to account for the lack of inhibitory control that is a hallmark of the addictive phenotype, and chronic abuse is believed to compound the issue. A crucial question is whether deficits in this circuit persist after drug cessation, and whether recovery of this system will be seen after extended periods of abstinence, a question with implications for treatment course and outcome. Utilizing functional magnetic resonance imaging (fMRI), we examined activation in nodes of the RIC in abstinent CD individuals (n = 27) and non-using controls (n = 45) while they performed a motor response inhibition task. In contrast to current users, these abstinent individuals, despite extended histories of chronic cocaine-abuse (average duration of use = 8.2 years), performed the task just as efficiently as non-users. In line with these behavioral findings, no evidence for between-group differences in activation of the RIC was found and instead, robust activations were apparent in both groups within the well-characterized nodes of the RIC. Similarly, our complementary Electroencephalography (EEG) investigation also showed an absence of behavioral and electrophysiological deficits in abstinent drug abusers. These results are consistent with an amelioration of neurobiological deficits in inhibitory circuitry following drug cessation, and could help explain how long-term abstinence is maintained. Finally, regression analyses revealed a significant association between level of activation in the right insula with inhibition success and increased abstinence duration in the CD cohort suggesting that this region may be integral to successful recovery from cocaine addiction.
Collapse
Affiliation(s)
- Ryan P Bell
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Neuroscience, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York, 138th Street & Convent Ave, New York, NY 10031, USA; Department of Biology, The City College of the City University of New York, 138th Street & Convent Ave, New York, NY 10031, USA.
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Neuroscience, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York, 138th Street & Convent Ave, New York, NY 10031, USA; Department of Biology, The City College of the City University of New York, 138th Street & Convent Ave, New York, NY 10031, USA.
| | - Lars A Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Neuroscience, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; The Gordon F. Derner Institute of Advanced Psychological Studies, Adelphi University, Garden City, NY 11530-0701, USA.
| | - Hugh Garavan
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; University of Vermont, Department of Psychiatry, 1 South Prospect St., Burlington, VT 05401, USA.
| |
Collapse
|
43
|
Moeller SJ, Tomasi D, Woicik PA, Maloney T, Alia-Klein N, Honorio J, Telang F, Wang GJ, Wang R, Sinha R, Carise D, Astone-Twerell J, Bolger J, Volkow ND, Goldstein RZ. Enhanced midbrain response at 6-month follow-up in cocaine addiction, association with reduced drug-related choice. Addict Biol 2012; 17:1013-25. [PMID: 22458423 DOI: 10.1111/j.1369-1600.2012.00440.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drug addiction is characterized by dysregulated dopamine neurotransmission. Although dopamine functioning appears to partially recover with abstinence, the specific regions that recover and potential impact on drug seeking remain to be determined. Here we used functional magnetic resonance imaging (fMRI) to study an ecologically valid sample of 15 treatment-seeking cocaine addicted individuals at baseline and 6-month follow-up. At both study sessions, we collected fMRI scans during performance of a drug Stroop task, clinical self-report measures of addiction severity and behavioral measures of cocaine seeking (simulated cocaine choice); actual drug use in between the two study sessions was also monitored. At 6-month follow-up (compared with baseline), we predicted functional enhancement of dopaminergically innervated brain regions, relevant to the behavioral responsiveness toward salient stimuli. Consistent with predictions, whole-brain analyses revealed responses in the midbrain (encompassing the ventral tegmental area/substantia nigra complex) and thalamus (encompassing the mediodorsal nucleus) that were higher (and more positively correlated) at follow-up than baseline. Increased midbrain activity from baseline to follow-up correlated with reduced simulated cocaine choice, indicating that heightened midbrain activations in this context may be marking lower approach motivation for cocaine. Normalization of midbrain function at follow-up was also suggested by exploratory comparisons with active cocaine users and healthy controls (who were assessed only at baseline). Enhanced self-control at follow-up was suggested by a trend for the commonly hypoactive dorsal anterior cingulate cortex to increase response during a drug-related context. Together, these results suggest that fMRI could be useful in sensitively tracking follow-up outcomes in drug addiction.
Collapse
|
44
|
Blum K, Oscar-Berman M, Giordano J, Downs BW, Simpatico T, Han D, Femino J. Neurogenetic Impairments of Brain Reward Circuitry Links to Reward Deficiency Syndrome (RDS): Potential Nutrigenomic Induced Dopaminergic Activation. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2012; 3:1000e115. [PMID: 23264886 PMCID: PMC3525955 DOI: 10.4172/2157-7412.1000e115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Work from our laboratory in both in-patient and outpatient facilities utilizing the Comprehensive Analysis of Reported Drugs (CARD)(™) found a significant lack of compliance to prescribed treatment medications and a lack of abstinence from drugs of abuse during active recovery. This unpublished, ongoing research provides an impetus to develop accurate genetic diagnosis and holistic approaches that will safely activate brain reward circuitry in the mesolimbic dopamine system. This editorial focuses on the neurogenetics of brain reward systems with particular reference to genes related to dopaminergic function. The terminology "Reward Deficiency Syndrome" (RDS), used to describe behaviors found to have an association with gene-based hypodopaminergic function, is a useful concept to help expand our understanding of Substance Use Disorder (SUD), process addictions, and other obsessive, compulsive and impulsive behaviors. This editorial covers the neurological basis of pleasure and the role of natural and unnatural reward in motivating and reinforcing behaviors. Additionally, it briefly describes the concept of natural dopamine D2 receptor agonist therapy coupled with genetic testing of a panel of reward genes, the Genetic Addiction Risk Score (GARS). It serves as a spring-board for this combination of novel approaches to the prevention and treatment of RDS that was developed from fundamental genomic research. We encourage further required studies.
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- G & G Holistic Addiction Treatment Center, North Miami Beach, FL, USA
- Dominion Diagnostics, Inc. North Kingstown, Rhode Island, USA
- Path Foundation NY, New York, NY, USA
- Department of Addiction Research a & Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Department of Nutrigenomics, LifeGen, Inc., Austin, TX, USA
- Institute of Integrative Omics & Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - M Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - J Giordano
- G & G Holistic Addiction Treatment Center, North Miami Beach, FL, USA
| | - BW Downs
- Department of Nutrigenomics, LifeGen, Inc., Austin, TX, USA
| | - T Simpatico
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - D Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX, USA
| | - John Femino
- Meadows Edge Treatment Center, North Kingstown, RI, USA
| |
Collapse
|
45
|
Dong G, DeVito E, Huang J, Du X. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. J Psychiatr Res 2012; 46:1212-6. [PMID: 22727905 PMCID: PMC3650484 DOI: 10.1016/j.jpsychires.2012.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/22/2012] [Accepted: 05/30/2012] [Indexed: 11/28/2022]
Abstract
Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N = 16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N = 15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing.
Collapse
Affiliation(s)
- Guangheng Dong
- Department of Psychology, Zhejiang Normal University, 688 of Yingbin Road, Jinhua, Zhejiang Province, PR China.
| | - Elise DeVito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jie Huang
- Department of Psychology, Zhejiang Normal University, Jinhua City, Zhejiang Province, P.R.China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai. P.R.China
| |
Collapse
|
46
|
Lin F, Zhou Y, Du Y, Qin L, Zhao Z, Xu J, Lei H. Abnormal white matter integrity in adolescents with internet addiction disorder: a tract-based spatial statistics study. PLoS One 2012; 7:e30253. [PMID: 22253926 PMCID: PMC3256221 DOI: 10.1371/journal.pone.0030253] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Internet addiction disorder (IAD) is currently becoming a serious mental health issue around the globe. Previous studies regarding IAD were mainly focused on associated psychological examinations. However, there are few studies on brain structure and function about IAD. In this study, we used diffusion tensor imaging (DTI) to investigate white matter integrity in adolescents with IAD. Methodology/Principal Findings Seventeen IAD subjects and sixteen healthy controls without IAD participated in this study. Whole brain voxel-wise analysis of fractional anisotropy (FA) was performed by tract-based spatial statistics (TBSS) to localize abnormal white matter regions between groups. TBSS demonstrated that IAD had significantly lower FA than controls throughout the brain, including the orbito-frontal white matter, corpus callosum, cingulum, inferior fronto-occipital fasciculus, and corona radiation, internal and external capsules, while exhibiting no areas of higher FA. Volume-of-interest (VOI) analysis was used to detect changes of diffusivity indices in the regions showing FA abnormalities. In most VOIs, FA reductions were caused by an increase in radial diffusivity while no changes in axial diffusivity. Correlation analysis was performed to assess the relationship between FA and behavioral measures within the IAD group. Significantly negative correlations were found between FA values in the left genu of the corpus callosum and the Screen for Child Anxiety Related Emotional Disorders, and between FA values in the left external capsule and the Young's Internet addiction scale. Conclusions Our findings suggest that IAD demonstrated widespread reductions of FA in major white matter pathways and such abnormal white matter structure may be linked to some behavioral impairments. In addition, white matter integrity may serve as a potential new treatment target and FA may be as a qualified biomarker to understand the underlying neural mechanisms of injury or to assess the effectiveness of specific early interventions in IAD.
Collapse
Affiliation(s)
- Fuchun Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Zhou
- Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai, People's Republic of China
| | - Yasong Du
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Jiao Tong University, Shanghai, People's Republic of China
| | - Lindi Qin
- Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai, People's Republic of China
| | - Zhimin Zhao
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Jiao Tong University, Shanghai, People's Republic of China
| | - Jianrong Xu
- Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai, People's Republic of China
- * E-mail: (JX); (HL)
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People's Republic of China
- * E-mail: (JX); (HL)
| |
Collapse
|