1
|
Krishnan S, Aston CE, Fields DA, Teague AM, Lyons TJ, Chernausek SD. Bone Mass Accrual in First Six Months of Life: Impact of Maternal Diabetes, Infant Adiposity, and Cord Blood Adipokines. Calcif Tissue Int 2022; 111:248-255. [PMID: 35622095 PMCID: PMC10085057 DOI: 10.1007/s00223-022-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
The perinatal period is a time of substantial bone mass accrual with many factors affecting long-term bone mineralization. Currently it is unclear what effect maternal gestational/type 2 diabetes has on infant bone mass accrual. This is a prospective study of offspring of Native American and Hispanic mothers with normoglycemia (n = 94) and gestational diabetes or type 2 diabetes (n = 64). Infant anthropometrics were measured at birth, 1, and 6 months of age. Cord blood leptin, high-molecular weight adiponectin (HMWA), pigment epithelium-derived factor (PEDF), vascular epithelium growth factor (VEGF), endoglin, and C-peptide were measured by ELISA. Infants had bone mineral density measurement at 1 month or/and 6 months of age using dual-energy x-ray absorptiometry scan. Mothers with diabetes were older (31 ± 6 years vs 25 ± 4 years) and had higher pre-pregnancy BMI (32.6 ± 5.8 vs 27.2 ± 6.4 kg/m2) than control mothers. Mean HbA1C of mothers with diabetes was 5.9 ± 1.0% compared to 5.1 ± 0.3% in controls early in pregnancy. Infants born to mothers with diabetes (DM-O) were born at a slightly lower gestational age compared to infants born to control mothers (Con-O). There was no difference in total body less head bone mineral content (BMC) or bone mineral density (BMD) between DM-O and Con-O. For both groups together, bone area, BMD, and BMC tracked over the first 6 months of life (r: 0.56, 0.38, and 0.48, respectively). Percent fat was strongly and positively correlated with BMC at 1 month of age (r = 0.44; p < 0.001) and BMC at both 1 and 6 months of age correlated strongly with birth weight. There were no associations between infant bone mass and cord blood leptin, PEDF, or VEGF, while C-peptide had a significant correlation with BMC at 1 and 6 months only in DM-O (p = 0.01 and 0.03, respectively). Infants born to mothers with well-controlled gestational/type 2 diabetes have normal bone mass accrual. Bone mineral content during this time is highly correlated with indices of infant growth and the association of bone mineral indices with percent body fat suggests that bone-fat crosstalk is operative early in life.
Collapse
Affiliation(s)
- Sowmya Krishnan
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Harold Hamm Diabetes Center, 1200, Children's avenue Suite 4500, Oklahoma City, OK, 73104, USA.
| | - Christopher E Aston
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Harold Hamm Diabetes Center, 1200, Children's avenue Suite 4500, Oklahoma City, OK, 73104, USA
| | - David A Fields
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Harold Hamm Diabetes Center, 1200, Children's avenue Suite 4500, Oklahoma City, OK, 73104, USA
| | | | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Metabolic Diseases at the Medical University of South Carolina, Charleston, SC, USA
- Diabetes Free South Carolina, BlueCross BlueShield of South Carolina, Columbia, SC, USA
| | - Steven D Chernausek
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Harold Hamm Diabetes Center, 1200, Children's avenue Suite 4500, Oklahoma City, OK, 73104, USA
| |
Collapse
|
2
|
Maternal Diet, Nutritional Status, and Birth-Related Factors Influencing Offspring's Bone Mineral Density: A Narrative Review of Observational, Cohort, and Randomized Controlled Trials. Nutrients 2021; 13:nu13072302. [PMID: 34371812 PMCID: PMC8308284 DOI: 10.3390/nu13072302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
There is growing evidence that bone health may be programmed in the first years of life. Factors during the prenatal period, especially maternal nutrition, may have an influence on offspring’s skeletal development and thus the risk of osteoporosis in further life, which is an increasing societal, health and economic burden. However, it is still inconclusive which early life factors are the most important and to what extent they may affect bone health. We searched through three databases (PubMed, Google Scholar, Cochrane Library) and after eligibility criteria were met, the results of 49 articles were analyzed. This narrative review is an overall summary of up-to-date studies on maternal diet, nutritional status, and birth-related factors that may affect offspring bone development, particularly bone mineral density (BMD). Maternal vitamin D status and diet in pregnancy, anthropometry and birth weight seem to influence BMD, however other factors such as subsequent growth may mediate these associations. Due to the ambiguity of the results in the analyzed studies, future, well-designed studies are needed to address the limitations of the present study.
Collapse
|
3
|
Jensen KH, Riis KR, Abrahamsen B, Händel MN. Nutrients, Diet, and Other Factors in Prenatal Life and Bone Health in Young Adults: A Systematic Review of Longitudinal Studies. Nutrients 2020; 12:E2866. [PMID: 32961712 PMCID: PMC7551661 DOI: 10.3390/nu12092866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Optimizing skeletal health in early life has potential effects on bone health later in childhood and in adulthood. We aimed to evaluate the existing evidence that maternal exposures during pregnancy have an impact on the subsequent bone health among offspring in young adults aged between 16 and 30 years. The protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO) (ID: CRD42019126890). The search was conducted up to 2 April 2019. We included seven observational prospective cohort studies that examined the association between maternal dietary factors, vitamin D concentration, age, preeclampsia, and smoking with any bone indices among offspring. The results indicated that high concentrations of maternal vitamin D; low fat intake; and high intakes of calcium, phosphorus, and magnesium may increase the bone mineral density in offspring at age 16. Evidence also suggests that the offspring of younger mothers may have a higher peak bone mass. It remains inconclusive whether there is an influence of preeclampsia or maternal smoking on bone health among young adults. Our assessment of internal validity warrants a cautious interpretation of these results, as all of the included studies were judged to have serious risks of bias. High-quality studies assessing whether prenatal prognostic factors are associated with bone health in young adults are needed.
Collapse
Affiliation(s)
- Karina H. Jensen
- Department of Medicine, Slagelse Hospital, 4200 Slagelse, Denmark;
| | - Kamilla R. Riis
- Department of Endocrinology and Metabolism, Odense University Hospital, 5000 Odense C, Denmark;
| | - Bo Abrahamsen
- Department of Medicine, Holbæk Hospital, 4300 Holbæk, Denmark;
- Institute of Clinical Research, OPEN-Odense Patient Data Explorative Network, University of Southern Denmark, 5000 Odense, Denmark
| | - Mina N. Händel
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, 2000 Frederiksberg, Denmark
| |
Collapse
|
4
|
Yang Y, Wu F, Dwyer T, Antony B, Winzenberg T, Jones G. Associations of Breastfeeding, Maternal Smoking, and Birth Weight With Bone Density and Microarchitecture in Young Adulthood: a 25-Year Birth-Cohort Study. J Bone Miner Res 2020; 35:1652-1659. [PMID: 32638468 DOI: 10.1002/jbmr.4044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 11/07/2022]
Abstract
We have found that early-life exposures are associated with areal bone mineral density (aBMD) at ages 8 and 16 years. This study aimed to assess whether these associations persist into young adulthood when peak bone mass (PBM) is achieved and extend this analysis to microarchitecture. Participants were followed from perinatal period to 25 years old (n = 201). Outcomes were total body, spine, and hip aBMD (by dual-energy X-ray absorptiometry [DXA]), and cortical and trabecular bone measures at the distal radius and tibia (by high-resolution peripheral quantitative computed tomography [HRpQCT]). Early-life exposures including breastfeeding, maternal smoking during pregnancy, and birth weight. Sex, weight, height, vegetables, fruit and calcium intake at age 25 years were regarded as potential confounders in the analysis. There were significant interactions between period of gestation and early-life exposures for bone measures, so all analyses were stratified by period of gestation. Breastfeeding was beneficially associated with hip and total body aBMD, total, cortical and trabecular volumetric BMD (vBMD), cortical thickness, porosity, trabecular number (Tb.N), separation (Tb.Sp), and bone volume fraction (Tb.BV/TV) at radius and/or tibia at age 25 years in participants born prematurely (β ranged from -0.92 to 0.94), but there were no associations in those born at term. Maternal smoking had no association with any DXA/HRpQCT measures in those born prematurely but was detrimentally associated with inner transitional zone porosity and Tb.N (β = 0.40 and β = -0.37, respectively) in those full-term participants. Associations of birth weight with bone measures did not persist after adjustment for weight gain since birth. Breastfeeding was associated with a lower risk of lower limb fractures and maternal smoking had a deleterious association with upper limb fractures. In conclusion, breastfeeding and maternal smoking may have effects on peak bone microarchitecture whereas the association with birth weight is countered by subsequent growth. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yi Yang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Terry Dwyer
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Benny Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
5
|
Baradaran Mahdavi S, Daniali SS, Farajzadegan Z, Bahreynian M, Riahi R, Kelishadi R. Association between maternal smoking and child bone mineral density: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23538-23549. [PMID: 32314283 DOI: 10.1007/s11356-020-08740-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Maternal smoking during pregnancy has detrimental effects on fetal development. The current review examined the differences in offspring's bone mineral density (BMD) between mothers smoked during pregnancy and those who did not. A systematic review and meta-analysis on the studies investigating the influence of maternal smoking during pregnancy on children or neonates' bone measures published up to October 30, 2018, was performed. BMD results measured at different body sites were pooled and then fixed or random effect models were used based on the presence of heterogeneity. The desired pooled effect size was the offspring's BMD mean difference with 95% confidence interval between smoker and non-smoker mothers. Sensitivity analysis was performed for birth weight and current weight, two important mediator/confounders causing heterogeneity. Overall, eight studies consisting of 17,931 participants aged from infancy to 18 years were included. According to the fixed effect model, the mean of BMD in offspring whose mothers smoked during pregnancy was 0.01 g/cm2 lower than those with non-smoker mothers (95% CI = - 0.02 to - 0.002). However, subgroup meta-analysis adjusted for birth weight and current weight demonstrated no significant mean difference between BMD of children with smoker and non-smoker mothers (d = 0.06, 95% CI = -0.04 to 0.16, p value = 0.25 and d = - 0.005, 95% CI = - 0.01 to 0.004, p value = 0.28, respectively). According to available studies, it is suggested that maternal smoking during pregnancy does not have direct effect on the offspring's BMD. Instead, this association might be confounded by other factors such as placental weight, birth weight, and current body size of children.
Collapse
Affiliation(s)
- Sadegh Baradaran Mahdavi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Student Research Committee, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyede Shahrbanoo Daniali
- Pediatric Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Farajzadegan
- Department of Community Medicine, Faculty of Medicine, Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Bahreynian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Science, Isfahan, Iran
| | - Roya Riahi
- Biostatistics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical science, Isfahan, Iran.
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
6
|
Brand JS, Hiyoshi A, Cao Y, Lawlor DA, Cnattingius S, Montgomery S. Maternal smoking during pregnancy and fractures in offspring: national register based sibling comparison study. BMJ 2020; 368:l7057. [PMID: 31996343 PMCID: PMC7190030 DOI: 10.1136/bmj.l7057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To study the impact of maternal smoking during pregnancy on fractures in offspring during different developmental stages of life. DESIGN National register based birth cohort study with a sibling comparison design. SETTING Sweden. PARTICIPANTS 1 680 307 people born in Sweden between 1983 and 2000 to women who smoked (n=377 367, 22.5%) and did not smoke (n=1 302 940) in early pregnancy. Follow-up was until 31 December 2014. MAIN OUTCOME MEASURE Fractures by attained age up to 32 years. RESULTS During a median follow-up of 21.1 years, 377 970 fractures were observed (the overall incidence rate for fracture standardised by calendar year of birth was 11.8 per 1000 person years). The association between maternal smoking during pregnancy and risk of fracture in offspring differed by attained age. Maternal smoking was associated with a higher rate of fractures in offspring before 1 year of age in the entire cohort (birth year standardised fracture rates in those exposed and unexposed to maternal smoking were 1.59 and 1.28 per 1000 person years, respectively). After adjustment for potential confounders the hazard ratio for maternal smoking compared with no smoking was 1.27 (95% confidence interval 1.12 to 1.45). This association followed a dose dependent pattern (compared with no smoking, hazard ratios for 1-9 cigarettes/day and ≥10 cigarettes/day were 1.20 (95% confidence interval 1.03 to 1.39) and 1.41 (1.18 to 1.69), respectively) and persisted in within-sibship comparisons although with wider confidence intervals (compared with no smoking, 1.58 (1.01 to 2.46)). Maternal smoking during pregnancy was also associated with an increased fracture incidence in offspring from age 5 to 32 years in whole cohort analyses, but these associations did not follow a dose dependent gradient. In within-sibship analyses, which controls for confounding by measured and unmeasured shared familial factors, corresponding point estimates were all close to null. Maternal smoking was not associated with risk of fracture in offspring between the ages of 1 and 5 years in any of the models. CONCLUSION Prenatal exposure to maternal smoking is associated with an increased rate of fracture during the first year of life but does not seem to have a long lasting biological influence on fractures later in childhood and up to early adulthood.
Collapse
Affiliation(s)
- Judith S Brand
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 70185 Örebro, Sweden
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 70185 Örebro, Sweden
- Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 70185 Örebro, Sweden
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Sven Cnattingius
- Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 70185 Örebro, Sweden
- Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
7
|
Woolford SJ, Cooper C, Harvey N, Moon RJ. Prenatal influences on bone health in children. Expert Rev Endocrinol Metab 2019; 14:193-202. [PMID: 31023107 DOI: 10.1080/17446651.2019.1607727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Optimising bone health might reduce the burden of both fractures in childhood and fragility fractures in later life. A number of maternal dietary and non-dietary factors have been identified that might influence offspring bone health and represent targets for intervention. AREAS COVERED This article will outline the accrual of bone mineral throughout the life course and how observational and intervention studies have shown that maternal diet, in particular maternal calcium and 25-hydroxyvitamin D [25(OH)D] status, and lifestyle are associated with offspring bone mineralization. Studies examining the effects of maternal micronutrient supplementation on offspring bone mineral density (BMD) will also be discussed. EXPERT COMMENTARY There is a wealth of observational evidence relating maternal diet to offspring BMD. However, high quality randomized controlled trials, such as the ongoing MAVIDOS study, are needed before these findings can be definitively translated into public health advice.
Collapse
Affiliation(s)
- Stephen J Woolford
- a MRC Lifecourse Epidemiology Unit , University of Southampton, Southampton General Hospital, , Southampton , UK
| | - Cyrus Cooper
- a MRC Lifecourse Epidemiology Unit , University of Southampton, Southampton General Hospital, , Southampton , UK
| | - Nicholas Harvey
- a MRC Lifecourse Epidemiology Unit , University of Southampton, Southampton General Hospital, , Southampton , UK
| | - Rebecca J Moon
- b MRC Lifecourse Epidemiology Unit , University of Southampton & Department of Paediatric Endocrinology, University Hospitals Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
8
|
AL-Bashaireh AM, Haddad LG, Weaver M, Kelly DL, Chengguo X, Yoon S. The Effect of Tobacco Smoking on Musculoskeletal Health: A Systematic Review. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2018; 2018:4184190. [PMID: 30112011 PMCID: PMC6077562 DOI: 10.1155/2018/4184190] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
This systematic review explored associations between smoking and health outcomes involving the musculoskeletal system. AMSTAR criteria were followed. A comprehensive search of PubMed, Web of Science, and Science Direct returned 243 articles meeting inclusion criteria. A majority of studies found smoking has negative effects on the musculoskeletal system. In research on bones, smoking was associated with lower BMD, increased fracture risk, periodontitis, alveolar bone loss, and dental implant failure. In research on joints, smoking was associated with increased joint disease activity, poor functional outcomes, and poor therapeutic response. There was also evidence of adverse effects on muscles, tendons, cartilage, and ligaments. There were few studies on the musculoskeletal health outcomes of secondhand smoke, smoking cessation, or other modes of smoking, such as waterpipes or electronic cigarettes. This review found evidence that suggests tobacco smoking has negative effects on the health outcomes of the musculoskeletal system. There is a need for further research to understand mechanisms of action for the effects of smoking on the musculoskeletal system and to increase awareness of healthcare providers and community members of the adverse effects of smoking on the musculoskeletal system.
Collapse
Affiliation(s)
| | - Linda G. Haddad
- College of Health and Human Services, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Michael Weaver
- College of Nursing, University of Florida, Gainesville, FL, USA
| | | | - Xing Chengguo
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Saunjoo Yoon
- College of Nursing, University of Florida, Gainesville, FL, USA
| |
Collapse
|