1
|
Michael A, Onisiforou A, Georgiou P, Koumas M, Powels C, Mammadov E, Georgiou AN, Zanos P. (2R,6R)-hydroxynorketamine prevents opioid abstinence-related negative affect and stress-induced reinstatement in mice. Br J Pharmacol 2025. [PMID: 40155780 DOI: 10.1111/bph.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Opioid use disorder (OUD) is a pressing public health concern marked by frequent relapse during periods of abstinence, perpetuated by negative affective states. Classical antidepressants or the currently prescribed opioid pharmacotherapies have limited efficacy to reverse the negative affect or prevent relapse. EXPERIMENTAL APPROACH Using mouse models, we investigated the effects of ketamine's metabolite (2R,6R)-hydroxynorketamine (HNK) on reversing conditioning to sub-effective doses of morphine in stress-susceptible mice, preventing conditioned-place aversion and alleviating acute somatic abstinence symptoms in opioid-dependent mice. Additionally, we evaluated its effects on anhedonia, anxiety-like behaviours and cognitive impairment during protracted opioid abstinence, while mechanistic studies examined cortical EEG oscillations and synaptic plasticity markers. KEY RESULTS (2R,6R)-HNK reversed conditioning to sub-effective doses of morphine in stress-susceptible mice and prevented conditioned-place aversion and acute somatic abstinence symptoms in opioid-dependent mice. In addition, (2R,6R)-HNK reversed anhedonia, anxiety-like behaviours and cognitive impairment emerging during protracted opioid abstinence plausibly via a restoration of impaired cortical high-frequency EEG oscillations, through a GluN2A-NMDA receptor-dependent mechanism. Notably, (2R,6R)-HNK facilitated the extinction of opioid conditioning, prevented stress-induced reinstatement of opioid-seeking behaviours and reduced the propensity for enhanced morphine self-consumption in mice previously exposed to opioids. CONCLUSIONS AND IMPLICATIONS These findings emphasize the therapeutic potential of (2R,6R)-HNK, which is currently in Phase II clinical trials, in addressing stress-related opioid responses. Reducing the time and cost required for development of new medications for the treatment of OUDs via drug repurposing is critical due to the opioid crisis we currently face.
Collapse
Affiliation(s)
- Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chris Powels
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elmar Mammadov
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Andrea N Georgiou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Downs AM, Kmiec G, McElligott ZA. Oral fentanyl consumption and withdrawal impairs fear extinction learning and enhances basolateral amygdala principal neuron excitatory-inhibitory balance in male and female mice. ADDICTION NEUROSCIENCE 2024; 13:100182. [PMID: 39742087 PMCID: PMC11687336 DOI: 10.1016/j.addicn.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks. Fentanyl consumption peaked in both female and male mice at the 30 μg/mL dose, with female mice consuming significantly more fentanyl than male mice. Mice consumed sufficient fentanyl such that withdrawal was precipitated with naloxone, with males having increased withdrawal symptoms as compared to females, despite lower pharmacological exposure. We also performed behavioral assays to measure avoidance behavior and reward-seeking during fentanyl abstinence. Female mice displayed reduced avoidance behaviors in the open field assay, whereas male mice showed increased avoidance in the light/dark box assay. Female mice also exhibited increased reward-seeking in the sucrose preference test. Fentanyl-consuming mice of both sexes showed impaired cued fear extinction learning following fear conditioning and increased excitatory synaptic drive and increased excitability of BLA principal neurons. Our experiments demonstrate that long-term oral fentanyl consumption results in wide-ranging physiological and behavioral disruptions. This model could be useful to further study fentanyl withdrawal syndrome and behaviors and neuroplasticity associated with protracted fentanyl withdrawal.
Collapse
Affiliation(s)
- Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zoé A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Downs AM, Kmiec G, McElligott ZA. Oral Fentanyl Consumption and Withdrawal Impairs Fear Extinction Learning and Enhances Basolateral Amygdala Principal Neuron Excitatory-Inhibitory Balance in Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569085. [PMID: 38076868 PMCID: PMC10705490 DOI: 10.1101/2023.11.28.569085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks. Fentanyl consumption peaked in both female and male mice at the 30 µg/mL dose, with female mice consuming significantly more fentanyl than male mice. Mice consumed sufficient fentanyl such that withdrawal was precipitated with naloxone, with males having more withdrawal symptoms, despite lower pharmacological exposure. We also performed behavioral assays to measure avoidance behavior and reward-seeking during fentanyl abstinence. Female mice displayed reduced avoidance behaviors in the open field assay, whereas male mice showed increased avoidance in the light/dark box assay. Female mice also exhibited increased reward-seeking in the sucrose preference test. Fentanyl-consuming mice of both sexes showed impaired cued fear extinction learning following fear conditioning and increased excitatory synaptic drive and increased excitability of BLA principal neurons. Our experiments demonstrate that long-term oral fentanyl consumption results in wide-ranging physiological and behavioral disruptions. This model could be useful to further study fentanyl withdrawal syndrome and behaviors and neuroplasticity associated with protracted fentanyl withdrawal.
Collapse
|
4
|
Slivicki RA, Earnest T, Chang YH, Pareta R, Casey E, Li JN, Tooley J, Abiraman K, Vachez YM, Wolf DK, Sackey JT, Pitchai DK, Moore T, Gereau RW, Copits BA, Kravitz AV, Creed MC. Oral oxycodone self-administration leads to features of opioid misuse in male and female mice. Addict Biol 2023; 28:e13253. [PMID: 36577735 PMCID: PMC11824864 DOI: 10.1111/adb.13253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Use of prescription opioids, particularly oxycodone, is an initiating factor driving the current opioid epidemic. There are several challenges with modelling oxycodone abuse. First, prescription opioids including oxycodone are orally self-administered and have different pharmacokinetics and dynamics than morphine or fentanyl, which have been more commonly used in rodent research. This oral route of administration determines the pharmacokinetic profile, which then influences the establishment of drug-reinforcement associations in animals. Moreover, the pattern of intake and the environment in which addictive drugs are self-administered are critical determinants of the levels of drug intake, of behavioural sensitization and of propensity to relapse behaviour. These are all important considerations when modelling prescription opioid use, which is characterized by continuous drug access in familiar environments. Thus, to model features of prescription opioid use and the transition to abuse, we designed an oral, homecage-based oxycodone self-administration paradigm. Mice voluntarily self-administer oxycodone in this paradigm without any taste modification such as sweeteners, and the majority exhibit preference for oxycodone, escalation of intake, physical signs of dependence and reinstatement of seeking after withdrawal. In addition, a subset of animals demonstrate drug taking that is resistant to aversive consequences. This model is therefore translationally relevant and useful for studying the neurobiological substrates of prescription opioid abuse.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Tom Earnest
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Yu-Hsuan Chang
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Rajesh Pareta
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Eric Casey
- Department of Psychiatry, Washington University in St. Louis
| | - Jun-Nan Li
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Jessica Tooley
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Kavitha Abiraman
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Yvan M. Vachez
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Drew K. Wolf
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | - Jason T. Sackey
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
| | | | | | - Robert W. Gereau
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Bryan A. Copits
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
| | - Alexxai V. Kravitz
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Meaghan C. Creed
- Washington University Pain Center, Dept. of Anesthesiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neuroscience, Washington University in St. Louis
- Department of Biomedical Engineering, Washington University in St. Louis
| |
Collapse
|
5
|
Berríos-Cárcamo P, Quezada M, Santapau D, Morales P, Olivares B, Ponce C, Ávila A, De Gregorio C, Ezquer M, Quintanilla ME, Herrera-Marschitz M, Israel Y, Ezquer F. A Novel Morphine Drinking Model of Opioid Dependence in Rats. Int J Mol Sci 2022; 23:ijms23073874. [PMID: 35409269 PMCID: PMC8999131 DOI: 10.3390/ijms23073874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
An animal model of voluntary oral morphine consumption would allow for a pre-clinical evaluation of new treatments aimed at reducing opioid intake in humans. However, the main limitation of oral morphine consumption in rodents is its bitter taste, which is strongly aversive. Taste aversion is often overcome by the use of adulterants, such as sweeteners, to conceal morphine taste or bitterants in the alternative bottle to equalize aversion. However, the adulterants’ presence is the cause for consumption choice and, upon removal, the preference for morphine is not preserved. Thus, current animal models are not suitable to study treatments aimed at reducing consumption elicited by morphine itself. Since taste preference is a learned behavior, just-weaned rats were trained to accept a bitter taste, adding the bitterant quinine to their drinking water for one week. The latter was followed by allowing the choice of quinine or morphine (0.15 mg/mL) solutions for two weeks. Then, quinine was removed, and the preference for morphine against water was evaluated. Using this paradigm, we show that rats highly preferred the consumption of morphine over water, reaching a voluntary morphine intake of 15 mg/kg/day. Morphine consumption led to significant analgesia and hyperlocomotion, and to a marked deprivation syndrome following the administration of the opioid antagonist naloxone. Voluntary morphine consumption was also shown to generate brain oxidative stress and neuroinflammation, signs associated with opioid dependence development. We present a robust two-bottle choice animal model of oral morphine self-administration for the evaluation of therapeutic interventions for the treatment of morphine dependence.
Collapse
Affiliation(s)
- Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Mauricio Quezada
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Daniela Santapau
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8900000, Chile
| | - Belén Olivares
- Center for Medical Chemistry, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Carolina Ponce
- Faculty of Agricultural and Forestry Sciences, Universidad de la Frontera, Temuco 4811230, Chile
| | - Alba Ávila
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Yedy Israel
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8900000, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8900000, Chile
| |
Collapse
|
6
|
Eacret D, Lemchi C, Caulfield JI, Cavigelli SA, Veasey SC, Blendy JA. Chronic Sleep Deprivation Blocks Voluntary Morphine Consumption but Not Conditioned Place Preference in Mice. Front Neurosci 2022; 16:836693. [PMID: 35250468 PMCID: PMC8892254 DOI: 10.3389/fnins.2022.836693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
The opioid epidemic remains a significant healthcare problem and is attributable to over 100,000 deaths per year. Poor sleep increases sensitivity to pain, impulsivity, inattention, and negative affect, all of which might perpetuate drug use. Opioid users have disrupted sleep during drug use and withdrawal and report poor sleep as a reason for relapse. However, preclinical studies investigating the relationship between sleep loss and substance use and the associated underlying neurobiological mechanisms of potential interactions are lacking. One of the most common forms of sleep loss in modern society is chronic short sleep (CSS) (<7 h/nightly for adults). Here, we used an established model of CSS to investigate the influence of disrupted sleep on opioid reward in male mice. The CSS paradigm did not increase corticosterone levels or depressive-like behavior after a single sleep deprivation session but did increase expression of Iba1, which typically reflects microglial activation, in the hypothalamus after 4 weeks of CSS. Rested control mice developed a morphine preference in a 2-bottle choice test, while mice exposed to CSS did not develop a morphine preference. Both groups demonstrated morphine conditioned place preference (mCPP), but there were no differences in conditioned preference between rested and CSS mice. Taken together, our results show that recovery sleep after chronic sleep disruption lessens voluntary opioid intake, without impacting conditioned reward associated with morphine.
Collapse
Affiliation(s)
- Darrell Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Crystal Lemchi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasmine I. Caulfield
- Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sonia A. Cavigelli
- Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sigrid C. Veasey
- Department of Medicine, Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Julie A. Blendy,
| |
Collapse
|
7
|
Iyer V, Woodward TJ, Pacheco R, Hohmann AG. A limited access oral oxycodone paradigm produces physical dependence and mesocorticolimbic region-dependent increases in DeltaFosB expression without preference. Neuropharmacology 2021; 205:108925. [PMID: 34921830 DOI: 10.1016/j.neuropharm.2021.108925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/07/2023]
Abstract
The abuse of oral formulations of prescription opioids has precipitated the current opioid epidemic. We developed an oral oxycodone consumption model consisting of a limited access (4 h) two-bottle choice drinking in the dark (TBC-DID) paradigm and quantified dependence with naloxone challenge using mice of both sexes. We also assessed neurobiological correlates of withdrawal and dependence elicited via oral oxycodone consumption using immunohistochemistry for DeltaFosB (ΔFosB), a transcription factor described as a molecular marker for drug addiction. Neither sex developed a preference for the oxycodone bottle, irrespective of oxycodone concentration, bottle position or prior water restriction. Mice that volitionally consumed oxycodone exhibited hyperlocomotion in an open field test and supraspinal but not spinally-mediated antinociception. Both sexes also developed robust, dose-dependent levels of opioid withdrawal that was precipitated by the opioid antagonist naloxone. Oral oxycodone consumption followed by naloxone challenge led to mesocorticolimbic region-dependent increases in the number of ΔFosB expressing cells. Naloxone-precipitated withdrawal jumps, but not the oxycodone bottle % preference, was positively correlated with the number of ΔFosB expressing cells specifically in the nucleus accumbens shell. Thus, limited access oral consumption of oxycodone produced physical dependence and increased ΔFosB expression despite the absence of opioid preference. Our TBC-DID paradigm allows for the study of oral opioid consumption in a simple, high-throughput manner and elucidates the underlying neurobiological substrates that accompany opioid-induced physical dependence.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Taylor J Woodward
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
8
|
Monroe SC, Radke AK. Aversion-resistant fentanyl self-administration in mice. Psychopharmacology (Berl) 2021; 238:699-710. [PMID: 33226446 PMCID: PMC7914171 DOI: 10.1007/s00213-020-05722-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
RATIONALE Animal models of compulsive drug use that continues despite negative consequences can be used to investigate the neural mechanisms of addiction. However, models of punished or aversion-resistant opioid self-administration are notably lacking. OBJECTIVES We sought to develop an aversion-resistant, oral fentanyl self-administration paradigm. METHODS In Experiment 1, C57BL/6J male and female, adult mice consumed fentanyl (10 μg/mL) in a two-bottle drinking in the dark task and escalating concentrations of quinine were added to the bottles. In Experiment 2, mice were trained to administer oral fentanyl (10 μg/mL) in an operant response task. Quinine was next added to the fentanyl solution in escalating concentrations. In Experiment 3, mice were trained to respond for oral fentanyl or fentanyl adulterated with 500 μM quinine on every session. In Experiment 4, mice were trained to respond for a 1% sucrose solution before introduction of quinine. RESULTS Quinine reduced two-bottle choice consumption in males but not in females. Both sexes demonstrated the ability to detect the selected concentrations of quinine in fentanyl. In the operant chamber, mice responded robustly for oral fentanyl but introduction of quinine at any stage of training was insufficient to reduce responding. In contrast, quinine reduced responding for sucrose at concentrations above 250 μM. CONCLUSIONS Mice will respond for and consume oral fentanyl in both a two-bottle choice and an operant response task. Quinine is detectable in fentanyl but mice will continue to respond for and consume fentanyl with quinine in both paradigms. These data support the use of these models in behavioral studies of compulsive-like opioid use.
Collapse
Affiliation(s)
| | - Anna K. Radke
- Correspondence to: Anna K. Radke, PhD, 90 N Patterson Ave, Oxford, OH, USA 45056,
| |
Collapse
|
9
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Park SJ, Ja WW. Absolute ethanol intake predicts ethanol preference in Drosophilamelanogaster. J Exp Biol 2020; 223:jeb224121. [PMID: 32366685 PMCID: PMC7295594 DOI: 10.1242/jeb.224121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Factors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste and ethanol concentration. Both sexes showed an ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption.
Collapse
Affiliation(s)
- Scarlet J Park
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William W Ja
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
11
|
Female and male rats readily consume and prefer oxycodone to water in a chronic, continuous access, two-bottle oral voluntary paradigm. Neuropharmacology 2020; 167:107978. [PMID: 32001238 PMCID: PMC9748519 DOI: 10.1016/j.neuropharm.2020.107978] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
The increasing abuse of opioids - such as oxycodone - poses major challenges for health and socioeconomic systems. Human prescription opioid abuse is marked by chronic, voluntary, oral intake and sex differences. To develop interventions, the field would benefit from a preclinical paradigm that similarly provides rodents with chronic, continuous, oral, voluntary and free-choice access to oxycodone. Here we show female and male rats voluntarily ingest and choose oxycodone over water and show both dependence and motivation to take oxycodone during a chronic oral voluntary, two-bottle choice, continuous access paradigm. Adult female and male Long-Evans rats were given unlimited, continuous homecage access to two bottles containing water (Control) or one bottle of water and one bottle of oxycodone dissolved in water (Experimental). Virtually all experimental rats voluntarily drank oxycodone (~10 mg/kg/day) and escalated their intake over 22 weeks. Females self-administered twice as much oxycodone by body weight (leading to higher blood levels of oxycodone) and engaged in more gnawing behavior of wooden blocks relative to males. Precipitated withdrawal revealed high levels of dependence in both sexes. Reflecting motivation to drink oxycodone, ascending concentrations of citric acid suppressed the intake of oxycodone (Experimental) and the intake of water (Control); however, Experimental rats returned to pre-citric acid preference levels whereas Controls rats did not. Pre-screening behaviors of rats on open field exploration predicted oxycodone intake. Thus, rats consumed and preferred oxycodone over time in this chronic two-bottle oral choice paradigm and both sexes displayed many features of human oxycodone abuse.
Collapse
|