1
|
Roy RJ, Parvaz MA, Wakabayashi KT, Blair RJR, Hubbard NA. Methamphetamine-related working memory difficulties underpinned by reduced frontoparietal responses. Addict Biol 2024; 29:e13444. [PMID: 39412242 PMCID: PMC11480971 DOI: 10.1111/adb.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
Working memory difficulties are common, debilitating, and may pose barriers to recovery for people who use methamphetamine. Yet, little is known regarding the neural dysfunctions accompanying these difficulties. Here, we acquired cross-sectional, functional magnetic resonance imaging while people with problematic methamphetamine-use experience (MA+, n = 65) and people without methamphetamine-use experience (MA-, n = 44) performed a parametric n-back task (0-back through 2-back). Performance on tasks administered outside of the scanner, together with n-back performance, afforded to determine a latent dimension of participants' working memory ability. Behavioural results indicated that MA+ participants exhibited lower scores on this dimension compared to MA- participants (d = -1.39, p < .001). Whole-brain imaging results also revealed that MA+ participants exhibited alterations in load-induced responses predominantly in frontoparietal and default-mode areas. Specifically, while the MA- group exhibited monotonic activation increases within frontoparietal areas and monotonic decreases within default-mode areas from 0-back to 2-back, MA+ participants showed a relative attenuation of these load-induced activation patterns (d = -1.55, p < .001). Moreover, increased activations in frontoparietal areas from 0- to 2-back were related to greater working memory ability among MA+ participants (r = .560, p = .004). No such effects were observed for default-mode areas. In sum, reductions in working memory ability were observed alongside load-induced dysfunctions in frontoparietal and default-mode areas for people with problematic methamphetamine-use experience. Among them, load-induced activations within frontoparietal areas were found to have a strong and specific relationship to individual differences in working memory ability, indicating a putative neural signature of the working memory difficulties associated with chronic methamphetamine use.
Collapse
Affiliation(s)
- Robert J. Roy
- Department of PsychologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Brain, Biology, and BehaviorLincolnNebraskaUSA
| | - Muhammad A. Parvaz
- Department of PsychiatryIchan School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIchan School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence and Human HealthIchan School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ken T. Wakabayashi
- Department of PsychologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Robert J. R. Blair
- Child and Adolescent Mental Health Centre, Mental Health ServicesCopenhagenDenmark
| | - Nicholas A. Hubbard
- Department of PsychologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Brain, Biology, and BehaviorLincolnNebraskaUSA
| |
Collapse
|
2
|
Liu Y, Yin H, Liu X, Zhang L, Wu D, Shi Y, Chen Y, Zhou X. Alcohol use disorder and time perception: The mediating role of attention and working memory. Addict Biol 2024; 29:e13367. [PMID: 38380757 PMCID: PMC10898827 DOI: 10.1111/adb.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 02/22/2024]
Abstract
Alcohol use disorder (AUD) has been associated with attentional deficits and impairments of working memory. Meanwhile, attention and working memory are critical for time perception. However, it remains unclear how time perception alters in AUD patients and how attention and working memory affect their time perception. The current study aims to clarify the time perception characteristics of AUD patients and the cognitive mechanisms underlying their time perception dysfunction. Thirty-one patients (three of them were excluded) with AUD and thirty-one matched controls completed the Time Bisection Task, Attention Network Test and Digital Span Backward Test to assess their abilities in time perception, attention network and working memory, respectively. The results showed that, after controlling for anxiety, depression, and impulsivity, AUD patients had a lower proportion of 'long' responses at intervals of 600, 750, 900, 1050 and 1200 ms. Furthermore, they displayed higher subjective equivalence points and higher Weber ratios compared to controls. Moreover, AUD patients showed impaired alerting and executive control networks as well as reduced working memory resources. Only working memory resources mediated the impact of AUD on time perception. In conclusion, our findings suggested that the duration underestimation in AUD patients is predominantly caused by working memory deficits.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Psychology, School of Education ScienceHunan Normal UniversityChangshaChina
- Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Huazhan Yin
- Department of Psychology, School of Education ScienceHunan Normal UniversityChangshaChina
- Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Xiaoyi Liu
- Department of Psychology, School of Education ScienceHunan Normal UniversityChangshaChina
- Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Li Zhang
- Department of Psychology, School of Education ScienceHunan Normal UniversityChangshaChina
- Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Dehua Wu
- Department of Psychology, School of Education ScienceHunan Normal UniversityChangshaChina
- Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Yan Shi
- Department of Psychology, School of Education ScienceHunan Normal UniversityChangshaChina
- Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Yang Chen
- Department of Psychology, School of Education ScienceHunan Normal UniversityChangshaChina
- Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental HealthBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| |
Collapse
|
3
|
Wesley MJ, Lile JA. Combining noninvasive brain stimulation with behavioral pharmacology methods to study mechanisms of substance use disorder. Front Neurosci 2023; 17:1150109. [PMID: 37554294 PMCID: PMC10405288 DOI: 10.3389/fnins.2023.1150109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Psychotropic drugs and transcranial magnetic stimulation (TMS) are effective for treating certain psychiatric conditions. Drugs and TMS have also been used as tools to explore the relationship between brain function and behavior in humans. Combining centrally acting drugs and TMS has proven useful for characterizing the neural basis of movement. This combined intervention approach also holds promise for improving our understanding of the mechanisms underlying disordered behavior associated with psychiatric conditions, including addiction, though challenges exist. For example, altered neocortical function has been implicated in substance use disorder, but the relationship between acute neuromodulation of neocortex with TMS and direct effects on addiction-related behaviors is not well established. We propose that the combination of human behavioral pharmacology methods with TMS can be leveraged to help establish these links. This perspective article describes an ongoing study that combines the administration of delta-9-tetrahydrocannabinol (THC), the main psychoactive compound in cannabis, with neuroimaging-guided TMS in individuals with problematic cannabis use. The study examines the impact of the left dorsolateral prefrontal cortex (DLPFC) stimulation on cognitive outcomes impacted by THC intoxication, including the subjective response to THC and the impairing effects of THC on behavioral performance. A framework for integrating TMS with human behavioral pharmacology methods, along with key details of the study design, are presented. We also discuss challenges, alternatives, and future directions.
Collapse
Affiliation(s)
- Michael J. Wesley
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Joshua A. Lile
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Athanason A, Nadav T, Cates-Gatto C, Roberts A, Roberto M, Varodayan F. Chronic ethanol alters adrenergic receptor gene expression and produces cognitive deficits in male mice. Neurobiol Stress 2023; 24:100542. [PMID: 37197395 PMCID: PMC10184141 DOI: 10.1016/j.ynstr.2023.100542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Hyperkateifia and stress-induced alcohol cravings drive relapse in individuals with alcohol use disorder (AUD). The brain stress signal norepinephrine (also known as noradrenaline) tightly controls cognitive and affective behavior and was thought to be broadly dysregulated with AUD. The locus coeruleus (LC) is a major source of forebrain norepinephrine, and it was recently discovered that the LC sends distinct projections to addiction-associated regions suggesting that alcohol-induced noradrenergic changes may be more brain region-specific than originally thought. Here we investigated whether ethanol dependence alters adrenergic receptor gene expression in the medial prefrontal cortex (mPFC) and central amgydala (CeA), as these regions mediate the cognitive impairment and negative affective state of ethanol withdrawal. We exposed male C57BL/6J mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and assessed reference memory, anxiety-like behavior and adrenergic receptor transcript levels during 3-6 days of withdrawal. Dependence bidirectionally altered mouse brain α1 and β receptor mRNA levels, potentially leading to reduced mPFC adrenergic signaling and enhanced noradrenergic influence over the CeA. These brain region-specific gene expression changes were accompanied by long-term retention deficits and a shift in search strategy in a modified Barnes maze task, as well as greater spontaneous digging behavior and hyponeophagia. Current clinical studies are evaluating adrenergic compounds as a treatment for AUD-associated hyperkatefia, and our findings can contribute to the refinement of these therapies by increasing understanding of the specific neural systems and symptoms that may be targeted.
Collapse
Affiliation(s)
- A.C. Athanason
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - T. Nadav
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - C. Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - A.J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - M. Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - F.P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
5
|
Wang L, Wu H, Dai C, Peng Z, Song T, Xu L, Xu M, Shao Y, Li S, Fu W. Dynamic hippocampal functional connectivity responses to varying working memory loads following total sleep deprivation. J Sleep Res 2022; 32:e13797. [PMID: 36528854 DOI: 10.1111/jsr.13797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Sleep loss with work overload can impact human cognitive performance. However, the brain's response to an increased working memory load following total sleep deprivation (TSD) remains unclear. In the present study, we focussed on the dynamic response of the hippocampus to increased working memory load before and after total sleep deprivation of 36 h. A total of 16 male participants completed a verbal working memory task under functional magnetic resonance imaging. After whole-brain activation analysis and region of interest analysis of the hippocampus, the generalised form of context-dependent psychophysiological interactions (gPPI) was used to analyse the hippocampal functional connectivity with the whole brain. The results revealed that as the working memory load increased within a small range, from 0-back to 1-back task, the left hippocampal functional connectivity decreased with the left supplementary motor area, left pars opercularis, left rolandic operculum, right superior frontal gyrus, bilateral precentral gyrus, and left middle cingulate cortex following total sleep deprivation compared with that observed in resting wakefulness. When the working memory load further increased from 1-back to 2-back task, the connectivity increased between the left hippocampus and the left superior parietal lobule as well as between the left hippocampus and right lingual gyrus after total sleep deprivation compared with that observed in resting wakefulness. Moreover, the left hippocampus gPPI effect on the left middle cingulate cortex and left superior parietal lobule could predict the behavioural test accuracy in 1-back and 2-back task, respectively, following total sleep deprivation. These findings indicated that increased working memory load after total sleep deprivation disrupts working memory processes. The brain reacts to these disruptions in a dynamic and flexible manner, involving not only brain activation but also hippocampus-related functional network connections.
Collapse
Affiliation(s)
- Letong Wang
- School of Psychology Beijing Sport University Beijing China
| | - Haijing Wu
- Department of Gynecologic Oncology Sichuan Cancer Hospital Chengdu China
| | - Cimin Dai
- School of Psychology Beijing Sport University Beijing China
| | - Ziyi Peng
- School of Psychology Beijing Sport University Beijing China
| | - Tao Song
- School of Psychology Beijing Sport University Beijing China
| | - Lin Xu
- School of Psychology Beijing Sport University Beijing China
| | - Mengmeng Xu
- School of Psychology Beijing Sport University Beijing China
| | - Yongcong Shao
- School of Psychology Beijing Sport University Beijing China
- School of Biological Science and Medical Engineering Beihang University Beijing China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou China
| | - Shijun Li
- Department of Radiology, First Medical Center Chinese PLA General Hospital Beijing China
| | - Weiwei Fu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou China
| |
Collapse
|
6
|
Guo X, Yan T, Chen M, Ma X, Li R, Li B, Yang A, Chen Y, Fang T, Yu H, Tian H, Chen G, Zhuo C. Differential effects of alcohol-drinking patterns on the structure and function of the brain and cognitive performance in young adult drinkers: A pilot study. Brain Behav 2022; 12:e2427. [PMID: 34808037 PMCID: PMC8785638 DOI: 10.1002/brb3.2427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION This study was aimed to determine how different patterns of alcohol consumption drive changes to brain structure and function and their correlation with cognitive impairments in young adult alcohol drinkers. METHODS In this study, we enrolled five groups participants and defined as: long-term abstinence from alcohol (LA), binge drinking (BD), long-term low dosage alcohol consumption but exceeding the safety drinking dosage (LD), long-term alcohol consumption of damaging dosage (LDD), and long-term heavy drinking (HD). All participants underwent magnetic resonance imaging (MRI) and functional MRI (fMRI) to acquire data on brain structure and function, including gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), functional connectivity (FC), and brain network properties. The cognitive ability was evaluated with the California Verbal Learning Test (CVLT), intelligence quotient (IQ), and short delay free recall (SDFR). RESULTS Compared to LA, GMV significantly decreased in the brain regions in VN, SMN, and VAN in the alcohol-drinking groups (BD, LD, LDD, and HD). ReHo was significantly enhanced in the brain regions in VN, SMN, and VAN, while fALFF significantly increased in the brain regions in VN and SMN. The number of intra- and inter-modular connections within networks (VN, SMN, sensory control network [SCN], and VAN) and their connections to other modules were abnormally changed. These changes adversely affected cognition (e.g., IQ, CVLT, SDFR). CONCLUSION Despite the small sample size, this study provides new evidence supporting the need for young people to abstain from alcohol to protect their brains. These findings present strong reasoning for updating anti-alcohol slogans and guidelines for young people in the future.
Collapse
Affiliation(s)
- Xiaobing Guo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tongjun Yan
- Department of Psychiatry, 904th Hospital of PLA, Changzhou, Jiangsu, China
| | - Min Chen
- Institute of Mental Health, Jining Medical University, Jining, China
| | - Xiaoyan Ma
- Department of Alcohol Dependence Management, Tianjin Anding Hospital, Tianjin Medical University Clinical Hospital of Mental Health, Tianjin, China.,Tianjin Anding Hospital, Tianjin Mental Health Center, Key Laboratory of Psychiatry Neuroimaging-Genetics and Co-morbidity (PNGC_Lab) of Tianjin Medical University Clinical Hospital of Mental Health, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ranli Li
- Department of Alcohol Dependence Management, Tianjin Anding Hospital, Tianjin Medical University Clinical Hospital of Mental Health, Tianjin, China.,Tianjin Anding Hospital, Tianjin Mental Health Center, Key Laboratory of Psychiatry Neuroimaging-Genetics and Co-morbidity (PNGC_Lab) of Tianjin Medical University Clinical Hospital of Mental Health, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Bo Li
- Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin, China
| | - Anqu Yang
- Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin, China
| | - Yuhui Chen
- Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin, China
| | - Tao Fang
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Haiping Yu
- Department of Alcohol Dependence Management, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Hongjun Tian
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Alcohol Dependence Management, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chuanjun Zhuo
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China.,Department of Alcohol Dependence Management, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
7
|
Loganathan K. Value-based cognition and drug dependency. Addict Behav 2021; 123:107070. [PMID: 34359016 DOI: 10.1016/j.addbeh.2021.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Value-based decision-making is thought to play an important role in drug dependency. Achieving elevated levels of euphoria or ameliorating dysphoria/pain may motivate goal-directed drug consumption in both drug-naïve and long-time users. In other words, drugs become viewed as the preferred means of attaining a desired internal state. The bias towards choosing drugs may affect one's cognition. Observed biases in learning, attention and memory systems within the brain gradually focus one's cognitive functions towards drugs and related cues to the exclusion of other stimuli. In this narrative review, the effects of drug use on learning, attention and memory are discussed with a particular focus on changes across brain-wide functional networks and the subsequent impact on behaviour. These cognitive changes are then incorporated into the cycle of addiction, an established model outlining the transition from casual drug use to chronic dependency. If drug use results in the elevated salience of drugs and their cues, the studies highlighted in this review strongly suggest that this salience biases cognitive systems towards the motivated pursuit of addictive drugs. This bias is observed throughout the cycle of addiction, possibly contributing to the persistent hold that addictive drugs have over the dependent. Taken together, the excessive valuation of drugs as the preferred means of achieving a desired internal state affects more than just decision-making, but also learning, attentional and mnemonic systems. This eventually narrows the focus of one's thoughts towards the pursuit and consumption of addictive drugs.
Collapse
|
8
|
Cousijn J, Ridderinkhof KR, Kaag AM. Sex-dependent prefrontal cortex activation in regular cocaine users: A working memory functional magnetic resonance imaging study. Addict Biol 2021; 26:e13003. [PMID: 33508891 PMCID: PMC8459240 DOI: 10.1111/adb.13003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023]
Abstract
Although two thirds of patients with a cocaine use disorder (CUD) are female, little is known about sex differences in the (neuro)pathology of CUD. The aim of this explorative study was to investigate sex‐dependent differences in prefrontal cortex (PFC) functioning during a working memory (WM) functional magnetic resonance imaging (fMRI) task in regular cocaine users (CUs), as PFC deficits are implicated in the shift from recreational cocaine use to CUD. Neural activation was measured using fMRI during a standard WM task (n‐back task) in 27 male and 28 female CUs and in 26 male and 28 female non‐cocaine users (non‐CUs). Although there were no main or interaction effects of sex and group on n‐back task performance, WM‐related (2‐back > 0‐back) PFC functioning was significantly moderated by sex and group: female compared with male CUs displayed higher WM‐related activation of the middle frontal gyrus (MFG), whereas female compared with male non‐CUs displayed lower WM‐related MFG activation. Additionally, WM‐related activation of the inferior frontal gyrus, insula, and putamen was negatively associated with cocaine use severity in female but not male CUs. These data support the hypothesis of sex‐dependent PFC differences in CUs and speculatively suggest that PFC deficits may be more strongly implicated in the development, continuation, and possibly treatment of CUD in females. Most importantly, the current data stress the importance of studying both males and females in psychiatry research as not doing so could greatly bias our knowledge of CUD and other psychiatric disorders.
Collapse
Affiliation(s)
- Janna Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology University of Amsterdam Amsterdam The Netherlands
- The Amsterdam Brain and Cognition Center (ABC) University of Amsterdam Amsterdam The Netherlands
| | - K. Richard Ridderinkhof
- The Amsterdam Brain and Cognition Center (ABC) University of Amsterdam Amsterdam The Netherlands
- Department of Psychology University of Amsterdam Amsterdam The Netherlands
| | - Anne Marije Kaag
- The Amsterdam Brain and Cognition Center (ABC) University of Amsterdam Amsterdam The Netherlands
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Institute for Brain and Behavior Amsterdam Vrije Universiteit Amsterdam Amsterdam The Netherlands
| |
Collapse
|
9
|
Klugah-Brown B, Di X, Zweerings J, Mathiak K, Becker B, Biswal B. Common and separable neural alterations in substance use disorders: A coordinate-based meta-analyses of functional neuroimaging studies in humans. Hum Brain Mapp 2020; 41:4459-4477. [PMID: 32964613 PMCID: PMC7555084 DOI: 10.1002/hbm.25085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Delineating common and separable neural alterations in substance use disorders (SUD) is imperative to understand the neurobiological basis of the addictive process and to inform substance‐specific treatment strategies. Given numerous functional MRI (fMRI) studies in different SUDs, a meta‐analysis could provide an opportunity to determine robust shared and substance‐specific alterations. The present study employed a coordinate‐based meta‐analysis covering fMRI studies in individuals with addictive cocaine, cannabis, alcohol, and nicotine use. The primary meta‐analysis demonstrated common alterations in primary dorsal striatal, and frontal circuits engaged in reward/salience processing, habit formation, and executive control across different substances and task‐paradigms. Subsequent sub‐analyses revealed substance‐specific alterations in frontal and limbic regions, with marked frontal and insula‐thalamic alterations in alcohol and nicotine use disorders respectively. Examining task‐specific alterations across substances revealed pronounced frontal alterations during cognitive processes yet stronger striatal alterations during reward‐related processes. Finally, an exploratory meta‐analysis revealed that neurofunctional alterations in striatal and frontal reward processing regions can already be determined with a high probability in studies with subjects with comparably short durations of use. Together the findings emphasize the role of dysregulations in frontostriatal circuits and dissociable contributions of these systems in the domains of reward‐related and cognitive processes which may contribute to substance‐specific behavioral alterations.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
10
|
Kantak KM. Adolescent-onset vs. adult-onset cocaine use: Impact on cognitive functioning in animal models and opportunities for translation. Pharmacol Biochem Behav 2020; 196:172994. [PMID: 32659242 DOI: 10.1016/j.pbb.2020.172994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Animal models are poised to make key contributions to the study of cognitive deficits associated with chronic cocaine use in people. Advantages of animal models include use of a longitudinal experimental design that can control for drug use history and onset-age, sex, drug consumption, and abstinence duration. Twenty-two studies were reviewed (13 in adult male rats, 5 in adolescent vs. adult male rats, 3 in adult male monkeys, and 1 in adult female monkeys), and it was demonstrated repeatedly that male animals with adult-onset cocaine self-administration exposure had impairments in sustained attention, decision making, stimulus-reward learning, working memory, and cognitive flexibility, but not habit learning and spatial learning and memory. These findings have translational relevance because adult cocaine users exhibit a similar range of cognitive deficits. In the limited number of studies available, male rats self-administering cocaine during adolescence were less susceptible than adults to impairment in cognitive flexibility, stimulus-reward learning, and decision making, but were more susceptible than adults to impairment in working memory, a finding also reported in the few studies performed in early-onset cocaine users. These findings suggest that animal models can help fill an unmet need for investigating important but yet-to-be-fully-addressed research questions in people. Research priorities include further investigation of differences between adolescents and adults as well as between males and females following chronic cocaine self-administration. A comprehensive understanding of the broad range of cognitive consequences of chronic cocaine use and the role of developmental plasticity can be of value for improving neuropsychological recovery efforts.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, United States of America.
| |
Collapse
|
11
|
Yaple ZA, Stevens WD, Arsalidou M. Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. Neuroimage 2019; 196:16-31. [DOI: 10.1016/j.neuroimage.2019.03.074] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022] Open
|
12
|
Lindgren KP, Hendershot CS, Ramirez JJ, Bernat E, Rangel-Gomez M, Peterson KP, Murphy JG. A dual process perspective on advances in cognitive science and alcohol use disorder. Clin Psychol Rev 2019; 69:83-96. [PMID: 29680185 PMCID: PMC6181791 DOI: 10.1016/j.cpr.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
There is a tremendous global and national (US) burden associated with alcohol misuse and alcohol use disorder (AUD). Further, of the mental health disorders, AUD has the widest treatment gap. Thus, there is a critical need for improved understanding of the etiology, maintenance, and treatment of AUD. The application of cognitive science to the study of AUD has a longstanding history of attempting to meet this need. In this selective review, we identified and focused on four domains of recent (i.e., in the last decade) applications of cognitive science to the study of AUD: implicit cognitive biases, executive function, behavioral economic approaches to alcohol decision making, and functional connectivity neuroimaging. We highlighted advances within these four domains and considered them in the context of dual process models of addiction, which focus on the contribution and interplay of two complementary neurocognitive systems (impulsive and control systems). Findings across the domains were generally consistent with dual process models. They also suggest the need for further model refinements, including integrating behavioral economic approaches and findings from functional connectivity neuroimaging studies. Research evaluating candidate interventions associated with these domains is emergent but promising, suggesting important directions for future research.
Collapse
Affiliation(s)
- Kristen P Lindgren
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - Christian S Hendershot
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jason J Ramirez
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Edward Bernat
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | | - Kirsten P Peterson
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - James G Murphy
- Department of Psychology, University of Memphis, Memphis, TN, USA
| |
Collapse
|
13
|
Cutuli D, de Guevara-Miranda DL, Castilla-Ortega E, Santín L, Sampedro-Piquero P. Highlighting the Role of Cognitive and Brain Reserve in the Substance use Disorder Field. Curr Neuropharmacol 2019; 17:1056-1070. [PMID: 31204624 PMCID: PMC7052825 DOI: 10.2174/1570159x17666190617100707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/17/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cognitive reserve (CR) refers to the ability of an individual to cope with brain pathology remaining free of cognitive symptoms. This protective factor has been related to compensatory and more efficient brain mechanisms involved in resisting brain damage. For its part, Brain reserve (BR) refers to individual differences in the structural properties of the brain which could also make us more resilient to suffer from neurodegenerative and mental diseases. OBJECTIVE This review summarizes how this construct, mainly mediated by educational level, occupational attainment, physical and mental activity, as well as successful social relationships, has gained scientific attention in the last years with regard to diseases, such as neurodegenerative diseases, stroke or traumatic brain injury. Nevertheless, although CR has been studied in a large number of disorders, few researches have addressed the role of this concept in drug addiction. METHODS We provide a selective overview of recent literature about the role of CR and BR in preventing substance use onset. Likewise, we will also discuss how variables involved in CR (healthy leisure, social support or job-related activities, among others) could be trained and included as complementary activities of substance use disorder treatments. RESULTS Evidence about this topic suggests a preventive role of CR and BR on drug use onset and when drug addiction is established, these factors led to less severe addiction-related problems, as well as better treatment outcomes. CONCLUSION CR and BR are variables not taken yet into account in drug addiction. However, they could give us a valuable information about people at risk, as well as patient's prognosis.
Collapse
Affiliation(s)
| | | | | | - L.J. Santín
- Address correspondence to these authors at the Instituto de Investigación Biomédica de Málaga (IBIMA), Doctor Miguel Díaz Recio, 28 Málaga 29010, Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos S/N, 29071 Málaga, Spain; E-mails: (P. Sampedro-Piquero) and (L.J. Santín)
| | - P. Sampedro-Piquero
- Address correspondence to these authors at the Instituto de Investigación Biomédica de Málaga (IBIMA), Doctor Miguel Díaz Recio, 28 Málaga 29010, Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos S/N, 29071 Málaga, Spain; E-mails: (P. Sampedro-Piquero) and (L.J. Santín)
| |
Collapse
|
14
|
Rochat L, Maurage P, Heeren A, Billieux J. Let's Open the Decision-Making Umbrella: A Framework for Conceptualizing and Assessing Features of Impaired Decision Making in Addiction. Neuropsychol Rev 2018; 29:27-51. [PMID: 30293096 DOI: 10.1007/s11065-018-9387-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
Decision-making impairments play a pivotal role in the emergence and maintenance of addictive disorders. However, a sound conceptualization of decision making as an umbrella construct, encompassing its cognitive, affective, motivational, and physiological subcomponents, is still lacking. This prevents an efficient evaluation of the heterogeneity of decision-making impairments and the development of tailored treatment. This paper thus unfolds the various processes involved in decision making by adopting a critical approach of prominent dual- or triadic-process models, which postulate that decision making is influenced by the interplay of impulsive-automatic, reflective-controlled, and interoceptive processes. Our approach also focuses on social cognition processes, which play a crucial role in decision making and addictive disorders but were largely ignored in previous dual- or triadic-process models. We propose here a theoretical framework in which a range of coordinated processes are first identified on the basis of their theoretical and clinical relevance. Each selected process is then defined before reviewing available results underlining its role in addictive disorders (i.e., substance use, gambling, and gaming disorders). Laboratory tasks for measuring each process are also proposed, initiating a preliminary process-based decision-making assessment battery. This original approach may offer an especially informative view of the constitutive features of decision-making impairments in addiction. As prior research has implicated these features as risk factors for the development and maintenance of addictive disorders, our processual approach sets the scene for novel and transdiagnostic experimental and applied research avenues.
Collapse
Affiliation(s)
- Lucien Rochat
- Cognitive Psychopathology and Neuropsychology Unit, Department of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Pierre Maurage
- Laboratory for Experimental Psychopathology, Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Neuroscience Division, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Alexandre Heeren
- Laboratory for Experimental Psychopathology, Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Neuroscience Division, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Joël Billieux
- Addictive and Compulsive Behaviours Lab (ACB-Lab), Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Centre for Excessive Gambling, Lausanne University Hospitals (CHUV), Lausanne, Switzerland.
- Addiction Division, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Raposo Pereira F, McMaster MTB, Polderman N, de Vries YDAT, van den Brink W, van Wingen GA. Effect of GHB-use and GHB-induced comas on dorsolateral prefrontal cortex functioning in humans. Neuroimage Clin 2018; 20:923-930. [PMID: 30308378 PMCID: PMC6178194 DOI: 10.1016/j.nicl.2018.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/15/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gamma-hydroxybutyric acid (GHB) is a recreational drug associated with increasing numbers of GHB-dependent patients and emergency attendances often related to GHB-induced comas. Working memory (WM) deficits have been reported in association with GHB use, and animal studies have shown that GHB induces oxidative stress in vulnerable WM-related brain areas such as the dorsolateral prefrontal cortex (DLPFC). However, the effects of chronic GHB use and multiple GHB-induced comas on WM-related brain function in humans remains unknown. METHODS We recruited 27 GHB users with ≥4 GHB-induced comas (GHB-Coma), 27 GHB users who never experienced GHB-induced coma (GHB-NoComa), and 27 polydrug users who never used GHB (No-GHB). Participants performed an n-back WM task during functional magnetic resonance imaging (fMRI) to probe DLPFC functioning. RESULTS The GHB-Coma group had lower premorbid IQ (p = .006) than the GHB-NoComa group despite comparable age and education level. There were also group differences in the use of other drugs than GHB. Therefore, all group comparisons were adjusted for IQ and drug use other than GHB. Compared with the GHB-NoComa and the No-GHB groups, the GHB-Coma group showed increased activity in the right DLPFC (pSVC = 0.028) and increased functional connectivity of the right DLPFC with a cluster comprising the left anterior cingulate and medial frontal gyrus (pFWE = 0.003). No significant fMRI differences were observed between the GHB-NoComa and No-GHB groups. Due to technical problems, no behavioural data were collected. DISCUSSION These results suggest that multiple GHB-induced comas, but not GHB-use per se, are associated with alterations in WM-related brain function. Public awareness campaigns are required to minimize the potential adverse effects induced by GHB recreational use, and especially GHB-induced comas, even if no immediate side effects are experienced.
Collapse
Affiliation(s)
- Filipa Raposo Pereira
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, the Netherlands.
| | - Minni T B McMaster
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, the Netherlands
| | - Nikki Polderman
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yvon D A T de Vries
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Wim van den Brink
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, the Netherlands
| |
Collapse
|