1
|
Prakash C, Moran P, Mahar R. Pharmacometabolomics: An emerging platform for understanding the pathophysiological processes and therapeutic interventions. Int J Pharm 2025; 675:125554. [PMID: 40189169 DOI: 10.1016/j.ijpharm.2025.125554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Pharmacometabolomics has emerged as a new subclass of metabolomics, aiming to predict an individual's response to a drug or optimize therapy based on prior information on an individual's metabolic profile. Pharmacometabolomics is being explored in drug discovery, biomarker identification, disease diagnosis, monitoring of disease progression, and therapeutic intervention. The time points-based sample collection is essential to measure the response of individuals to pathophysiological processes and therapeutic interventions. Analytical techniques such as NMR, LC-MS, and GC-MS have been employed to assess a huge number of metabolites present in biological systems. NMR has an advantage over other analytical techniques as it provides a snapshot of tissue and biological fluids, however, it requires higher magnetic fields to achieve better resolution. GC-MS could cover a wide range of metabolites due to high resolution but requires derivatization for certain metabolites. LC-MS is equally competitive and separates a wide range of metabolites with diverse polarities but requires extensive method development. Several platforms have been developed to analyze the analytical data and provide meaningful results via data reduction methods. PCA and PLS-DA are the most common methods for reduction dimensionality through simplified multivariate data modeling. This manuscript brings insights into the overview of pharmacometabolomics experimental design and the application of various analytical techniques and multivariate statistical analysis in the various fields of medical research.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand 246174, India
| | - Pronami Moran
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand 246174, India
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand 246174, India.
| |
Collapse
|
2
|
Liu S, Liu Y, Li M, Shang S, Cao Y, Shen X, Huang C. Artificial intelligence in autoimmune diseases: a bibliometric exploration of the past two decades. Front Immunol 2025; 16:1525462. [PMID: 40330462 PMCID: PMC12052778 DOI: 10.3389/fimmu.2025.1525462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Objective Autoimmune diseases have long been recognized for their intricate nature and elusive mechanisms, presenting significant challenges in both diagnosis and treatment. The advent of artificial intelligence technology has opened up new possibilities for understanding, diagnosing, predicting, and managing autoimmune disorders. This study aims to explore the current state and emerging trends in the field through bibliometric analysis, providing guidance for future research directions. Methods The study employed the Web of Science Core Collection database for data acquisition and performed bibliometric analysis using CiteSpace, HistCite Pro, and VOSviewer. Results Over the past two decades, 1,695 publications emerged in this research field, including 1,409 research articles and 286 reviews. This investigation unveils the global development landscape predominantly led by the United States and China. The research identifies key institutions, such as Brigham & Women's Hospital, influential journals like the Annals of the Rheumatic Diseases, distinguished authors including Katherine P. Liao, and pivotal articles. It visually maps out the research clusters' evolutionary path over time and explores their applications in patient identification, risk factors, prognosis assessment, diagnosis, classification of disease subtypes, monitoring and decision support, and drug discovery. Conclusion AI is increasingly recognized for its potential in the field of autoimmune diseases, yet it continues to face numerous challenges, including insufficient model validation and difficulties in data integration and computational power. Significant advancements have been demanded to enhance diagnostic precision, improve treatment methodologies, and establish robust frameworks for data protection, thereby facilitating more effective management of these complex conditions.
Collapse
Affiliation(s)
- Sidi Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Ming Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Shuangshuang Shang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yunxiang Cao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Xi Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Chuanbing Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
Jian J, He D, Gao S, Tao X, Dong X. Pharmacokinetics in Pharmacometabolomics: Towards Personalized Medication. Pharmaceuticals (Basel) 2023; 16:1568. [PMID: 38004434 PMCID: PMC10675232 DOI: 10.3390/ph16111568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Indiscriminate drug administration may lead to drug therapy results with varying effects on patients, and the proposal of personalized medication can help patients to receive effective drug therapy. Conventional ways of personalized medication, such as pharmacogenomics and therapeutic drug monitoring (TDM), can only be implemented from a single perspective. The development of pharmacometabolomics provides a research method for the realization of precise drug administration, which integrates the environmental and genetic factors, and applies metabolomics technology to study how to predict different drug therapeutic responses of organisms based on baseline metabolic levels. The published research on pharmacometabolomics has achieved satisfactory results in predicting the pharmacokinetics, pharmacodynamics, and the discovery of biomarkers of drugs. Among them, the pharmacokinetics related to pharmacometabolomics are used to explore individual variability in drug metabolism from the level of metabolism of the drugs in vivo and the level of endogenous metabolite changes. By searching for relevant literature with the keyword "pharmacometabolomics" on the two major literature retrieval websites, PubMed and Web of Science, from 2006 to 2023, we reviewed articles in the field of pharmacometabolomics that incorporated pharmacokinetics into their research. This review explains the therapeutic effects of drugs on the body from the perspective of endogenous metabolites and pharmacokinetic principles, and reports the latest advances in pharmacometabolomics related to pharmacokinetics to provide research ideas and methods for advancing the implementation of personalized medication.
Collapse
Affiliation(s)
- Jingai Jian
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Donglin He
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| |
Collapse
|
4
|
Bafiti V, Katsila T. Pharmacometabolomics-Based Translational Biomarkers: How to Navigate the Data Ocean. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:542-551. [PMID: 36149303 DOI: 10.1089/omi.2022.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolome is the end point of the genome-environment interplay, and enables an important holistic overview of individual adaptability and host responses to environmental, ecological, as well as endogenous changes such as disease. Pharmacometabolomics is the application of metabolome knowledge to decipher the mechanisms of interindividual and intraindividual variations in drug efficacy and safety. Pharmacometabolomics also contributes to prediction of drug treatment outcomes on the basis of baseline (predose) and postdose metabotypes through mathematical modeling. Thus, pharmacometabolomics is a strong asset for a diverse community of stakeholders interested in theory and practice of evidence-based and precision/personalized medicine: academic researchers, public health scholars, health professionals, pharmaceutical, diagnostics, and biotechnology industries, among others. In this expert review, we discuss pharmacometabolomics in four contexts: (1) an interdisciplinary omics tool and field to map the mechanisms and scale of interindividual variability in drug effects, (2) discovery and development of translational biomarkers, (3) advance digital biomarkers, and (4) empower drug repurposing, a field that is increasingly proving useful in the current era of Covid-19. As the applications of pharmacometabolomics are growing rapidly in the current postgenome era, next-generation proteomics and metabolomics follow the example of next-generation sequencing analyses. Pharmacometabolomics can also empower data reliability and reproducibility through multiomics integration strategies, which use each data layer to correct, connect with, and inform each other. Finally, we underscore here that contextual data remain crucial for precision medicine and drug development that stand the test of time and clinical relevance.
Collapse
Affiliation(s)
- Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
5
|
Amaro F, Carvalho M, Bastos MDL, Guedes de Pinho P, Pinto J. Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers. Pharmaceuticals (Basel) 2022; 15:295. [PMID: 35337093 PMCID: PMC8952371 DOI: 10.3390/ph15030295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC) are the most common urological cancers, and their incidence has been rising over time. Surgery is the standard treatment for these cancers, but this procedure is only effective when the disease is localized. For metastatic disease, PCa is typically treated with androgen deprivation therapy, while BCa is treated with chemotherapy, and RCC is managed primarily with targeted therapies. However, response rates to these therapeutic options remain unsatisfactory due to the development of resistance and treatment-related toxicity. Thus, the discovery of biomarkers with prognostic and predictive value is needed to stratify patients into different risk groups, minimizing overtreatment and the risk of drug resistance development. Pharmacometabolomics, a branch of metabolomics, is an attractive tool to predict drug response in an individual based on its own metabolic signature, which can be collected before, during, and after drug exposure. Hence, this review focuses on the application of pharmacometabolomic approaches to identify the metabolic responses to hormone therapy, targeted therapy, immunotherapy, and chemotherapy for the most prevalent urological cancers.
Collapse
Affiliation(s)
- Filipa Amaro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-I3ID, FP-ENAS, CEBIMED, University Fernando Pessoa, 4200-150 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites 2021; 11:metabo11120812. [PMID: 34940570 PMCID: PMC8708401 DOI: 10.3390/metabo11120812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolomics approach represents the last downstream phenotype and is widely used in clinical studies and drug discovery. In this paper, we outline recent advances in the metabolomics research of autoimmune diseases (ADs) such as rheumatoid arthritis (RA), multiple sclerosis (MuS), and systemic lupus erythematosus (SLE). The newly discovered biomarkers and the metabolic mechanism studies for these ADs are described here. In addition, studies elucidating the metabolic mechanisms underlying these ADs are presented. Metabolomics has the potential to contribute to pharmacotherapy personalization; thus, we summarize the biomarker studies performed to predict the personalization of medicine and drug response.
Collapse
|
7
|
Griffin JD, Huayamares SG, Walston TR, Song JY, Shao M, Sedlacek AR, Diaz DL, Chakravarti AR, Berkland CJ. Brain Homogenate Decoys for Antigen-Specific Cell Amplification. ACS APPLIED BIO MATERIALS 2021; 4:387-391. [DOI: 10.1021/acsabm.0c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Sebastian G. Huayamares
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Towne R. Walston
- School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jimmy Y. Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Michael Shao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Alexander R. Sedlacek
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Deanna L. Diaz
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Aparna R. Chakravarti
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cory J. Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Jenko Bizjan B, Katsila T, Tesovnik T, Šket R, Debeljak M, Matsoukas MT, Kovač J. Challenges in identifying large germline structural variants for clinical use by long read sequencing. Comput Struct Biotechnol J 2019; 18:83-92. [PMID: 32099591 PMCID: PMC7026727 DOI: 10.1016/j.csbj.2019.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Genomic structural variations, previously considered rare events, are widely recognized as a major source of inter-individual variability and hence, a major hurdle in optimum patient stratification and disease management. Herein, we focus on large complex germline structural variations and present challenges towards target treatment via the synergy of state-of-the-art approaches and information technology tools. A complex structural variation detection remains challenging, as there is no gold standard for identifying such genomic variations with long reads, especially when the chromosomal rearrangement in question is a few Mb in length. A clinical case with a large complex chromosomal rearrangement serves as a paradigm. We feel that functional validation and data interpretation are of outmost importance for information growth to be translated into knowledge growth and hence, new working practices are highlighted.
Collapse
Affiliation(s)
- Barbara Jenko Bizjan
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Centre, Athens, Greece
| | - Tine Tesovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Robert Šket
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | | | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| |
Collapse
|
9
|
A Quantitative and Narrative Evaluation of Goodman and Gilman's Pharmacological Basis of Therapeutics. PHARMACY 2019; 8:pharmacy8010001. [PMID: 31861770 PMCID: PMC7151699 DOI: 10.3390/pharmacy8010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Goodman and Gilman's The Pharmacological Basis of Therapeutics (GGPBT) has been a cornerstone in the education of pharmacists, physicians, and pharmacologists for decades. The objectives of this study were to describe and evaluate the 13th edition of GGPBT on bases including: (1) author characteristics; (2) recency of citations; (3) conflict of interest (CoI) disclosure; (4) expert evaluation of chapters. Contributors' (N = 115) sex, professional degrees, and presence of undisclosed potential CoI-as reported by the Center for Medicare and Medicaid's Open Payments (2013-2017)-were examined. The year of publication of citations was extracted relative to Katzung's Basic and Clinical Pharmacology (KatBCP), and DiPiro's Pharmacotherapy: A Pathophysiologic Approach (DiPPAPA). Content experts provided thorough chapter reviews. The percent of GGPBT contributors that were female (20.9%) was equivalent to those in KatBCP (17.0%). Citations in GGPBT (11.5 ± 0.2 years) were significantly older than those in KatBCP (10.4 ± 0.2) and DiPPAPA (9.1 ± 0.1, p < 0.0001). Contributors to GGPBT received USD 3 million in undisclosed remuneration (Maximum author = USD 743,718). In contrast, DiPPAPA made CoI information available. Reviewers noted several strengths but also some areas for improvement. GGPBT will continue to be an important component of the biomedical curriculum. Areas of improvement include a more diverse authorship, improved conflict of interest transparency, and a greater inclusion of more recent citations.
Collapse
|
10
|
Mane DR, Rahman SU, Desai KM, Kale AD, Bhat KG, Arany PR. Roles of the matricellular protein Tenascin-C in T-lymphocyte trafficking and etiopathogenesis of Oral Lichen Planus. Arch Oral Biol 2019; 110:104622. [PMID: 31783297 DOI: 10.1016/j.archoralbio.2019.104622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was aimed at examining the role of Tenascin-C in T cell trafficking in Oral Lichen Planus (OLP). DESIGN For the in vivo immunohistochemical analyses, 115 OLP samples were collected from patients and immunostaining was performed. The intensity and distribution of TN-C expression were quantified and correlated with histological analyses of basement membrane integrity and presence of inflammatory infiltrate. For the in vitro study, TN-C and collagen were coated on culture plates and migration of T lymphocytes was assessed. RESULTS TN-C immunoexpression was increased in terms of both distribution and intensity along the basement membrane zone. These changes were significantly associated with basement membrane duplication (distribution p < 0.002 and intensity p < 0.001) and bands of inflammation (distribution p < 0.002 and intensity p < 0.001) assessed by Chi-square test. T lymphocytes demonstrated significant migration towards TN-C as compared to collagen (n = 3, p < 0.05). CONCLUSIONS These findings indicate TN-C may have a key role in promoting T cell migration at the epithelial-mesenchymal junction in OLP. These observations suggest TN-C could be a good target for therapeutic intervention, either in itself or synergistically with anti-inflammatory directed strategies in this chronic disease management.
Collapse
Affiliation(s)
- Deepa R Mane
- Oral Pathology and Microbiology, KLE's VK Institute of Dental Sciences and Hospital, Belgaum, Karnataka 590010, India
| | - Saeed Ur Rahman
- Oral Biology, School of Dental Medicine, University of Buffalo, New York, 14214, USA
| | - Karishma M Desai
- Oral Pathology and Microbiology, KLE's VK Institute of Dental Sciences and Hospital, Belgaum, Karnataka 590010, India; Oral Biology, School of Dental Medicine, University of Buffalo, New York, 14214, USA
| | - Alka D Kale
- Oral Pathology and Microbiology, KLE's VK Institute of Dental Sciences and Hospital, Belgaum, Karnataka 590010, India
| | - Kishore G Bhat
- Prabhakar Kore Basic Science Research Laboratory, KLE'sUniversity, Belgaum, Karnataka 590010, India
| | - Praveen R Arany
- Oral Pathology and Microbiology, KLE's VK Institute of Dental Sciences and Hospital, Belgaum, Karnataka 590010, India; Oral Biology, School of Dental Medicine, University of Buffalo, New York, 14214, USA.
| |
Collapse
|
11
|
Katsila T, Matsoukas MT. How far have we come with contextual data integration in drug discovery? Expert Opin Drug Discov 2018; 13:791-794. [DOI: 10.1080/17460441.2018.1504767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Minos-Timotheos Matsoukas
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Cloudpharm P.C., Athens, Greece
| |
Collapse
|
12
|
Katsila T, Matsoukas MT, Patrinos GP, Kardamakis D. Pharmacometabolomics Informs Quantitative Radiomics for Glioblastoma Diagnostic Innovation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:429-439. [PMID: 28816643 DOI: 10.1089/omi.2017.0087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Applications of omics systems biology technologies have enormous promise for radiology and diagnostics in surgical fields. In this context, the emerging fields of radiomics (a systems scale approach to radiology using a host of technologies, including omics) and pharmacometabolomics (use of metabolomics for patient and disease stratification and guiding precision medicine) offer much synergy for diagnostic innovation in surgery, particularly in neurosurgery. This synthesis of omics fields and applications is timely because diagnostic accuracy in central nervous system tumors still challenges decision-making. Considering the vast heterogeneity in brain tumors, disease phenotypes, and interindividual variability in surgical and chemotherapy outcomes, we believe that diagnostic accuracy can be markedly improved by quantitative radiomics coupled to pharmacometabolomics and related health information technologies while optimizing economic costs of traditional diagnostics. In this expert review, we present an innovation analysis on a systems-level multi-omics approach toward diagnostic accuracy in central nervous system tumors. For this, we suggest that glioblastomas serve as a useful application paradigm. We performed a literature search on PubMed for articles published in English between 2006 and 2016. We used the search terms "radiomics," "glioblastoma," "biomarkers," "pharmacogenomics," "pharmacometabolomics," "pharmacometabonomics/pharmacometabolomics," "collaborative informatics," and "precision medicine." A list of the top 4 insights we derived from this literature analysis is presented in this study. For example, we found that (i) tumor grading needs to be better refined, (ii) diagnostic precision should be improved, (iii) standardization in radiomics is lacking, and (iv) quantitative radiomics needs to prove clinical implementation. We conclude with an interdisciplinary call to the metabolomics, pharmacy/pharmacology, radiology, and surgery communities that pharmacometabolomics coupled to information technologies (chemoinformatics tools, databases, collaborative systems) can inform quantitative radiomics, thus translating Big Data and information growth to knowledge growth, rational drug development and diagnostics innovation for glioblastomas, and possibly in other brain tumors.
Collapse
Affiliation(s)
- Theodora Katsila
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | | | - George P Patrinos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece .,2 Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain, United Arab Emirates
| | - Dimitrios Kardamakis
- 3 Department of Radiation Oncology, University of Patras Medical School , Patras, Greece
| |
Collapse
|
13
|
Katsila T, Liontos M, Patrinos GP, Bamias A, Kardamakis D. The New Age of -omics in Urothelial Cancer - Re-wording Its Diagnosis and Treatment. EBioMedicine 2018; 28:43-50. [PMID: 29428524 PMCID: PMC5835572 DOI: 10.1016/j.ebiom.2018.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Unmet needs in urothelial cancer management represent an important challenge in our effort to improve long-term overall and disease-free survival rates with no significant compromise in quality of life. Radical cystectomy with pelvic lymph node dissection is the standard for the management of muscle-invasive, non-metastatic cancers. In spite of a 90% local disease control, up to 50% of patients ultimately die of distant metastasis. Bladder preservation using chemo-radiation is an acceptable alternative, but optimal patient selection remains elusive. Recent research is focused on the employment of tailored-made strategies in urothelial cancer exploiting the potential of theranostics in patient selection for specific therapies. Herein, we review the current knowledge on molecular theranostics in urothelial cancer and we suggest that this is the time to move toward imaging theranostics, if tailored-made disease management and patient stratification is envisaged. Urothelial cancer management represents an important challenge. Optimum patient stratification and tailored-made theranostics remain elusive. Imaging theranostics is envisaged as a cancer roadmap.
Collapse
Affiliation(s)
- Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece; Department of Radiation Oncology, University of Patras Medical School, Patras, Greece.
| | - Michalis Liontos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece; Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kardamakis
- Department of Radiation Oncology, University of Patras Medical School, Patras, Greece
| |
Collapse
|
14
|
Pisanu C, Katsila T, Patrinos GP, Squassina A. Recent trends on the role of epigenomics, metabolomics and noncoding RNAs in rationalizing mood stabilizing treatment. Pharmacogenomics 2018; 19:129-143. [DOI: 10.2217/pgs-2017-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mood stabilizers are the cornerstone in treatment of mood disorders, but their use is characterized by high interindividual variability. This feature has stimulated intensive research to identify predictive biomarkers of response and disentangle the molecular bases of their clinical efficacy. Nevertheless, findings from studies conducted so far have only explained a small proportion of the observed variability, suggesting that factors other than DNA variants could be involved. A growing body of research has been focusing on the role of epigenetics and metabolomics in response to mood stabilizers, especially lithium salts. Studies from these approaches have provided new insights into the molecular networks and processes involved in the mechanism of action of mood stabilizers, promoting a systems-level multiomics synergy. In this article, we reviewed the literature investigating the involvement of epigenetic mechanisms, noncoding RNAs and metabolomic modifications in bipolar disorder and the mechanism of action and clinical efficacy of mood stabilizers.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Theodora Katsila
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
D'Souza W, Saranath D. OMICS, Oral Cancer Molecular Landscapes, and Clinical Practice. ACTA ACUST UNITED AC 2017; 21:689-703. [DOI: 10.1089/omi.2017.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
16
|
Kolliopoulou A, Stratopoulos A, Siamoglou S, Sgourou A, Ali BR, Papachatzopoulou A, Katsila T, Patrinos GP. Key Pharmacogenomic Considerations for Sickle Cell Disease Patients. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:314-322. [PMID: 28486096 DOI: 10.1089/omi.2017.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sickle cell disease (SCD), although a monogenic disease, exhibits a complex clinical phenotype that hampers optimum patient stratification and disease management, especially on hydroxyurea treatment. Moreover, theranostics, the combination of diagnostics to individualize and optimize therapeutic interventions, has not been firmly on the forefront of SCD research and clinical management to date. We suggest that if tailor-made theranostics in SCD is envisaged, pharmacogenomics is anticipated to be the way forward. Herein, we present the current key pharmacogenomic opportunities and challenges in SCD, considering population variation, ethics, and socioeconomic aspects. We focus on pharmacogenomics and pain management, genethics, and cost-effectiveness in SCD. We searched for and synthesized data from PubMed and Google Scholar, and the references from relevant articles, using the keywords "pharmacogenomics," "sickle cell disease," "hydroxyurea," "ethics," "pain management," "morphine metabolism," "opioids," "pharmacogenomics and chronic pain," "cost-effectiveness," and "economic evaluation." Only articles published in English were included. So far, when pharmacogenomics in SCD has been considered, interindividual variability in hydroxyurea response/toxicity has been of primary interest. We underscore the need to extend pharmacogenomic considerations on other therapeutic interventions currently present using a holistic patient-centric approach, and taking disease complications into account as well. Furthermore, we raise awareness toward socioeconomic, ethical, and population differences in the way sickle cell pharmacogenomics might unfold in the future. If pharmacogenomics in SCD is to be used in the clinic in an evidence-based manner, cost-effectiveness and population-specific empirical ethics data are urgently needed.
Collapse
Affiliation(s)
- Alexandra Kolliopoulou
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Apostolos Stratopoulos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Stavroula Siamoglou
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | | | - Bassam R Ali
- 3 Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | | | - Theodora Katsila
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - George P Patrinos
- 1 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
- 3 Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| |
Collapse
|
17
|
Khalsa J, Duffy LC, Riscuta G, Starke-Reed P, Hubbard VS. Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine. Clin Pharmacol Drug Dev 2017; 6:176-185. [PMID: 28263462 DOI: 10.1002/cpdd.310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Jag Khalsa
- National Institute on Drug Abuse; National Institutes of Health; Bethesda MD USA
| | - Linda C. Duffy
- National Center for Complementary and Integrative Health; National Institutes of Health; Bethesda MD USA
| | - Gabriela Riscuta
- National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Pamela Starke-Reed
- Agricultural Research Service; United States Department of Agriculture; Washington DC USA
| | - Van S. Hubbard
- Formerly National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health; Bethesda MD
| |
Collapse
|
18
|
Goggs R, Rishniw M. Response to Letter Regarding IMHA. J Vet Emerg Crit Care (San Antonio) 2017; 27:148-150. [DOI: 10.1111/vec.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine; Cornell University; Ithaca NY 14853
| | - Mark Rishniw
- Department of Clinical Sciences, College of Veterinary Medicine; Cornell University, Ithaca, NY 14853, Veterinary Information Network; 777 W Covell Boulevard Davis CA 95615
| |
Collapse
|
19
|
Patrinos GP, Katsila T. Pharmacogenomics education and research at the Department of Pharmacy, University of Patras, Greece. Pharmacogenomics 2016; 17:1865-1872. [DOI: 10.2217/pgs-2016-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Pharmacogenomics and Personalized Medicine group belongs to the Laboratory of Molecular Biology and Immunology, Department of Pharmacy and is active since 2009 mainly in the field of pharmacogenomics and personalized medicine. Herein, we describe the research interests, collaborations and accomplishments of the Pharmacogenomics and Personalized Medicine group together with the teaching activities of the group that greatly enhance the pharmacogenomics knowledge of graduate/postgraduate students and healthcare professionals.
Collapse
Affiliation(s)
- George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Bioinformatics, Faculty of Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| |
Collapse
|
20
|
Balasopoulou A, Patrinos GP, Katsila T. Pharmacometabolomics Informs Viromics toward Precision Medicine. Front Pharmacol 2016; 7:411. [PMID: 27833560 PMCID: PMC5081366 DOI: 10.3389/fphar.2016.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Nowadays, we are experiencing the big data era with the emerging challenge of single data interpretation. Although the advent of high-throughput technologies as well as chemo- and bio-informatics tools presents pan-omics data as the way forward to precision medicine, personalized health care and tailored-made therapeutics can be only envisaged when interindividual variability in response to/toxicity of xenobiotics can be interpreted and thus, predicted. We know that such variability is the net outcome of genetics (host and microbiota) and environmental factors (diet, lifestyle, polypharmacy, and microbiota) and for this, tremendous efforts have been made to clarify key-molecules from correlation to causality to clinical significance. Herein, we focus on the host–microbiome interplay and its direct and indirect impact on efficacy and toxicity of xenobiotics and we inevitably wonder about the role of viruses, as the least acknowledged ones. We present the emerging discipline of pharmacometabolomics-informed viromics, in which pre-dose metabotypes can assist modeling and prediction of interindividual response to/toxicity of xenobiotics. Such features, either alone or in combination with host genetics, can power biomarker discovery so long as the features are variable among patients, stable enough to be of predictive value, and better than pre-existing tools for predicting therapeutic efficacy/toxicity.
Collapse
Affiliation(s)
- Angeliki Balasopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras Patras, Greece
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of PatrasPatras, Greece; Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras Patras, Greece
| |
Collapse
|
21
|
Balasopoulou A, Stanković B, Panagiotara A, Nikčevic G, Peters BA, John A, Mendrinou E, Stratopoulos A, Legaki AI, Stathakopoulou V, Tsolia A, Govaris N, Govari S, Zagoriti Z, Poulas K, Kanariou M, Constantinidou N, Krini M, Spanou K, Radlovic N, Ali BR, Borg J, Drmanac R, Chrousos G, Pavlovic S, Roma E, Zukic B, Patrinos GP, Katsila T. Novel genetic risk variants for pediatric celiac disease. Hum Genomics 2016; 10:34. [PMID: 27836013 PMCID: PMC5105295 DOI: 10.1186/s40246-016-0091-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/16/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Celiac disease is a complex chronic immune-mediated disorder of the small intestine. Today, the pathobiology of the disease is unclear, perplexing differential diagnosis, patient stratification, and decision-making in the clinic. METHODS Herein, we adopted a next-generation sequencing approach in a celiac disease trio of Greek descent to identify all genomic variants with the potential of celiac disease predisposition. RESULTS Analysis revealed six genomic variants of prime interest: SLC9A4 c.1919G>A, KIAA1109 c.2933T>C and c.4268_4269delCCinsTA, HoxB6 c.668C>A, HoxD12 c.418G>A, and NCK2 c.745_746delAAinsG, from which NCK2 c.745_746delAAinsG is novel. Data validation in pediatric celiac disease patients of Greek (n = 109) and Serbian (n = 73) descent and their healthy counterparts (n = 111 and n = 32, respectively) indicated that HoxD12 c.418G>A is more prevalent in celiac disease patients in the Serbian population (P < 0.01), while NCK2 c.745_746delAAinsG is less prevalent in celiac disease patients rather than healthy individuals of Greek descent (P = 0.03). SLC9A4 c.1919G>A and KIAA1109 c.2933T>C and c.4268_4269delCCinsTA were more abundant in patients; nevertheless, they failed to show statistical significance. CONCLUSIONS The next-generation sequencing-based family genomics approach described herein may serve as a paradigm towards the identification of novel functional variants with the aim of understanding complex disease pathobiology.
Collapse
Affiliation(s)
- Angeliki Balasopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Biljana Stanković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Angeliki Panagiotara
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Gordana Nikčevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brock A. Peters
- Complete Genomics Inc., Mountain View, CA USA
- BGI Shenzhen, Shenzhen, 51803 China
| | - Anne John
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Effrosyni Mendrinou
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Apostolos Stratopoulos
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Aigli Ioanna Legaki
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Vasiliki Stathakopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Aristoniki Tsolia
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Nikolaos Govaris
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Sofia Govari
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Zoi Zagoriti
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Konstantinos Poulas
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Nikki Constantinidou
- Department of Immunology and Histocompatibility, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Maro Krini
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kleopatra Spanou
- Department of Immunology and Histocompatibility, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Nedeljko Radlovic
- Department of Gastroenterology and Nutrition, University Children’s Hospital, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Radoje Drmanac
- Complete Genomics Inc., Mountain View, CA USA
- BGI Shenzhen, Shenzhen, 51803 China
| | - George Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Eleftheria Roma
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - George P. Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04 Patras, Greece
| |
Collapse
|
22
|
Metabolomics: Bridging the Gap between Pharmaceutical Development and Population Health. Metabolites 2016; 6:metabo6030020. [PMID: 27399792 PMCID: PMC5041119 DOI: 10.3390/metabo6030020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022] Open
Abstract
Metabolomics has emerged as an essential tool for studying metabolic processes, stratification of patients, as well as illuminating the fundamental metabolic alterations in disease onset, progression, or response to therapeutic intervention. Metabolomics materialized within the pharmaceutical industry as a standalone assay in toxicology and disease pathology and eventually evolved towards aiding in drug discovery and pre-clinical studies via supporting pharmacokinetic and pharmacodynamic characterization of a drug or a candidate. Recent progress in the field is illustrated by coining of the new term—Pharmacometabolomics. Integration of data from metabolomics with large-scale omics along with clinical, molecular, environmental and behavioral analysis has demonstrated the enhanced utility of deconstructing the complexity of health, disease, and pharmaceutical intervention(s), which further highlight it as an essential component of systems medicine. This review presents the current state and trend of metabolomics applications in pharmaceutical development, and highlights the importance and potential of clinical metabolomics as an essential part of multi-omics protocols that are directed towards shaping precision medicine and population health.
Collapse
|