1
|
Sajid A, Ranganathan N, Guha R, Murakami M, Ahmed S, Durell SR, Ambudkar SV. Conversion of Human Multidrug Transporter P-glycoprotein (ABCB1) from Drug Efflux to Uptake Pump: Evidence for a Switch Region Modulating the Direction of Substrate Transport. J Mol Biol 2025; 437:168979. [PMID: 39900286 PMCID: PMC11875896 DOI: 10.1016/j.jmb.2025.168979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
The multidrug transporter P-glycoprotein (P-gp), is pivotal in exporting various chemically dissimilar amphipathic compounds including anti-cancer drugs, thus causing multidrug resistance during cancer treatment. P-gp is composed of two transmembrane domains (TMDs), each containing six homologous transmembrane helices (TMHs). Among these helices, TMH 6 and 12 align oppositely, lining a drug-binding pocket in the transmembrane region which acts as a pathway for drug efflux. Previously, we demonstrated that specific mutations within TMH 6 and 12 resulted in loss of substrate efflux and altered the transport direction from efflux to uptake for some substrates. This suggested the presence of a regulatory switch that governs the direction of transport. In this study, we sought to elucidate the mechanism of switch region modulation of the uptake function by engineering several mutants via substituting specific residues in TMH 6 and 12. We discovered that the alanine substitution of four residues (V974, L975, V977, and F978) within the upper region of TMH 12, along with three residues (V334, F336, and F343) within TMH 6, was sufficient to convert P-gp from an efflux to an uptake pump. Additional mutagenesis of the residues in the middle region of TMH 12 revealed that the uptake function, like efflux, is reversible. Further studies, including molecular dynamics simulations, revealed that the switch region appears to act during the substrate translocation step. We propose that the switch region in TMH 6 and 12, which modulates the direction of transport by P-gp, provides a novel approach to selectively target P-gp-expressing cancer cells.
Collapse
MESH Headings
- Humans
- Biological Transport
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- Amino Acid Substitution
- Molecular Dynamics Simulation
- Models, Molecular
- Mutation
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nandhini Ranganathan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajan Guha
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shafaq Ahmed
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Song F, Yi X, Zheng X, Zhang Z, Zhao L, Shen Y, Zhi Y, Liu T, Liu X, Xu T, Hu X, Zhang Y, Shou H, Huang P. Zebrafish patient-derived xenograft system for predicting carboplatin resistance and metastasis of ovarian cancer. Drug Resist Updat 2025; 78:101162. [PMID: 39571238 DOI: 10.1016/j.drup.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024]
Abstract
AIMS Ovarian cancer (OC) remains a significant challenge in oncology due to high rates of drug resistance and disease relapse following standard treatment with surgery and platinum-based chemotherapy. Despite the widespread use of these treatments, no effective biomarkers currently exist to identify which patients will respond favorably to therapy. This study introduces a zebrafish patient-derived xenograft (PDX) system, capable of replicating both the carboplatin response and metastatic behavior observed in OC patients, within a rapid 3-day assay period. METHODS Two OC cell lines: carboplatin-sensitive (A2780) and resistant (OVCAR8) were used to assess differential responses to treatment in murine and zebrafish xenograft models. Tumor tissues from 16 OC patients were implanted into zebrafish embryos to test carboplatin responses and predict metastasis. Additionally, eight clinical OC samples were directly implanted into zebrafish embryos as part of a proof-of-concept demonstration. RESULTS The zebrafish xenografts accurately reflected the carboplatin sensitivity and resistance patterns seen in in vitro and murine models. The zebrafish PDX model demonstrated a 67 % success rate for implantation and a 100 % success rate for engraftment. Notably, the model effectively distinguished between metastatic and non-metastatic disease, with an area under the ROC curve (AUC) of 0.818. Furthermore, the zebrafish PDX model showed a high concordance with patient-specific responses to carboplatin. CONCLUSIONS This zebrafish PDX model offers a fast, accurate, and clinically relevant platform for evaluating carboplatin response and predicting metastasis in OC patients. It holds significant potential for advancing personalized medicine, allowing for more precise therapeutic outcome predictions and individualized treatment strategies.
Collapse
Affiliation(s)
- Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Zhentao Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Linqian Zhao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yan Shen
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Ye Zhi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| | - Huafeng Shou
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
3
|
Lu Q, Ambudkar SV, Yang DH. Editorial: ABC transporters and drug resistance. Drug Resist Updat 2024; 77:101135. [PMID: 39178712 DOI: 10.1016/j.drup.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Affiliation(s)
- Qisi Lu
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola 11501, USA.
| |
Collapse
|
4
|
Thomas JR, Frye WJE, Robey RW, Warner AC, Butcher D, Matta JL, Morgan TC, Edmondson EF, Salazar PB, Ambudkar SV, Gottesman MM. Abcg2a is the functional homolog of human ABCG2 expressed at the zebrafish blood-brain barrier. Fluids Barriers CNS 2024; 21:27. [PMID: 38491505 PMCID: PMC10941402 DOI: 10.1186/s12987-024-00529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. METHODS To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. RESULTS We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. CONCLUSIONS These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for studying the role of ABCG2 at the BBB.
Collapse
Affiliation(s)
- Joanna R Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA
| | - William J E Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA
| | - Andrew C Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer L Matta
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tamara C Morgan
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Paula B Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA.
| |
Collapse
|