1
|
Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol 2024; 12:1500394. [PMID: 39744011 PMCID: PMC11688314 DOI: 10.3389/fcell.2024.1500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
3
|
Gupta A, Jamal A, Jamil DA, Al-Aubaidy HA. A systematic review exploring the mechanisms by which citrus bioflavonoid supplementation benefits blood glucose levels and metabolic complications in type 2 diabetes mellitus. Diabetes Metab Syndr 2023; 17:102884. [PMID: 37939436 DOI: 10.1016/j.dsx.2023.102884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Citrus bioflavonoids are polyphenolic compounds that are derived from citrus fruits and vegetables. Although they are well known for their powerful antioxidant properties, their effects on glycemic control are not well understood. This review aims to highlight the potential benefits of using citrus bioflavonoids in patients with type 2 diabetes mellitus and its metabolic complications, as well as the medicinal effects of known subclasses of naturally occurring citrus bioflavonoids. METHODS In this systematic review, a survey of studies was conducted from January 2012 to February 2023 using various databases (PubMed, Medline, Google Scholar, and Scopus) to determine the effects of citrus bioflavonoid supplementation on reducing oxidative stress, improving lipid profiles, and glycemic index in patients with diabetes mellitus, as well as the proposed mechanisms of action. RESULTS The results of the survey indicate that citrus bioflavonoids may have a positive impact on reducing oxidative stress levels in patients with type 2 diabetes mellitus. In addition to reducing oxidative stress, citrus bioflavonoids may also have a positive impact on other markers of diabetes. For example, studies have shown that they can reduce non-enzymatic protein glycation, which is a process that occurs when glucose molecules bind to proteins in the body. CONCLUSION The reduction in oxidative stress that can be achieved using citrus bioflavonoids may help to maintain antioxidant levels in the body, thereby reducing the severity of diabetes and its complications. These findings suggest that citrus bioflavonoids may be a useful complementary therapy for patients with diabetes.
Collapse
Affiliation(s)
- Ankit Gupta
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Abdulsatar Jamal
- Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Dina A Jamil
- Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia; New Medical Education Australia, Brisbane, QLD, 4007, Australia
| | - Hayder A Al-Aubaidy
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia; New Medical Education Australia, Brisbane, QLD, 4007, Australia.
| |
Collapse
|
4
|
Benak D, Benakova S, Plecita-Hlavata L, Hlavackova M. The role of m 6A and m 6Am RNA modifications in the pathogenesis of diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1223583. [PMID: 37484960 PMCID: PMC10360938 DOI: 10.3389/fendo.2023.1223583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The rapidly developing research field of epitranscriptomics has recently emerged into the spotlight of researchers due to its vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are among the most prevalent and well-characterized modified nucleosides in eukaryotic RNA. Both of these modifications are dynamically regulated by a complex set of epitranscriptomic regulators called writers, readers, and erasers. Altered levels of m6A and also several regulatory proteins were already associated with diabetic tissues. This review summarizes the current knowledge and gaps about m6A and m6Am modifications and their respective regulators in the pathophysiology of diabetes mellitus. It focuses mainly on the more prevalent type 2 diabetes mellitus (T2DM) and its treatment by metformin, the first-line antidiabetic agent. A better understanding of epitranscriptomic modifications in this highly prevalent disease deserves further investigation and might reveal clinically relevant discoveries in the future.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Stepanka Benakova
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydie Plecita-Hlavata
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Sufianov A, Kostin A, Begliarzade S, Kudriashov V, Ilyasova T, Liang Y, Mukhamedzyanov A, Beylerli O. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications. Noncoding RNA Res 2023; 8:192-204. [PMID: 36818396 PMCID: PMC9929646 DOI: 10.1016/j.ncrna.2023.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a first-line priority among the problems facing medical science and public health in almost all countries of the world. The main problem of DM is the high incidence of damage to the cardiovascular system, which in turn leads to diseases such as myocardial infarction, stroke, gangrene of the lower extremities, blindness and chronic renal failure. As a result, the study of the molecular genetic mechanisms of the pathogenesis of DM is of critical importance for the development of new diagnostic and therapeutic strategies. Molecular genetic aspects of the etiology and pathogenesis of diabetes mellitus are intensively studied in well-known laboratories around the world. One of the strategies in this direction is to study the role of exosomes in the pathogenesis of DM. Exosomes are microscopic extracellular vesicles with a diameter of 30-100 nm, released into the intercellular space by cells of various tissues and organs. The content of exosomes depends on the cell type and includes mRNA, non-coding RNAs, DNA, and so on. Non-coding RNAs, a group of RNAs with limited transcriptional activity, have been discovered to play a significant role in regulating gene expression through epigenetic and posttranscriptional modulation, such as silencing of messenger RNA. One of the problems of usage exosomes in DM is the identification of the cellular origin of exosomes and the standardization of protocols for molecular genetic studies in clinical laboratories. In addition, the question of the target orientation of exosomes and their targeted activity requires additional study. Solving these and other problems will make it possible to use exosomes for the diagnosis and delivery of drugs directly to target cells in DM. This study presents an analysis of literature data on the role of exosomes and ncRNAs in the development and progression of DM, as well as the prospects for the use of exosomes in clinical practice in this disease.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia,Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Ufa, Republic of Bashkortostan, 450106, Russia
| | | | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia,Corresponding author. Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
6
|
Zhang B, Jiang H, Dong Z, Sun A, Ge J. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis 2020; 8:746-758. [PMID: 34522705 PMCID: PMC8427257 DOI: 10.1016/j.gendis.2020.07.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is an emerging area of epigenetics, which is a reversible and dynamic modification mediating by ‘writers’ (methylase, adding methyl groups, METTL3, METTL14, and WTAP), ‘erasers’ (demethylase, deleting methyl groups, FTO and ALKBH5), and ‘readers’ (YTHDF1-3, YTHDC1 and YTHDC2). Recent studies in human, animal models and cell levels have disclosed a critical role of m6A modification in regulating the homeostasis of metabolic processes and cardiovascular function. Evidence from these studies identify m6A as a candidate of biomarker and therapeutic target for metabolic abnormality and cardiovascular diseases (CVD). Comprehensive understanding of the complexity of m6A regulation in metabolic diseases and CVD will be helpful for us to understand the pathogenesis of CVD. In this review, we discuss the regulatory role of m6A in metabolic abnormality and CVD. We will emphasize the clinical relevance of m6A dysregulation in CVD.
Collapse
Affiliation(s)
- Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
- Corresponding author. Department of Cardiology, Zhongshan Hospital, Fudan University, No. 1609 Xietu Road, District Xuhui, Shanghai, 200025, PR China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200003, PR China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, PR China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, PR China
- Corresponding author. Shanghai Institute of Cardiovascular Diseases, No. 1609 Xietu Road, District Xuhui, Shanghai, 200025, PR China.
| |
Collapse
|
7
|
Bakhashab S, Filimban N, Altall RM, Nassir R, Qusti SY, Alqahtani MH, Abuzenadah AM, Dallol A. The Effect Sizes of PPARγ rs1801282 , FTO rs9939609, and MC4R rs2229616 Variants on Type 2 Diabetes Mellitus Risk among the Western Saudi Population: A Cross-Sectional Prospective Study. Genes (Basel) 2020; 11:genes11010098. [PMID: 31947684 PMCID: PMC7017045 DOI: 10.3390/genes11010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common polygenic disease with associated comorbidities. Obesity is a major risk factor for the development of T2DM. The aim of this study is to determine the allele and genotype frequency of peroxisome proliferator-activated receptor-γ (PPARγ) rs1801282, fat mass and obesity-associated protein (FTO) rs9939609, and melanocortin 4 receptor (MC4R) rs2229616 polymorphisms and their association with risk of T2DM in the western Saudi population as mediators of adiposity phenotypes. In a cross-sectional prospective study, genomic DNA from control and T2DM patients were isolated and genotyped for these single-nucleotide polymorphisms. There was a significant association of the MC4R rs2229616 variant with T2DM, but no association with T2DM was detected with PPARγ rs1801282 or FTO rs9939609. The combination of C/C for PPARγ rs1801282, A/A for FTO rs9939609, and C/C for MC4R rs2229616 increased the risk of T2DM by 1.82. The A/T genotype for FTO rs9939609 was predicted to decrease the risk of T2DM when combined with C/C for PPARγ rs1801282 and C/C for MC4R rs2229616 or C/C for PPARγ rs1801282 and C/T MC4R rs2229616. In conclusion, our study showed the risk of the assessed variants for the development of T2DM in the Saudi population.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O Box 80218, Jeddah 21589, Saudi Arabia; (N.F.); (R.M.A.); (S.Y.Q.)
- Center of Innovation in Personalized Medicine, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.D.)
- Correspondence: ; Tel.: +966126400000
| | - Najlaa Filimban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O Box 80218, Jeddah 21589, Saudi Arabia; (N.F.); (R.M.A.); (S.Y.Q.)
- King Faisal Specialist Hospital and Research Center, Clinical Genomics, Department of Genetics, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rana M. Altall
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O Box 80218, Jeddah 21589, Saudi Arabia; (N.F.); (R.M.A.); (S.Y.Q.)
| | - Rami Nassir
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia;
| | - Safaa Y. Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O Box 80218, Jeddah 21589, Saudi Arabia; (N.F.); (R.M.A.); (S.Y.Q.)
| | - Mohammed H. Alqahtani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| | - Adel M. Abuzenadah
- Center of Innovation in Personalized Medicine, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.D.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia;
| | - Ashraf Dallol
- Center of Innovation in Personalized Medicine, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.D.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia;
| |
Collapse
|