1
|
Xiong W, Tian A, Qian Z, Li J, Mao X. Disulfiram in liver diseases: a double-edged sword. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4875-4889. [PMID: 39680099 DOI: 10.1007/s00210-024-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Disulfiram, a synthetic drug, has historically played a significant role in the treatment of alcoholic liver disease as the first medication approved by the U.S. Food and Drug Administration for alcohol use disorders. Beyond its efficacy in inhibiting alcohol addiction and treating alcoholic liver disease, disulfiram has also demonstrated potential in managing various liver conditions, including certain metabolic liver injuries and liver cancer. As an established, cost-effective drug with well-documented synthesis methods, disulfiram holds promise for broader application in liver disease treatment. However, its clinical use is hindered by the risk of inducing pharmacologic liver injury. This potential for liver toxicity necessitates careful patient selection, monitoring, and consultation with healthcare providers, which can limit its practicality in treating patients with existing liver conditions. This review aims to analyze the multifaceted role of disulfiram in liver diseases comprehensively. By exploring its therapeutic efficacy, potential benefits, and inherent limitations, we seek to provide a balanced perspective that maximizes disulfiram's therapeutic potential while ensuring the safety and well-being of patients. This thorough examination will also highlight areas for future research, paving the way for optimized treatment protocols that incorporate disulfiram in the context of liver disease management.
Collapse
Affiliation(s)
- Wanyuan Xiong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Aiping Tian
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Zibing Qian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Junfeng Li
- Institute of Infectious Diseases, Department of Liver Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
| | - Xiaorong Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
2
|
Iciek M, Bilska-Wilkosz A, Górny M, Bednarski M, Zygmunt M, Miller A, Nicosia N, Lombardo GP, Zammit P, Kotańska M. The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance. Molecules 2025; 30:578. [PMID: 39942681 PMCID: PMC11820383 DOI: 10.3390/molecules30030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in the cerebral cortex of rats in a model of neuroinflammation induced by the administration of lipopolysaccharide (LPS). METHODS All the treatments were administered intraperitoneally for 10 days (LPS at a dose of 0.5 mg/kg b.w., DSF at a dose of 100 mg/kg b.w, and NAC at a dose of 100 mg/kg b.w.). Behavior was evaluated by the novel object recognition (NOR) test and object location (OL) test, and the level of brain-derived neurotrophic factor (BDNF) was assayed to evaluate neuronal functioning. Cerebral cortex homogenates were tested for hydrogen sulfide (H2S), sulfane sulfur, sulfates, non-protein sulfhydryl groups (NPSH), nitric oxide (NO), and reactive oxygen species (ROS) by biochemical analysis. RESULTS Neither DSF nor NAC alleviated LPS-induced memory disorders estimated by the NOR test and OL test. The studied compounds also did not affect significantly the levels of BDNF, ROS, NO, H2S, and sulfane sulfur in the cerebral cortex. However, we observed an increase in sulfate concentration in brain tissues after LPS treatment, while DSF and NAC caused an additional increase in sulfate concentration. On the other hand, our study showed that the administration of DSF or NAC together with LPS significantly enhanced the cortical level of NPSH, of which glutathione is the main component. CONCLUSIONS Our study did not confirm the suggested potential of DSF and NAC to correct memory disorders; however, it corroborated the notion that they reduced oxidative stress induced by LPS by increasing the NPSH level. Additionally, our study showed an increase in sulfate concentration in the brain tissues after LPS treatment, which means the upregulation of sulfite and sulfate production in inflammatory conditions.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Magdalena Górny
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| | - Anthea Miller
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Noemi Nicosia
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Paula Zammit
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| |
Collapse
|
3
|
Huang PF, Wang QY, Chen RB, Wang YD, Wang YY, Liu JH, Xiao XH, Liao ZZ. A New Strategy for Obesity Treatment: Revealing the Frontiers of Anti-obesity Medications. Curr Mol Med 2025; 25:13-26. [PMID: 38289639 DOI: 10.2174/0115665240270426231123155924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 02/19/2025]
Abstract
Obesity dramatically increases the risk of type 2 diabetes, fatty liver, hypertension, cardiovascular disease, and cancer, causing both declines in quality of life and life expectancy, which is a serious worldwide epidemic. At present, more and more patients with obesity are choosing drug therapy. However, given the high failure rate, high cost, and long design and testing process for discovering and developing new anti-obesity drugs, drug repurposing could be an innovative method and opportunity to broaden and improve pharmacological tools in this context. Because different diseases share molecular pathways and targets in the cells, anti-obesity drugs discovered in other fields are a viable option for treating obesity. Recently, some drugs initially developed for other diseases, such as treating diabetes, tumors, depression, alcoholism, erectile dysfunction, and Parkinson's disease, have been found to exert potential anti-obesity effects, which provides another treatment prospect. In this review, we will discuss the potential benefits and barriers associated with these drugs being used as obesity medications by focusing on their mechanisms of action when treating obesity. This could be a viable strategy for treating obesity as a significant advance in human health.
Collapse
Affiliation(s)
- Pan-Feng Huang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
4
|
Identifying and Managing Eating Disorders in Persons Presenting for Addiction Treatment. CANADIAN JOURNAL OF ADDICTION 2021. [DOI: 10.1097/cxa.0000000000000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Levitan MN, Papelbaum M, Carta MG, Appolinario JC, Nardi AE. Binge Eating Disorder: A 5-Year Retrospective Study on Experimental Drugs. J Exp Pharmacol 2021; 13:33-47. [PMID: 33542663 PMCID: PMC7853418 DOI: 10.2147/jep.s255376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Binge eating disorder (BED) affects a significant rate of the general population causing a negative impact on their quality of life, weight, and self-esteem. Besides psychological treatments that compose the majority of the studies, pharmaceuticals have contributed to improve a host of clinical parameters, thus being an important component of the treatment. We opted to target the latest results by performing a review of the literature on the pharmacology for BED from the last 5 years. To achieve this goal, the terms: "binge eating disorder" and "treatment" were added to the PubMed database and the website clinicaltrials.gov. At least five drugs were either being tested or had already been recognized to improve BED symptoms - although only lisdexamfetamine is currently approved by the FDA to treat this condition. However, due to a better understanding of BED psychopathology in the last decade, it is notorious that improvement of eating-related symptoms is not the only desired target. Due to the significant comorbidity percentage (30%), weight loss is highly pursued, as well as the amelioration of clinical parameters which highlights the importance of having new agents combining both objectives.
Collapse
Affiliation(s)
- Michelle N Levitan
- Psychiatry Institute/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Eating Disorders Department/Sheba Medical Center, Ramat Gan, Israel
| | | | - Mauro G Carta
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università Degli Studi di Cagliari, Cagliari, Italy
| | - Jose C Appolinario
- Psychiatry Institute/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio E Nardi
- Psychiatry Institute/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Hilbert A, Petroff D, Herpertz S, Pietrowsky R, Tuschen-Caffier B, Vocks S, Schmidt R. Meta-analysis on the long-term effectiveness of psychological and medical treatments for binge-eating disorder. Int J Eat Disord 2020; 53:1353-1376. [PMID: 32583527 DOI: 10.1002/eat.23297] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Long-term effectiveness is a critical aspect of the clinical utility of a treatment; however, a meta-analytic evaluation of psychological and medical treatments for binge-eating disorder (BED), including weight loss treatments, is outstanding. This meta-analysis sought to provide a comprehensive evaluation of the long-term effectiveness in diverse treatments for BED regarding a range of clinically relevant outcomes. METHOD Based on a systematic search up to February 2018, 114 published and unpublished randomized-controlled (RCTs), nonrandomized, and uncontrolled treatment studies, totaling 8,862 individuals with BED (DSM-IV, DSM-5), were identified and analyzed using within-group random-effect modeling. RESULTS Effectiveness (regarding binge-eating episodes and abstinence, eating disorder and general psychopathology) up to 12 months following treatment was demonstrated for psychotherapy, structured self-help treatment, and combined treatment, while the results regarding body weight reduction were inconsistent. These results were confirmed in sensitivity analyses with RCTs on the most common treatments-cognitive-behavioral therapy and self-help treatment based on this approach. Follow-up intervals longer than 12 months were rarely reported, mostly supporting the long-term effectiveness of psychotherapy. Few follow-up data were available for pharmacotherapy, and behavioral and self-help weight loss treatment, while follow-up data were lacking for pharmacological and surgical weight loss treatment. Study quality varied widely. DISCUSSION This comprehensive meta-analysis demonstrated the medium-term effectiveness of psychotherapy, structured self-help treatment, and combined treatment for patients with BED, and supported the long-term effectiveness of psychotherapy. The results were derived from uncontrolled comparisons over time. Further long-term high quality research on psychological and medical treatments for BED is required.
Collapse
Affiliation(s)
- Anja Hilbert
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | - David Petroff
- Integrated Research and Treatment Center AdiposityDiseases, Clinical Trial Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Stephan Herpertz
- Integrated Research and Treatment Center AdiposityDiseases, Clinical Trial Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Reinhard Pietrowsky
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Clinic, Ruhr-University Bochum, Germany
| | - Brunna Tuschen-Caffier
- Department of Clinical Psychology, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Silja Vocks
- Department of Psychology, University of Freiburg, Freiburg, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
7
|
Bernier M, Mitchell SJ, Wahl D, Diaz A, Singh A, Seo W, Wang M, Ali A, Kaiser T, Price NL, Aon MA, Kim EY, Petr MA, Cai H, Warren A, Di Germanio C, Di Francesco A, Fishbein K, Guiterrez V, Harney D, Koay YC, Mach J, Enamorado IN, Pulpitel T, Wang Y, Zhang J, Zhang L, Spencer RG, Becker KG, Egan JM, Lakatta EG, O'Sullivan J, Larance M, LeCouteur DG, Cogger VC, Gao B, Fernandez-Hernando C, Cuervo AM, de Cabo R. Disulfiram Treatment Normalizes Body Weight in Obese Mice. Cell Metab 2020; 32:203-214.e4. [PMID: 32413333 PMCID: PMC7957855 DOI: 10.1016/j.cmet.2020.04.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Obesity is a top public health concern, and a molecule that safely treats obesity is urgently needed. Disulfiram (known commercially as Antabuse), an FDA-approved treatment for chronic alcohol addiction, exhibits anti-inflammatory properties and helps protect against certain types of cancer. Here, we show that in mice disulfiram treatment prevented body weight gain and abrogated the adverse impact of an obesogenic diet on insulin responsiveness while mitigating liver steatosis and pancreatic islet hypertrophy. Additionally, disulfiram treatment reversed established diet-induced obesity and metabolic dysfunctions in middle-aged mice. Reductions in feeding efficiency and increases in energy expenditure were associated with body weight regulation in response to long-term disulfiram treatment. Loss of fat tissue and an increase in liver fenestrations were also observed in rats on disulfiram. Given the potent anti-obesogenic effects in rodents, repurposing disulfiram in the clinic could represent a new strategy to treat obesity and its metabolic comorbidities.
Collapse
Affiliation(s)
- Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Sarah J Mitchell
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Devin Wahl
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Abhishek Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingy Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ahmed Ali
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tamzin Kaiser
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Eun-Young Kim
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Michael A Petr
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Huan Cai
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alessa Warren
- Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Clara Di Germanio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrea Di Francesco
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ken Fishbein
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Vince Guiterrez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dylan Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - John Mach
- Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
| | - Ignacio Navas Enamorado
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Yushi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jing Zhang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Li Zhang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - John O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - David G LeCouteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139, Australia
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
8
|
Appolinario JC, Nardi AE, McElroy SL. Investigational drugs for the treatment of binge eating disorder (BED): an update. Expert Opin Investig Drugs 2019; 28:1081-1094. [PMID: 31714807 DOI: 10.1080/13543784.2019.1692813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Binge eating disorder (BED) is the most common eating disorder and is frequently associated with psychiatric and medical comorbidities and functional impairment. Although psychological treatments have been the cornerstones of BED treatment, pharmacologic interventions also play an important part of the multimodal management of this condition.Areas covered: This review examines investigational, approved and other pharmacological agents for the treatment of BED. We searched PubMed and clinicaltrials.gov to identify pharmacological interventions for the management of this condition.Expert opinion: BED pharmacological studies have incorporated new drug targets based on our enhanced understanding of the pathophysiology of BED. Neurobiological dysregulation in the reward center and impulse control circuitry and related disturbances in dopamine neurotransmission are among the neurobiological explanations that have been suggested for BED. These mechanisms serve as a pharmacodynamic foundation for the development of new compounds such as lisdexamfetamine (LDX) and dasotraline. Despite these advances, pharmacological trials in BED have numerous challenges that must be overcome. For most compounds studied, larger and more definitive trials is a high priority.
Collapse
Affiliation(s)
- Jose C Appolinario
- Obesity and Eating Disorders Group, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio E Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susan L McElroy
- Department of Psychiatry and Behavioral Neuroscience, Lindner Center of HOPE, Mason, OH, USA and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Bakthavatsalam S, Sleeper ML, Dharani A, George DJ, Zhang T, Franz KJ. Leveraging γ-Glutamyl Transferase To Direct Cytotoxicity of Copper Dithiocarbamates against Prostate Cancer Cells. Angew Chem Int Ed Engl 2018; 57:12780-12784. [PMID: 30025197 PMCID: PMC6372289 DOI: 10.1002/anie.201807582] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 01/17/2023]
Abstract
A prodrug approach is presented to direct copper-dependent cytotoxicity to prostate cancer cells. The prochelator GGTDTC requires activation by γ-glutamyl transferase (GGT) to release the metal chelator diethyldithiocarbamate from a linker that masks its thiol reactivity and metal binding properties. In vitro studies demonstrated successful masking of copper binding as well as clean liberation of the chelator by GGT. GGTDTC was stable to non-specific degradation when incubated with a series of prostate cancer and normal cell lines, with selective release of diethyldithiocarbamate only occurring in cells with measurable GGT activity. The antiproliferative efficacy of the prochelator correlated with cellular GGT activity, with 24 h inhibitory concentrations ranging from 800 nm in prostate cancer lines 22Rv1 and LNCaP to over 15 μm in normal prostate PWR-1E cells. These findings underscore a new strategy to leverage the amplified copper metabolism of prostate cancer by conditional activation of a metal-binding pharmacophore.
Collapse
Affiliation(s)
| | - Mark L. Sleeper
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708 (USA)
| | - Azim Dharani
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708 (USA)
| | - Daniel J. George
- Division of Medical Oncology Department of Medicine Duke Cancer Institute Durham, NC 27708 (USA)
| | - Tian Zhang
- Division of Medical Oncology Department of Medicine Duke Cancer Institute Durham, NC 27708 (USA)
| | - Katherine J. Franz
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708 (USA)
| |
Collapse
|
10
|
Bakthavatsalam S, Sleeper ML, Dharani A, George DJ, Zhang T, Franz KJ. Leveraging γ‐Glutamyl Transferase To Direct Cytotoxicity of Copper Dithiocarbamates against Prostate Cancer Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Mark L. Sleeper
- Duke University Department of Chemistry POB 90346 Durham 27708 USA
| | - Azim Dharani
- Duke University Department of Chemistry POB 90346 Durham 27708 USA
| | - Daniel J. George
- Division of Medical Oncology Department of Medicine Duke Cancer Institute Durham 27708 USA
| | - Tian Zhang
- Division of Medical Oncology Department of Medicine Duke Cancer Institute Durham 27708 USA
| | | |
Collapse
|
11
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
12
|
Disulfiram inhibits chocolate self-administration and reinstatement to chocolate seeking in rats. Pharmacol Biochem Behav 2016; 148:119-27. [DOI: 10.1016/j.pbb.2016.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
|
13
|
Devoto P, Flore G, Saba P, Frau R, Gessa GL. Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex. Brain Behav 2015; 5:e00393. [PMID: 26516613 PMCID: PMC4614051 DOI: 10.1002/brb3.393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/08/2015] [Accepted: 08/16/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. METHODS Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. RESULTS Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. CONCLUSIONS This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The results indicate that nepicastat enhances DA release from noradrenergic terminals supposedly by removing NA from α2-autoreceptors. In addition to the inhibition of DA uptake, the latter mechanism may explain the synergistic effect of cocaine on nepicastat-induced DA release.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy ; "Guy Everett Laboratory" University of Cagliari Cagliari Italy ; Center of Excellence "Neurobiology of Addiction" University of Cagliari Cagliari Italy
| | - Giovanna Flore
- Department of Medical Sciences University of Cagliari Cagliari Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy
| | - Roberto Frau
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy ; "Guy Everett Laboratory" University of Cagliari Cagliari Italy
| | - Gian L Gessa
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy ; "Guy Everett Laboratory" University of Cagliari Cagliari Italy ; National Research Council CNR, Institute of Neuroscience Cagliari Italy
| |
Collapse
|