1
|
Deng X, Sang Q, Zhang R, Mu J, Bao S. The association of APOH and NCF1 polymorphisms on susceptibility to recurrent pregnancy loss in women with antiphospholipid syndrome. J Assist Reprod Genet 2023; 40:1703-1712. [PMID: 37243946 PMCID: PMC10352192 DOI: 10.1007/s10815-023-02829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is the main manifestation of pathological pregnancy in antiphospholipid syndrome (APS) women. The immune state plays a significant role in the occurrence/development of APS and RPL susceptibility, but there is little research on genetic factors. METHOD Previous studies have described the important role of APOH and NCF1 in APS and pregnancy. To explore the association of APOH and NCF1 gene variants with RPL susceptibility in APS patients, we collected and analyzed 871 controls, 182 APS and RPL, and 231 RPL patients. Four single nucleotide polymorphisms (SNPs) (rs1801690, rs52797880, and rs8178847 of APOH and rs201802880 of NCF1) were selected and genotyped. RESULTS We found rs1801690 (p = 0.001, p = 0.003), rs52797880 (p = 8.73e-04, p = 0.001), and rs8178847 (p = 0.001, p = 0.001) of APOH and rs201802880 (p = 3.77e-26, p = 1.31e-26) of NCF1 showed significant differences between APS and RPL patients and controls in allelic and genotype frequencies respectively. Moreover, rs1801690, rs52797880, and rs8178847 showed strong linkage disequilibrium. Especially, our results revealed a complete linkage disequilibrium (D' = 1) between rs52797880 and rs8178847. Furthermore, higher serum TP (total protein) level was described in APOH rs1801690 CG/GG (p = 0.007), rs52797880 AG/GG (p = 0.033), and rs8178847 CT/TT (p = 0.033), while the higher frequency of positive serum ACA-IgM was found in NCF1 rs201802880 GA (p = 0.017) in APS and RPL patients. CONCLUSION Rs1801690, rs52797880, and rs8178847 of APOH and rs201802880 of NCF1 were associated with RPL susceptibility in APS patients.
Collapse
Affiliation(s)
- Xujing Deng
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
- Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Frey K, von Eckardstein A. HDL, heart disease, and the lung. J Lipid Res 2022; 63:100217. [PMID: 35487261 PMCID: PMC9131245 DOI: 10.1016/j.jlr.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathrin Frey
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland
| | - Arnold von Eckardstein
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland,.
| |
Collapse
|
3
|
Hirao-Suzuki M, Takeda S, Watanabe K, Takiguchi M, Aramaki H. Δ 9-Tetrahydrocannabinol upregulates fatty acid 2-hydroxylase (FA2H) via PPARα induction: A possible evidence for the cancellation of PPARβ/δ-mediated inhibition of PPARα in MDA-MB-231 cells. Arch Biochem Biophys 2018; 662:219-225. [PMID: 30553767 DOI: 10.1016/j.abb.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 01/30/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated nuclear transcription factors, with three characterized subtypes: PPARα, PPARβ/δ, and PPARγ. The biological correlation between the two PPAR subtypes PPARα and γ and carcinogenesis is well-characterized; however, substantially less is known about the biological functions of PPARβ/δ. PPARβ/δ has been reported to repress transcription when PPARβ/δ and PPARα or PPARγ are simultaneously expressed in some cells, and MDA-MB-231 cells express functional levels of PPARβ/δ. We have previously reported that Δ9-tetrahydrocannabinol (Δ9-THC), a major cannabinoid component of the drug-type cannabis plant, can stimulate the expression of fatty acid 2-hydroxylase (FA2H) via upregulation of PPARα expression in human breast cancer MDA-MB-231 cells. Although the possibility of an inhibitory interaction between PPARα and PPARβ/δ has not been demonstrated in MDA-MB-231 cells, we reasoned if this interaction were to exist, Δ9-THC should make PPARα free to achieve FA2H induction. Here, we show that a PPARβ/δ-mediated suppression of PPARα function, but not of PPARγ, exists in MDA-MB-231 cells and Δ9-THC causes FA2H induction via mechanisms underlying the cancellation of PPARβ/δ-mediated inhibition of PPARα, in addition to the upregulation of PPARα.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan.
| | - Kazuhito Watanabe
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Hironori Aramaki
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| |
Collapse
|
4
|
Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, Remaley AT. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017; 267:49-60. [PMID: 29100061 DOI: 10.1016/j.atherosclerosis.2017.10.025] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein C-II (apoC-II) is a small exchangeable apolipoprotein found on triglyceride-rich lipoproteins (TRL), such as chylomicrons (CM) and very low-density lipoproteins (VLDL), and on high-density lipoproteins (HDL), particularly during fasting. ApoC-II plays a critical role in TRL metabolism by acting as a cofactor of lipoprotein lipase (LPL), the main enzyme that hydrolyses plasma triglycerides (TG) on TRL. Here, we present an overview of the role of apoC-II in TG metabolism, emphasizing recent novel findings regarding its transcriptional regulation and biochemistry. We also review the 24 genetic mutations in the APOC2 gene reported to date that cause hypertriglyceridemia (HTG). Finally, we describe the clinical presentation of apoC-II deficiency and assess the current therapeutic approaches, as well as potential novel emerging therapies.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Richard L Dunbar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ICON plc, North Wales, PA, USA; Cardiometabolic and Lipid Clinic, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masako Ueda
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis O Sviridov
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Hunt AN, Malur A, Monfort T, Lagoudakis P, Mahajan S, Postle AD, Thomassen MJ. Hepatic Steatosis Accompanies Pulmonary Alveolar Proteinosis. Am J Respir Cell Mol Biol 2017; 57:448-458. [PMID: 28489415 DOI: 10.1165/rcmb.2016-0242oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Maintenance of tissue-specific organ lipid compositions characterizes mammalian lipid homeostasis. The lungs and liver synthesize mixed phosphatidylcholine (PC) molecular species that are subsequently tailored for function. The lungs progressively enrich disaturated PC directed to lamellar body surfactant stores before secretion. The liver accumulates polyunsaturated PC directed to very-low-density lipoprotein assembly and secretion, or to triglyceride stores. In each tissue, selective PC species enrichment mechanisms lie at the heart of effective homeostasis. We tested for potential coordination between these spatially separated but possibly complementary phenomena under a major derangement of lung PC metabolism, pulmonary alveolar proteinosis (PAP), which overwhelms homeostasis and leads to excessive surfactant accumulation. Using static and dynamic lipidomics techniques, we compared (1) tissue PC compositions and contents, and (2) in lungs, the absolute rates of synthesis in both control mice and the granulocyte-macrophage colony-stimulating factor knockout model of PAP. Significant disaturated PC accumulation in bronchoalveolar lavage fluid, alveolar macrophage, and lavaged lung tissue occurred alongside increased PC synthesis, consistent with reported defects in alveolar macrophage surfactant turnover. However, microscopy using oil red O staining, coherent anti-Stokes Raman scattering, second harmonic generation, and transmission electron microscopy also revealed neutral-lipid droplet accumulations in alveolar lipofibroblasts of granular macrophage colony-stimulating factor knockout animals, suggesting that lipid homeostasis deficits extend beyond alveolar macrophages. PAP plasma PC composition was significantly polyunsaturated fatty acid enriched, but the content was unchanged and hepatic polyunsaturated fatty acid-enriched PC content increased by 50% with an accompanying micro/macrovesicular steatosis and a fibrotic damage pattern consistent with nonalcoholic fatty liver disease. These data suggest a hepatopulmonary axis of PC metabolism coordination, with wider implications for understanding and managing lipid pathologies in which compromise of one organ has unexpected consequences for another.
Collapse
Affiliation(s)
- Alan N Hunt
- 1 Clinical and Experimental Sciences, Faculty of Medicine
| | - Anagha Malur
- 2 Division of Pulmonary, Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Pavlos Lagoudakis
- 4 School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom; and
| | | | | | - Mary Jane Thomassen
- 2 Division of Pulmonary, Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
6
|
Lipoprotein lipase and lipid profiles in plasma and placenta from normal pregnancies compared with patients with intrahepatic cholestasis of pregnancy. Eur J Obstet Gynecol Reprod Biol 2016; 203:279-85. [PMID: 27400425 DOI: 10.1016/j.ejogrb.2016.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/05/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To analyse lipoprotein lipase (LPL) expression and lipid levels in placenta and plasma of patients with intrahepatic cholestasis of pregnancy (ICP) and normal pregnancies. METHODS This prospective study included 30 patients with ICP and 30 gestational-age-matched pregnancies without any complications. Enzyme-linked immunosorbent assays were used to investigate plasma LPL levels from 28 weeks of gestation, at 4-weekly intervals, to 38 weeks of gestation, and data were assessed longitudinally. Immunohistochemistry, Western blotting and real-time polymerase chain reaction were used to detect placental LPL expression and activity. Placental triglyceride and total cholesterol levels were also analysed. The clinical data related to ICP and lipid profiles were collected retrospectively. RESULTS Plasma LPL concentration increased with gestational age in both groups, but the increase was limited in the ICP group. Immunohistochemistry revealed LPL staining mainly in syncytiotrophoblasts, and 3,3'-diamino-benzidine tetrahydrochloride wt% was lower in ICP placenta compared with normal placenta (p<0.01). LPL protein and mRNA expression in ICP placenta were significantly lower than in normal placenta (p<0.01). LPL activity was not significantly different in both groups. Correlation analysis indicated that the plasma LPL level was negatively associated with the corresponding concentration of total bile acid (r=-0.57) in the ICP group. CONCLUSION Reduced LPL expression in placenta, limited increase in LPL level in maternal plasma, and abnormal lipid profiles were found in patients with ICP. LPL was possibly related to ICP by participating abnormal lipid metabolism.
Collapse
|
7
|
Dubé E, Gravel A, Martin C, Desparois G, Moussa I, Ethier-Chiasson M, Forest JC, Giguère Y, Masse A, Lafond J. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol Reprod 2012; 87:14, 1-11. [PMID: 22553224 DOI: 10.1095/biolreprod.111.098095] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Knowledge of the consequences of maternal obesity in human placental fatty acids (FA) transport and metabolism is limited. Animal studies suggest that placental uptake of maternal FA is altered by maternal overnutrition. We hypothesized that high maternal body mass index (BMI) affects human placental FA transport by modifying expression of key transporters. Full-term placentas were obtained by vaginal delivery from normal weight (BMI, 18.5-24.9 kg/m(2)) and obese (BMI > 30 kg/m(2)) women. Blood samples were collected from the mother at each trimester and from cord blood at delivery. mRNA and protein expression levels were evaluated with real-time RT-PCR and Western blotting. Lipoprotein lipase (LPL) activity was evaluated using enzyme fluorescence. In vitro linoleic acid transport was studied with isolated trophoblasts. Our results demonstrated that maternal obesity is associated with increased placental weight, decreased gestational age, decreased maternal high-density lipoprotein (HDL) levels during the first and third trimesters, increased maternal triglyceride levels during the second and third trimesters, and increased maternal T3 levels during all trimesters, and decreased maternal cholesterol (CHOL) and low-density lipoprotein (LDL) levels during the third trimester; and increased newborn CHOL, LDL, apolipoprotein B100, and T3 levels. Increases in placental CD36 mRNA and protein expression levels, decreased SLC27A4 and FABP1 mRNA and protein and FABP3 protein expression, and increased LPL activity and decreased villus cytotrophoblast linoleic acid transport were also observed. No changes were seen in expression of PPARA, PPARD, or PPARG mRNA and protein. Overall this study demonstrated that maternal obesity impacts placental FA uptake without affecting fetal growth. These changes, however, could modify the fetus metabolism and its predisposition to develop diseases later in life.
Collapse
Affiliation(s)
- Evemie Dubé
- Laboratoire de Physiologie Materno-Fœtale, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Côté M, Provost PR, Tremblay Y. Apolipoprotein A-I, A-II, and H mRNA and protein accumulation sites in the developing lung in late gestation. BMC Res Notes 2011; 4:235. [PMID: 21756353 PMCID: PMC3154161 DOI: 10.1186/1756-0500-4-235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/14/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Expression of apolipoprotein A-I (apoA-I), A-II, and H was previously observed at 16 to 50-fold higher levels in the fetal than the adult mouse lung. Here, sites of apoA-I, A-II, and H mRNA and protein accumulation were determined in mouse fetal lungs by in situ hybridization and immunohistochemistry in late gestation. RESULTS Expression sites vary for the three genes and change for the distal epithelium before the end of the canalicular stage, thus where and when the surge of surfactant synthesis occurs. Messenger of apoH, but not those of apoA-I and A-II, was also observed in the proximal epithelium and smooth muscles surrounding arteries. In contrast to apoC-II protein, none of the three studied apolipoproteins accumulated within secretory granule-like structures. Immunohistochemistry revealed that apoA-I and apoH accumulated mainly in capillaries. Three different positive signals with the anti-apoA-II antibody were found: one transient signal in the nucleus of a portion of mesenchymal cells, a second at lower levels throughout the mesenchyme, and another in capillaries with a specific increase from gestation day 17.5/18.5. CONCLUSION Temporal and geographic co-expression of apoAI, AII, and H genes with surfactant production site suggests that the three apolipoproteins are secreted to play roles supporting the lung-specific surfactant lipid-related metabolism.
Collapse
Affiliation(s)
- Mélissa Côté
- Reproduction Axis, Perinatal and Child Health, Rm T-1-49, CHUQ Research Center, Québec City, Québec, Canada.
| | | | | |
Collapse
|
9
|
Okada T, Yonezawa R, Miyashita M, Mugishima H. Triglyceride concentrations in very low-density lipoprotein fraction in cord blood during 32-35 week gestation. Early Hum Dev 2011; 87:451. [PMID: 21482048 DOI: 10.1016/j.earlhumdev.2011.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 11/28/2022]
|