1
|
Vieira Ferreira N, Andrade R, Pinto Freitas T, de Campos Azevedo C, Espregueira-Mendes J, Salgado AJ, Sevivas N. The role of injections of mesenchymal stem cells as an augmentation tool in rotator cuff repair: a systematic review. JSES REVIEWS, REPORTS, AND TECHNIQUES 2025; 5:231-242. [PMID: 40321851 PMCID: PMC12047555 DOI: 10.1016/j.xrrt.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Background Arthroscopic repair is currently the gold standard for the surgical treatment of rotator cuff tears, but the retear rates remain unacceptably high. Mesenchymal stem cells (MSCs) may play a role in the local biology and enhance tendon-to-bone healing during rotator cuff repair. However, the scientific literature is still not well systematized on the effects of injection of MSCs as an augmentation tool for rotator cuff repair. Our goal was to investigate the effect of injections of MSCs to augment rotator cuff repair in patients with rotator cuff tear. Methods PubMed and EMBASE were searched up to June 2022 for clinical studies that applied MSCs injections to augment rotator cuff repair. Imaging, patient-reported outcomes measures, shoulder range of motion and strength were collected. Quantitative synthesis included within- and between-group mean differences with the within-group percentage of minimal clinically important difference for each study and continuous outcomes, and relative risks (RR) for retears and adverse events. Quantitative synthesis was computed with 95% confidence intervals (CIs). Results We included 5 studies comprising a total of 228 individuals with a weighted mean age of 59.3 ± 1.2 years. Three studies used bone marrow MSCs and two studies applied adipose-derived MSCs. Patient-reported outcomes measures, shoulder range of motion, and strength improved significantly in all MSCs groups, with minimal clinically important differences ranging from 120% to 679% of established cut-off. When compared to rotator cuff repair alone, the MSCs groups did not result in improved outcomes. The MSCs group showed significant protective effect at the mid-term (RR = 0.52, 95% CI 0.27-0.98) and long-term (RR = 0.24, 95% CI 0.11-0.53). Conclusion There are no differences in clinical and functional outcomes between rotator cuff repair with or without augmentation with MSCs. However, there may be a protective effect against retear at the mid-term and long-term follow-up when augmenting the repair with MSCs. The literature on this topic is still preliminary and the quality and certainty of evidence is limited.
Collapse
Affiliation(s)
- Nuno Vieira Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Hospital de Santa Maria Maior Barcelos, Barcelos, Portugal
- Hospital dos Lusíadas Braga, Braga, Portugal
- Instituto de Investigação em Ortopedia e Medicina Desportiva, Braga, Portugal
| | - Renato Andrade
- Clínica Espregueira - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Tânia Pinto Freitas
- Hospital de Santa Maria Maior Barcelos, Barcelos, Portugal
- Hospital dos Lusíadas Braga, Braga, Portugal
- Instituto de Investigação em Ortopedia e Medicina Desportiva, Braga, Portugal
| | | | - João Espregueira-Mendes
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clínica Espregueira - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- School of Medicine, University of Minho, Braga, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sevivas
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- School of Medicine, University of Minho, Braga, Portugal
- Trofa Saúde Group, Vila do Conde, Portugal
- Centro Hospitalar Médio Ave, Famalicão, Portugal
| |
Collapse
|
2
|
Milano G, Colosio A, Minotta Quebradas MJ, Pratobevera A, Daffara V, Saccomanno MF. Biologic augmentation of rotator cuff repair with microfragmented autologous subacromial bursal tissue enveloped in a patch of compressed autologous long head of biceps tendon tissue: the Bio-Ravioli technique. JSES Int 2024; 8:1010-1015. [PMID: 39280168 PMCID: PMC11401564 DOI: 10.1016/j.jseint.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Background Rotator cuff repair is one of the most frequently performed procedures in orthopedic surgery. However, considering the limited healing potential of rotator cuff tendons, several augmentation strategies have evolved to enhance tendon healing. The purpose of this article was to present a new surgical technique called Bio-Ravioli. Methods Patients with repairable full-thickness posterosuperior rotator cuff tear and a moderate-to-high risk of healing failure were chosen as candidates for the Bio-Ravioli procedure. It is a biologic augmentation strategy to increase healing potential of arthroscopic rotator cuff repair by use of a biologic graft fixed at the bone-tendon interface. The Bio-Ravioli consists of microfragmented autologous subacromial bursal tissue enveloped in a patch of compressed autologous long head of biceps tendon tissue. The rotator cuff is then repaired to the bone and over the graft using a transosseus equivalent configuration. Conclusion The Bio-Ravioli technique represents an easy and reliable way to increase the healing potential at the bone-tendon interface by using autologous mesenchymal stem cells from different sources: subacromial bursa and long head of the biceps tendon.
Collapse
Affiliation(s)
- Giuseppe Milano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Department of Bone and Joint Surgery, Spedali Civili, Brescia, Italy
| | - Alessandro Colosio
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | | - Andrea Pratobevera
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Valerio Daffara
- Department of Orthopaedic Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Maristella F Saccomanno
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Department of Bone and Joint Surgery, Spedali Civili, Brescia, Italy
| |
Collapse
|
3
|
Wang HN, Rong X, Yang LM, Hua WZ, Ni GX. Advances in Stem Cell Therapies for Rotator Cuff Injuries. Front Bioeng Biotechnol 2022; 10:866195. [PMID: 35694228 PMCID: PMC9174670 DOI: 10.3389/fbioe.2022.866195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rotator cuff injury is a common upper extremity musculoskeletal disease that may lead to persistent pain and functional impairment. Despite the clinical outcomes of the surgical procedures being satisfactory, the repair of the rotator cuff remains problematic, such as through failure of healing, adhesion formation, and fatty infiltration. Stem cells have high proliferation, strong paracrine action, and multiple differentiation potential, which promote tendon remodeling and fibrocartilage formation and increase biomechanical strength. Additionally, stem cell-derived extracellular vesicles (EVs) can increase collagen synthesis and inhibit inflammation and adhesion formation by carrying regulatory proteins and microRNAs. Therefore, stem cell-based therapy is a promising therapeutic strategy that has great potential for rotator cuff healing. In this review, we summarize the advances of stem cells and stem cell-derived EVs in rotator cuff repair and highlight the underlying mechanism of stem cells and stem cell-derived EVs and biomaterial delivery systems. Future studies need to explore stem cell therapy in combination with cellular factors, gene therapy, and novel biomaterial delivery systems.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Lu-Ming Yang
- Musculoskeletal Sonography and Occupational Performance Lab, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Wei-Zhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Klatte-Schulz F, Thiele K, Scheibel M, Duda GN, Wildemann B. Subacromial Bursa: A Neglected Tissue Is Gaining More and More Attention in Clinical and Experimental Research. Cells 2022; 11:cells11040663. [PMID: 35203311 PMCID: PMC8870132 DOI: 10.3390/cells11040663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
The subacromial bursa has long been demolded as friction-reducing tissue, which is often linked to shoulder pain and, therefore, partially removed during shoulder surgery. Currently, the discovery of the stem cell potential of resident bursa-derived cells shed a new light on the subacromial bursa. In the meanwhile, this neglected tissue is gaining more attention as to how it can augment the regenerative properties of adjacent tissues such as rotator cuff tendons. Specifically, the tight fibrovascular network, a high growth factor content, and the large progenitor potential of bursa-derived cells could complement the deficits that a nearby rotator cuff injury might experience due to the fact of its low endogenous regeneration potential. This review deals with the question of whether bursal inflammation is only a pain generator or could also be an initiator of healing. Furthermore, several experimental models highlight potential therapeutic targets to overcome bursal inflammation and, thus, pain. More evidence is needed to fully elucidate a direct interplay between subacromial bursa and rotator cuff tendons. Increasing attention to tendon repair will help to guide future research and answer open questions such that novel treatment strategies could harvest the subacromial bursa's potential to support healing of nearby rotator cuff injuries.
Collapse
Affiliation(s)
- Franka Klatte-Schulz
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany; (G.N.D.); (B.W.)
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany
- Correspondence:
| | - Kathi Thiele
- Center for Musculoskeletal Surgery, Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany; (K.T.); (M.S.)
| | - Markus Scheibel
- Center for Musculoskeletal Surgery, Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany; (K.T.); (M.S.)
- Department Shoulder and Elbow Surgery, Schulthess Klinik, 8008 Zurich, Switzerland
| | - Georg N. Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany; (G.N.D.); (B.W.)
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany
| | - Britt Wildemann
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany; (G.N.D.); (B.W.)
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| |
Collapse
|
5
|
Morikawa D, Hawthorne BC, McCarthy MBR, Bellas N, Johnson JD, Trudeau MT, Murphy KV, Mancini MR, LeVasseur MR, Cote MP, Mazzocca AD. Analysis of Patient Factors Affecting In Vitro Characteristics of Subacromial Bursal Connective Tissue Progenitor Cells during Rotator Cuff Repair. J Clin Med 2021; 10:jcm10174006. [PMID: 34501453 PMCID: PMC8432549 DOI: 10.3390/jcm10174006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
Unsatisfactory failure rates following rotator cuff (RC) repair have led orthopaedic surgeons to explore biological augmentation of the healing enthesis. The subacromial bursa (SB) contains abundant connective tissue progenitor cells (CTPs) that may aid in this process. The purpose of the study was to investigate the influence of patient demographics and tear characteristics on the number of colony-forming units (CFUs) and nucleated cell count (NCC) of SB-derived CTPs. In this study, we harvested SB tissue over the supraspinatus tendon and muscle in 19 patients during arthroscopic RC repair. NCC of each sample was analyzed on the day of the procedure. After 14 days, CFUs were evaluated under a microscope. Spearman’s rank correlation coefficient was then used to determine the relationship between CFUs or NCC and patient demographics or tear characteristics. The study found no significant correlation between patient demographics and the number of CFUs or NCC of CTPs derived from the SB (p > 0.05). The study did significantly observe that increased tear size was negatively correlated with the number of CFUs (p < 0.05). These results indicated that increased tear size, but not patient demographics, may influence the viability of CTPs and should be considered when augmenting RCrepairs with SB.
Collapse
Affiliation(s)
- Daichi Morikawa
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan
- Correspondence: (D.M.); (A.D.M.)
| | - Benjamin C. Hawthorne
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Mary Beth R. McCarthy
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Nicholas Bellas
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Jeremiah D. Johnson
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Maxwell T. Trudeau
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Kyle V. Murphy
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Michael R. Mancini
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Matthew R. LeVasseur
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Mark P. Cote
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
| | - Augustus D. Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06032, USA; (B.C.H.); (M.B.R.M.); (N.B.); (J.D.J.); (M.T.T.); (K.V.M.); (M.R.M.); (M.R.L.); (M.P.C.)
- Correspondence: (D.M.); (A.D.M.)
| |
Collapse
|