1
|
Zhang X, Fu C, Yang Z, Tan Y, Li H, Zhang X, Chen M, Peng F, Li N. Bioinformatics-Guided Experimental Validation Identifies NQO1 as a Senescence-Ferroptosis Hub in Liver Fibrosis. Biomedicines 2025; 13:1249. [PMID: 40427075 PMCID: PMC12108982 DOI: 10.3390/biomedicines13051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: As a pivotal point for the development of liver diseases, liver fibrosis (LF) is closely associated with cellular senescence and ferroptosis. However, there is a lack of effective markers that accurately predict LF status. This study aims to identify key genes involved in LF through bioinformatics analysis and experimental validation. Methods: We used bioinformatics analysis of Gene Expression Omnibus (GEO) data to investigate the gene functions, prognostic value, and immune associations of characteristic genes in LF. Functional enrichment analysis of DEGs was performed using GO and KEGG. Immune cell types and their proportions were estimated with CIBERSORTx. In addition, we analyzed the role of NQO1 in LF using IHC, WB, PCR, and flow cytometry. Results: Bioinformatics analysis identified 10 hub genes, including AR, CDKN1A, GJA1, CTSB, HIF1A, HMGB1, NQO1, PARP1, PTEN, and TXN. Among them, NQO1 was strongly correlated with immune cell activity. Experimental validation confirmed that NQO1 is upregulated and promotes αSMA and COL1A1 expression in hepatic stellate cells (HSCs). Knockdown of NQO1 significantly affected the proliferation of HSCs. Conclusions: NQO1 plays a critical role in HSC senescence and ferroptosis, promoting HSC activation and contributing to LF progression. Our findings suggest that NQO1 may serve as a potential biomarker for LF.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Chunmeng Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyue Yang
- Department of Hepatobiliary Surgery, Liver Transplantation Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Tan
- Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangqian Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
- Clinical Transfusion Research Centre, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengru Chen
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, China; (X.Z.)
| |
Collapse
|
2
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
3
|
Dong S, Li X, Huang Q, Li Y, Li J, Zhu X, Xue C, Chen R, Zeng Y, Wu J, Zhong Y, Hu S. Resistance to immunotherapy in non-small cell lung cancer: Unraveling causes, developing effective strategies, and exploring potential breakthroughs. Drug Resist Updat 2025; 81:101215. [PMID: 40081220 DOI: 10.1016/j.drup.2025.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Over the last two decades, advancements in deciphering the intricate interactions between oncology and immunity have fueled a meteoric rise in immunotherapy for non-small cell lung cancer, typified by an explosive growth of immune checkpoint inhibitors. However, resistance to immunotherapy remains inevitable. Herein we unravel the labyrinthine mechanisms of resistance to immunotherapy, characterized by their involvement of nearly all types of cells within the body, beyond the extrinsic cancer cells, and importantly, such cells are not only (inhibitory or excitatory, or both) signal recipients but also producers, acting in a context-dependent manner. At the molecular level, these mechanisms underlie genetic and epigenetic aberrations, which are regulated by or regulate various protein kinases, growth factors, and cytokines with inherently dynamic and spatially heterogeneous properties. Additionally, macroscopic factors such as nutrition, comorbidities, and the microbiome within and around organs or tumor cells are involved. Therefore, developing therapeutic strategies combined with distinct action informed by preclinical, clinical, and real-world evidence, such as radiotherapy, chemotherapy, targeted therapy, antibody-drug conjugates, oncolytic viruses, and cell-based therapies, may stand as a judicious reality, although the ideality is to overcome resistance point-by-point through a novel drug. Notably, we highlight a realignment of treatment aims, moving the primary focus from eliminating cancer cells -- such as through chemotherapy and radiotherapy -- to promoting immune modulation and underscore the value of regulating various components within the host macro- or micro-environment, as their effects, even if seemingly minimal, can cumulatively contribute to visible clinical benefit when applied in combination with ICIs. Lastly, this review also emphasizes the current hurdles scattered throughout preclinical and clinical studies, and explores evolving directions in the landscape of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Xiaoyu Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Qing Huang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yuanxiang Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | | | - Xianmin Zhu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Chang Xue
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Runzhi Chen
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yuan Zeng
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jingyi Wu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yi Zhong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China.
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China.
| |
Collapse
|
4
|
Fan B, Liu D, Qin J, Shi Z, Hu Z, Gao X, Ren Y, Zhao P, Chen X, Ren Y, Ning G, Liu T, Feng S. Ferroptosis suppressor protein 1 regulated oligodendrocytes ferroptosis rescued by idebenone in spinal cord injury. Free Radic Biol Med 2025; 227:129-142. [PMID: 39626861 DOI: 10.1016/j.freeradbiomed.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Ferroptosis has been demonstrated to be involved in the progression of spinal cord injury (SCI). Ferroptosis suppressor protein 1 (FSP1) can inhibit ferroptosis in parallel with Glutathione peroxidase 4 (GPX4). However, the role of FSP1 in the pathogenesis of spinal cord injury is unclear. The protein and gene levels of FSP1 were found to be downregulated during both the acute and subacute stages after SCI. In addition to regulating ferroptosis by mediating CoQ, FSP1 also influences ferroptosis sensitivity by modulating cellular homeostasis and the metal ion response system, as demonstrated by FSP1 knockdown experiments. Furthermore, Idebenone (IDE) was identified as a ferroptosis inhibitor. IDE was shown to inhibit reactive oxygen species (ROS) and restore the expression of GPX4 and xCT, thereby suppressing ferroptosis of oligodendrocytes, even when FSP1 was knocked down. In vivo results indicated that IDE could effectively rescue oligodendrocytes and neurons from ferroptosis, promoting myelination of the injured spinal cord and facilitating tissue repair and functional recovery. This study provides a novel strategy for repairing SCI through the regulation of FSP1 in ferroptosis.
Collapse
Affiliation(s)
- Baoyou Fan
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Derong Liu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jia Qin
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guizhou Hospital, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Zhongju Shi
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zicheng Hu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiang Gao
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yifei Ren
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Pengtian Zhao
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaoyang Chen
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yiming Ren
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Guangzhi Ning
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tao Liu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shiqing Feng
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|