1
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
2
|
Misra A, Kumar A, Kuchay MS, Ghosh A, Gulati S, Choudhary NS, Dutta D, Sharma P, Vikram NK. Consensus guidelines for the diagnosis and management of metabolic dysfunction-associated steatotic liver disease in adult Asian Indians with type 2 diabetes. Diabetes Metab Syndr 2025; 19:103209. [PMID: 40222341 DOI: 10.1016/j.dsx.2025.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 04/15/2025]
Affiliation(s)
- Anoop Misra
- Fortis CDOC Center of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation India, New Delhi, India.
| | - Ashish Kumar
- Gastroenterology & Hepatology,Sir Ganga Ram Hospital, Rajinder Nagar New Delhi, India
| | - Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta, The Medicity, Gurugram, 122001, Haryana, India
| | - Amerta Ghosh
- Fortis CDOC Center of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes Obesity and Cholesterol Foundation (N-DOC), New Delhi, India
| | - Seema Gulati
- National Diabetes Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation India, New Delhi, India
| | | | - Deep Dutta
- Department of Endocrinology, Center for Endocrinology, Diabetes, Arthritis & Rheumatism (CEDAR) Super speciality Clinics, New Delhi, India
| | - Praveen Sharma
- Gastroenterology & Hepatology,Sir Ganga Ram Hospital, Rajinder Nagar New Delhi, India
| | - Naval K Vikram
- Department of Internal Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
3
|
Pîrvu BF, Clenciu D, Beldie LA, Dica CC, Burticală MA, Ţenea-Cojan TŞ, Mitrea A, Amzolini AM, Efrem IC, Mogoş GFR, Vladu IM. The burden of cancer in metabolic dysfunction-associated steatotic liver disease. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:627-635. [PMID: 39957024 PMCID: PMC11924906 DOI: 10.47162/rjme.65.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide and has become a major public health problem. MASLD frequently progresses to cirrhosis and hepatocellular carcinoma, but recent studies also show a frequent association with extrahepatic cancers. One of the mechanisms involved in both locations is insulin resistance and hyperinsulinemia. The aim of this narrative review was to present the main etiopathogenic mechanisms involved in cancer development in patients with MASLD.
Collapse
Affiliation(s)
- Bianca Florentina Pîrvu
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Luiza Andreea Beldie
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | - Cristina Camelia Dica
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | | | | | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Anca Maria Amzolini
- Department of Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
4
|
Emamat H, Jamshidi A, Farhadi A, Ghalandari H, Ghasemi M, Tangestani H. The association between the visceral to subcutaneous abdominal fat ratio and the risk of cardiovascular diseases: a systematic review. BMC Public Health 2024; 24:1827. [PMID: 38982435 PMCID: PMC11232263 DOI: 10.1186/s12889-024-19358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the primary cause of mortality globally. The prevalence of obesity is rising worldwide; there seems to be a significant positive association between obesity and CVDs. The distribution of fat in the abdominal area in the form of visceral (VAT) or subcutaneous adipose tissue (SAT) affects the risk of CVDs. The aim of the present study was to conduct a systematic review of the available literature regarding the association between the VAT-to-SAT ratio and CVDs. METHODS A comprehensive search strategy was used to retrieve all human observational studies indexed in PubMed, Scopus and Google Scholar databases/search engines (from Jan 2000 up to Oct 2023). The VAT-to-SAT or SAT-to-VAT ratio was an independent variable and various cardiovascular diseases, including hypertension, atherosclerosis, coronary heart disease, cerebrovascular disease and heart failure, were considered as outcomes of interest. RESULTS Out of 1173 initial studies, 910 papers were screened. Based on the inclusion criteria, 883 papers were excluded. Finally, 27 papers (18 cross-sectional and 9 cohort studies) published between 2010 and 2023 which met the inclusion criteria were reviewed. CONCLUSIONS The distribution of abdominal fat seems to be associated with the risk of CVDs; the majority of the evidence suggests that a higher abdominal VAT-to-SAT ratio is associated with the development of CVDs. Therefore, this ratio can be used as a prognostic indicator for CVDs. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hadi Emamat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Ali Jamshidi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohadeseh Ghasemi
- Students Research Committee, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hadith Tangestani
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Ciarambino T, Crispino P, Guarisco G, Giordano M. Gender Differences in Insulin Resistance: New Knowledge and Perspectives. Curr Issues Mol Biol 2023; 45:7845-7861. [PMID: 37886939 PMCID: PMC10605445 DOI: 10.3390/cimb45100496] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
Insulin resistance is the main mechanism in a whole series of pathological conditions, which are not only of metabolic interest but also of a systemic type. This phenomenon means that the body's cells become less sensitive to the hormone insulin, leading to higher levels of insulin in the blood. Insulin resistance is a phenomenon that can be found in both men and women and in particular, in the latter, it is found mainly after menopause. Premenopause, hormonal fluctuations during the menstrual cycle, and the presence of estrogen can affect insulin sensitivity. Androgens, such as testosterone, are typically higher in men and can contribute to insulin resistance. In both sexes, different human body types affect the distribution and location of body fat, also influencing the development of diabetes and cardiovascular disease. Insulin resistance is also associated with some neurological and neurogenerative disorders, polycystic ovary syndrome, atherosclerosis, and some of the main neoplastic pathologies. A healthy lifestyle, including regular physical activity, a balanced diet, and self-maintenance, can help to prevent the onset of insulin resistance, regardless of gender, although the different habits between men and women greatly affect the implementation of preventative guidelines that help in fighting the manifestations of this metabolic disorder. This review may help to shed light on gender differences in metabolic diseases by placing a necessary focus on personalized medical management and by inspiring differentiated therapeutic approaches.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, 81100 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, 04100 Latina, Italy;
| | - Gloria Guarisco
- Diabetology, University Sapienza of Rome, Hospital of Latina, 04100 Latina, Italy;
| | - Mauro Giordano
- Internal Medicine Department, University of Campania, L. Vanvitelli, 81100 Naples, Italy;
| |
Collapse
|
6
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Ameliorative effects of gallic acid on GLUT-4 expression and insulin resistance in high fat diet-induced obesity animal model mice, Mus musculus. J Diabetes Metab Disord 2023; 22:721-733. [PMID: 37255787 PMCID: PMC10225423 DOI: 10.1007/s40200-023-01194-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
Reduced activity of glucose transporter type 4 isoform (GLUT-4), an insulin-sensitive glucose transporter distributed on the adipocytes, is associated with impaired insulin signaling. Insulin resistance resulting from alteration in glucose transport is responsible for exacerbating the emergence of metabolic abnormalities. The present study aimed to investigate the effects of the antidote gallic acid (GA) on expression-related changes in GLUT-4 and insulin receptor substrate-1 (IRS-1) in the visceral adipose tissue and on the subsequent development of insulin resistance in a high-fat diet (HFD)-induced obesity animal model. Methods: Twenty-four female Swiss albino mice were used and separated into the following four groups (six animals in each group): control group (standard pellet diet), HFD group, (60% HFD), HFD + GA group (60% HFD and GA 50 mg/kg body weight for 60 days), and GA group (GA 50 mg/kg body weight for 60 days). The effect of HFD on serum glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL), low-density lipoprotein (LDL) cholesterol, and insulin was evaluated. Additionally, homeostasis model assessment for insulin resistance (HOMA-IR) and glucose tolerance test (GTT) was performed. The serum antioxidative profile, which comprises oxidative parameters (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx]) was measured. The effectiveness of GA against HFD-induced alteration in GLUT-4 and IRS-1 expression was also evaluated. Results: The experimental group that fed on GA + HFD had improved levels of serum triglycerides (p˂0.001), cholesterol (p˂0.05), and LDL cholesterol. GA administration also significantly improved hyperinsulinemia and HOMA-IR index (p˂0.001) in HFD mice. GA improved GTT results (p˂0.05); activity of SOD, CAT, and GPx (p˂0.05); and upregulated mRNA expression of GLUT-4 and IRS-1(p˂0.05) in the visceral adipose tissue in the HFD + GA experimental group. Conclusion: A link exists between insulin resistance, GLUT-4, and IRS-1 expression in the adipose tissue, and the initiation of metabolic syndrome, a condition characterized by obesity. GA may promote insulin signaling, glucose uptake, and lipid metabolism in the adipose tissues by mitigating oxidative stress. GA can also be used to manage obesity-related comorbidities including type 2 diabetes and dyslipidemia. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01194-5.
Collapse
Affiliation(s)
- Kirti Baraskar
- Endocrinology Unit, Biosciences Department, Barkatullah University, 462026 Bhopal, Madhya Pradesh India
| | - Pratibha Thakur
- Department of Medicine, Indira Gandhi Medical College, 171001 Shimla, Himachal Pradesh India
| | - Renu Shrivastava
- Zoology Department, Sri Sathya Sai, College for Women, 262024 Bhopal, Madhya Pradesh India
| | - Vinoy Kumar Shrivastava
- Endocrinology Unit, Biosciences Department, Barkatullah University, 462026 Bhopal, Madhya Pradesh India
| |
Collapse
|
7
|
Chen N, Cao R, Zhang Z, Zhou S, Hu S. Sleeve Gastrectomy Improves Hepatic Glucose Metabolism by Downregulating FBXO2 and Activating the PI3K-AKT Pathway. Int J Mol Sci 2023; 24:5544. [PMID: 36982617 PMCID: PMC10052132 DOI: 10.3390/ijms24065544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a chronic metabolic disease, is a public health concern that seriously endangers human health. Sleeve gastrectomy (SG) can relieve T2DM by improving glucose homeostasis and enhancing insulin sensitivity. However, its specific underlying mechanism remains elusive. SG and sham surgery were performed on mice fed a high-fat diet (HFD) for 16 weeks. Lipid metabolism was evaluated via histology and serum lipid analysis. Glucose metabolism was evaluated using the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Compared with the sham group, the SG group displayed a reduction in liver lipid accumulation and glucose intolerance, and western blot analysis revealed that the AMPK and PI3K-AKT pathways were activated. Furthermore, transcription and translation levels of FBXO2 were reduced after SG. After liver-specific overexpression of FBXO2, the improvement in glucose metabolism observed following SG was blunted; however, the remission of fatty liver was not influenced by the over expression of FBXO2. Our study explores the mechanism of SG in relieving T2DM, indicating that FBXO2 is a noninvasive therapeutic target that warrants further investigation.
Collapse
Affiliation(s)
- Ningyuan Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ruican Cao
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhao Zhang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Sai Zhou
- Graduate Faculty, Shandong First Medical University, Jinan 250117, China
| | - Sanyuan Hu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Guevara-Ramírez P, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Simancas-Racines D, Zambrano AK. Genetics, genomics, and diet interactions in obesity in the Latin American environment. Front Nutr 2022; 9:1063286. [PMID: 36532520 PMCID: PMC9751379 DOI: 10.3389/fnut.2022.1063286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 08/25/2023] Open
Abstract
Obesity is a chronic disease characterized by abnormal or excessive fat accumulation that could impact an individual's health; moreover, the World Health Organization (WHO) has declared obesity a global epidemic since 1997. In Latin America, in 2016, reports indicated that 24.2% of the adult population was obese. The environmental factor or specific behaviors like dietary intake or physical activity have a vital role in the development of a condition like obesity, but the interaction of genes could contribute to that predisposition. Hence, it is vital to understand the relationship between genes and disease. Indeed, genetics in nutrition studies the genetic variations and their effect on dietary response; while genomics in nutrition studies the role of nutrients in gene expression. The present review represents a compendium of the dietary behaviors in the Latin American environment and the interactions of genes with their single nucleotide polymorphisms (SNPs) associated with obesity, including the risk allele frequencies in the Latin American population. Additionally, a bibliographical selection of several studies has been included; these studies examined the impact that dietary patterns in Latin American environments have on the expression of numerous genes involved in obesity-associated metabolic pathways.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
9
|
Malaguarnera R, Gabriele C, Santamaria G, Giuliano M, Vella V, Massimino M, Vigneri P, Cuda G, Gaspari M, Belfiore A. Comparative proteomic analysis of insulin receptor isoform A and B signaling. Mol Cell Endocrinol 2022; 557:111739. [PMID: 35940390 DOI: 10.1016/j.mce.2022.111739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
The insulin receptor (IR) gene undergoes differential splicing generating two IR isoforms, IR-A and IR-B. The roles of IR-A in cancer and of IR-B in metabolic regulation are well known but the molecular mechanisms responsible for their different biological effects are poorly understood. We aimed to identify different or similar protein substrates and signaling linked to each IR isoforms. We employed mouse fibroblasts lacking IGF1R gene and expressing exclusively either IR-A or IR-B. By proteomic analysis a total of 2530 proteins were identified and quantified. Proteins and pathways mostly associated with insulin-activated IR-A were involved in cancer, stemness and interferon signaling. Instead, proteins and pathways associated with insulin-stimulated IR-B-expressing cells were mostly involved in metabolic or tumor suppressive functions. These results show that IR-A and IR-B recruit partially different multiprotein complexes in response to insulin, suggesting partially different functions of IR isoforms in physiology and in disease.
Collapse
Affiliation(s)
| | - Caterina Gabriele
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy.
| | - Gianluca Santamaria
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy; Klinikum rechts der Isar, Department of Medicine and Molecular Cardiology, Technical University of Munich, Germany.
| | - Marika Giuliano
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy.
| | - Veronica Vella
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, Oncology Unit, University of Catania, 95100, Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, Oncology Unit, University of Catania, 95100, Catania, Italy.
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy.
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy.
| | - Antonino Belfiore
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy.
| |
Collapse
|
10
|
Wang L, Xu G, Tian C, Sang Q, Yu C, Wuyun Q, Wang Z, Chen W, Amin B, Wang D, Chen G, Lian D, Zhang N. Combination of Single-Nucleotide Polymorphisms and Preoperative Body Mass Index to Predict Weight Loss After Laproscopic Sleeve Gastrectomy in Chinese Patients with Body Mass Index ≥ 32.5 kg/m2. Obes Surg 2022; 32:3951-3960. [PMID: 36279045 DOI: 10.1007/s11695-022-06330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|
11
|
Effect of Carica papaya on IRS-1/Akt Signaling Mechanisms in High-Fat-Diet-Streptozotocin-Induced Type 2 Diabetic Experimental Rats: A Mechanistic Approach. Nutrients 2022; 14:nu14194181. [PMID: 36235831 PMCID: PMC9573020 DOI: 10.3390/nu14194181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Despite rigorous endeavors, existing attempts to handle type 2 diabetes (T2DM) are still a long way off, as a substantial number of patients do not meet therapeutic targets. Insulin resistance in skeletal muscle is discerned as a forerunner in the pathogenesis of T2DM and can be detected years before its progress. Studies have revealed the antidiabetic properties of Carica papaya (C. papaya), but its molecular mechanism on insulin receptor substrate-1 (IRS-1)/Akt signaling mechanisms is not yet known. The present study aimed to evaluate the role of C. papaya on IRS1 and Akt in high-fat-diet-streptozotocin-induced type 2 diabetic rats and also to analyze the bioactive compounds of C. papaya against IRS-1 and Akt via in silico analysis. Ethanolic extract of the leaves of C. papaya (600 mg/kg of body weight) was given daily for 45 days postinduction of T2DM up to the end of the study. Gluconeogenic enzymes, glycolytic enzymes, gene expression, and immunohistochemical analysis of IRS-1 and Akt in skeletal muscle were evaluated. C. papaya treatment regulated the levels of gluconeogenic and glycolytic enzymes and the levels of IRS-1 and Akt in skeletal muscle of type 2 diabetic animals. In silico studies showed that trans-ferulic acid had the greatest hit rate against the protein targets IRS-1 and Akt. C. papaya restored the normoglycemic effect in diabetic skeletal muscle by accelerating the expression of IRS-1 and Akt.
Collapse
|
12
|
Akinci A, Kara A, Özgür A, Turkkahraman D, Aksu S. Genomic analysis to screen potential genes and mutations in children with non-syndromic early onset severe obesity: a multicentre study in Turkey. Mol Biol Rep 2021; 49:1883-1893. [PMID: 34850337 DOI: 10.1007/s11033-021-06999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Obesity is a complex genetic-based pediatric disorder which triggers life-threatening conditions. Therefore, the understanding the molecular mechanisms of obesity has been a significant approach in medicine. Computational methods allow rapid and comprehensive pathway analysis, which is important for generation of diagnosis and treatment of obesity. METHODS AND RESULTS Aims of our study are to comprehensively investigate genetic characteristics of obesity in children with non-syndromic, early-onset (< 7 years), and severe obesity (BMI-SDS > 3) through computational approaches. First, the mutational analyses of 41 of obesity-related genes in 126 children with non-syndromic early-onset severe obesity and 76 healthy non-obese controls were performed using the next generation sequencing (NGS) technique, and the NGS data analyzed by using bioinformatics methods. Then, the relationship between pathogenic variants and anthropometric/biochemical parameters was further evaluated. Obtained results demonstrated that the 15 genes (ADIPOQ, ADRB2, ADRB3, IRS1, LEPR, NPY, POMC, PPARG, PPARGC1A, PPARGC1B, PTPN1, SLC22A1, SLC2A4, SREBF1 and UCP1) which directly related to obesity found linked together via biological pathways and/or functions. Among these genes, IRS1, PPARGC1A, and SLC2A4 stand out as the most central ones. Furthermore, 12 of non-synonymous pathogenic variants, including six novels, were detected on ADIPOQ (G90S and D242G), ADRB2 (V87M), PPARGC1A (E680G, A477T, and R656H), UCP1 (Q44R), and IRS1 (R302Q, R301H, R301C, H250P, and H250N) genes. CONCLUSION We propose that 12 of non-synonymous pathogenic variations detected on ADIPOQ, ADRB2, PPARGC1A, UCP1, and IRS1 genes might have a cumulative effect on the development and progression of obesity.
Collapse
Affiliation(s)
- Aysehan Akinci
- Pediatric Endocrinology and Diabetes Department, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Altan Kara
- Genetic Engineering and Bioinformatic Department, TUBITAK Marmara Research Center, Gebze, Turkey.
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Doga Turkkahraman
- Pediatric Endocrinology Department, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| | - Soner Aksu
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Health and Technology University, İstanbul, Turkey
| |
Collapse
|
13
|
Insulin Signal Transduction Perturbations in Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168590. [PMID: 34445300 PMCID: PMC8395322 DOI: 10.3390/ijms22168590] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic β-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to β-cell decline through the IAPP-RAGE induced β-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.
Collapse
|
14
|
Stafeev I, Sklyanik I, Mamontova E, Michurina S, Shestakova E, Yah’yaev K, Yurasov A, Masnikov D, Sineokaya M, Ratner E, Vorotnikov A, Menshikov M, Parfyonova Y, Shestakova M. NDRG1 Activity in Fat Depots Is Associated With Type 2 Diabetes and Impaired Incretin Profile in Patients With Morbid Obesity. Front Endocrinol (Lausanne) 2021; 12:777589. [PMID: 34956089 PMCID: PMC8695674 DOI: 10.3389/fendo.2021.777589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We aimed to investigate insulin-, mTOR- and SGK1-dependent signaling basal states in morbidly obese patients' fat. We analyzed the correlation between the signaling activity, carbohydrate metabolism, and incretin profiles of patients. METHODS The omental and subcutaneous fat was obtained in patients with obesity. The omental study included 16 patients with normal glucose tolerance (NGT) and 17 patients with type 2 diabetes mellitus (T2DM); the subcutaneous study included 9 NGT patients and 12 T2DM patients. Insulin resistance was evaluated using the hyperinsulinemic euglycemic clamp test and HOMA-IR index. The oral glucose tolerance test (OGTT) for NGT patients and mixed meal tolerance test (MMTT) for T2DM patients were performed. The levels of incretins (GLP-1, GIP, oxyntomodulin) and glucagon were measured during the tests. Signaling was analyzed by Western blotting in adipose tissue biopsies. RESULTS We have shown equal levels of basal phosphorylation of insulin- and mTOR-dependent signaling in omental fat depot in NGT and T2DM obese patients. Nevertheless, pNDRG1-T346 was decreased in omental fat of T2DM patients. Correlation analysis has shown an inverse correlation of pNDRG1-T346 in omental fat and diabetic phenotype (HbA1c, impaired incretin profile (AUC GLP-1, glucagon)). Moreover, pNDRG1-T346 in subcutaneous fat correlated with impaired incretin levels among obese patients (inverse correlation with AUC glucagon and AUC GIP). CONCLUSIONS According to results of the present study, we hypothesize that phosphorylation of pNDRG1-T346 can be related to impairment in incretin hormone processing. pNDRG1-T346 in adipose tissue may serve as a marker of diabetes-associated impairments of the systemic incretin profile and insulin sensitivity.
Collapse
Affiliation(s)
- Iurii Stafeev
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- *Correspondence: Iurii Stafeev,
| | - Igor Sklyanik
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Mamontova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana Michurina
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Kamil Yah’yaev
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Anatoliy Yurasov
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Denis Masnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Center of Master’s Programs, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Maria Sineokaya
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Ratner
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Alexander Vorotnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Mikhail Menshikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Yelena Parfyonova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|