1
|
Bonhomme D, Cavaillon JM, Werts C. The dangerous liaisons in innate immunity involving recombinant proteins and endotoxins: Examples from the literature and the Leptospira field. J Biol Chem 2024; 300:105506. [PMID: 38029965 PMCID: PMC10777017 DOI: 10.1016/j.jbc.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | | | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France.
| |
Collapse
|
2
|
Abstract
Sepsis is accompanied by thrombocytopenia and the severity of the thrombocytopenia is associated with mortality. This thrombocytopenia is characteristic of disseminated intravascular coagulation (DIC), the sepsis-associated coagulopathy. Many of the pathogens, both bacterial and viral, that cause sepsis also directly activate platelets, which suggests that pathogen-induced platelet activation leads to systemic thrombosis and drives the multi-organ failure of DIC. In this paper we review the mechanisms of platelet activation by pathogens and the evidence for a role for anti-platelet agents in the management of sepsis.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
3
|
TcpC Inhibits M1 but Promotes M2 Macrophage Polarization via Regulation of the MAPK/NF-κB and Akt/STAT6 Pathways in Urinary Tract Infection. Cells 2022; 11:cells11172674. [PMID: 36078080 PMCID: PMC9454685 DOI: 10.3390/cells11172674] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract TcpC is a multifunctional virulence factor of Uropathogenic Escherichia coli (UPEC). Macrophages can differentiate into two different subsets M1 and M2 that play distinct roles in anti-infection immunity. Here, we investigate the influence of TcpC on M1/M2 polarization and the potential mechanisms. Our data showed that M1 markers CD86 and iNOS were significantly inhibited, while the M2 markers CD163, CD206 and Arg-1 were enhanced in macrophages in kidneys from the TcpC-secreting wild-type CFT073 (CFT073wt)-infected pyelonephritis mouse model, compared with those in macrophages in kidneys from TcpC knockout CFT073 mutant (CFT073Δtcpc)-infected mice. CFT073wt or recombinant TcpC (rTcpC) treatment inhibits LPS + IFN-γ-induced CD80, CD86, TNF-α and iNOS expression, but promotes IL-4-induced CD163, CD206, Arg-1 and IL-10 expression in both human and mouse macrophage cell lines THP-1 and J774A.1. Moreover, rTcpC significantly attenuated LPS + IFN-γ-induced phosphorylation of p38, ERK, p50 and p65 but enhanced IL-4-induced phosphorylation of Akt and STAT6. These data suggest that TcpC inhibits M1 but promotes M2 macrophage polarization by down-regulation of p38, ERK/NF-κB and up-regulation of the Akt/STAT6 signaling pathway, respectively. Our findings not only illuminate the regulatory effects of TcpC on macrophage M1/M2 polarization and its related signaling pathways, but also provide a novel mechanism underlying TcpC-mediated immune evasion of macrophage-mediated innate immunity. Simple Summary We investigate the influence of TcpC, a multifunctional virulence factor of Uropathogenic Escherichia coli (UPEC), on M1/M2 macrophage polarization and the potential mechanisms. TcpC-secreting wild-type CFT073 (CFT073wt) or recombinant TcpC (rTcpC) treatment inhibits LPS + IFN-γ-induced CD80, CD86, TNF-α and iNOS expression, but promotes IL-4-induced CD163, CD206, Arg-1 and IL-10 expression in CFT073wt-infected pyelonephritis model mouse and both human and mouse macrophage cell lines THP-1 and J774A.1, respectively. Moreover, rTcpC significantly attenuated LPS + IFN-γ-induced phosphorylation of p38, ERK, p50 and p65 but en-hanced IL-4-induced phosphorylation of Akt and STAT6. These data suggest that TcpC inhibits M1 but promotes M2 macrophage polarization by down-regulation of p38, ERK/NF-κB and up-regulation of the Akt/STAT6 signaling pathway, respectively. Our findings not only illuminate the regulatory effects of TcpC on macrophage M1/M2 polarization and its related signaling pathways, but also provide a novel mechanism underlying TcpC-mediated immune evasion of macrophage-mediated innate immunity.
Collapse
|
4
|
Li Y, Xin G, Li S, Dong Y, Zhu Y, Yu X, Wan C, Li F, Wei Z, Wang Y, Zhang K, Chen Q, Niu H, Huang W. PD-L1 Regulates Platelet Activation and Thrombosis via Caspase-3/GSDME Pathway. Front Pharmacol 2022; 13:921414. [PMID: 35784685 PMCID: PMC9240427 DOI: 10.3389/fphar.2022.921414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets play a central role in hemostasis and thrombosis, regulating the occurrence and development of thrombotic diseases, including ischemic stroke. Programmed death ligand 1 (PD-L1) has recently been detected in platelet, while the function of PD-L1 in platelets remain elusive. Our data reveal a novel mechanism for the role of PD-L1 on platelet activation and arterial thrombosis. PD-L1 knockout does not affect platelet morphology, count, and mean volume under homeostasis and without risk of bleeding, which inhibits platelet activation by suppressing outside-in-activation of integrin by downregulating the Caspase-3/GSDME pathway. Platelet adoptive transfer experiments demonstrate that PD-L1 knockout inhibits thrombosis. And the absence of PD-L1 improves ischemic stroke severity and increases mice survival. Immunohistochemical staining of the internal structure of the thrombus proves that PD-L1 enhances the seriousness of the thrombus by inhibiting platelet activation. This work reveals a regulatory role of PD-L1 on platelet activation and thrombosis while providing novel platelet intervention strategies to prevent thrombosis.
Collapse
|
5
|
Philip N, Priya SP, Jumah Badawi AH, Mohd Izhar MH, Mohtarrudin N, Tengku Ibrahim TA, Sekawi Z, Neela VK. Pulmonary haemorrhage as the earliest sign of severe leptospirosis in hamster model challenged with Leptospira interrogans strain HP358. PLoS Negl Trop Dis 2022; 16:e0010409. [PMID: 35584087 PMCID: PMC9116642 DOI: 10.1371/journal.pntd.0010409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Severe leptospirosis is challenging as it could evolve rapidly and potentially fatal if appropriate management is not performed. An understanding of the progression and pathophysiology of Leptospira infection is important to determine the early changes that could be potentially used to predict the severe occurrence of leptospirosis. This study aimed to understand the kinetics pathogenesis of Leptospira interrogans strain HP358 in the hamster model and identify the early parameters that could be used as biomarkers to predict severe leptospirosis. Methodology/Principal findings Male Syrian hamsters were infected with Leptospira interrogans strain HP358 and euthanized after 24 hours, 3, 4, 5, 6 and 7 days post-infection. Blood, lungs, liver and kidneys were collected for leptospiral detection, haematology, serum biochemistry and differential expression of pro- and anti-inflammatory markers. Macroscopic and microscopic organ damages were investigated. Leptospira interrogans strain HP358 was highly pathogenic and killed hamsters within 6–7 days post-infection. Pulmonary haemorrhage and blood vessel congestion in organs were noticed as the earliest pathological changes. The damages in organs and changes in biochemistry value were preceded by changes in haematology and immune gene expression. Conclusion/Significance This study deciphered haemorrhage as the earliest manifestation of severe leptospirosis and high levels of IL-1β, CXCL10/IP-10, CCL3/MIP-α, neutrophils and low levels of lymphocytes and platelets serve as a cumulative panel of biomarkers in severe leptospirosis. As the severe form of leptospirosis could progress rapidly and be potentially fatal if not treated earlier, deciphering the pathophysiology kinetics of infection is crucial to determine the parameters of disease severity. To understand this, we challenged hamsters with the highly virulent Leptospira interrogans strain HP358. Pulmonary haemorrhage was observed as the earliest pathological change followed by liver and kidneys damages. The increased expression of IL-1β, CXCL10/IP-10, CCL3/MIP-α, high neutrophils and low lymphocytes and platelets production observed in the present study indicate that these parameters could serve as a cumulative panel of biomarkers in severe leptospirosis.
Collapse
Affiliation(s)
- Noraini Philip
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sivan Padma Priya
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- RAK College of Dental Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ahmad Hussein Jumah Badawi
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hafidz Mohd Izhar
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tengku Azmi Tengku Ibrahim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
6
|
Lu J, Hu J, Yu S, Li L. Next Generation Sequencing for Diagnosis of Leptospirosis Combined With Multiple Organ Failure: A Case Report and Literature Review. Front Med (Lausanne) 2022; 8:756592. [PMID: 35145972 PMCID: PMC8821090 DOI: 10.3389/fmed.2021.756592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Leptospirosis poses a major threat to human life. The disease spectrum ranges from a nearly undetectable presentation to severe multi-organ dysfunction and death. Leptospirosis is difficult to diagnose by traditional antibody and culture tests. We here present a case of multiple organ failure associated with leptospirosis. Material and Methods A 64-year-old woman presented with fatigue and arthralgia, which developed rapidly into multiple organ injuries, and she eventually died of cerebral hemorrhage. Serum antibody test and cultures of blood, sputum, urine, and feces samples were all negative. The patient was diagnosed with leptospirosis by the next-generation sequencing (NGS). Conclusion We conclude that leptospirosis is a neglected zoonosis caused by pathogenic Leptospira species. New techniques such as NGS are highlighted for early diagnosis. Surveillance for pathogens during diagnosis can provide guidance for clinical treatment and improves prognosis.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Intensive Care Unit, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shanshan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lanjuan Li
| |
Collapse
|
7
|
Chen M, Lu W, Wu S, Wang S, Lu T, Peng C. Metagenomic next-generation sequencing in the diagnosis of leptospirosis presenting as severe diffuse alveolar hemorrhage: a case report and literature review. BMC Infect Dis 2021; 21:1230. [PMID: 34876042 PMCID: PMC8650322 DOI: 10.1186/s12879-021-06923-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leptospirosis is a common infectious disease in tropical and semitropical regions, and it is typically neglected. Leptospirosis-associated acute diffuse alveolar hemorrhage is one of its fatal complications. The use of bronchoalveolar lavage fluid (BALF) metagenomic next-generation sequencing in the diagnosis of Leptospira interrogans infection has rarely been reported. CASE PRESENTATION We present the case of a 62-year-old female who was transferred to our hospital with dyspnea, and severe hemoptysis and was supported by a tracheal intubation ventilator. Bronchoalveolar lavage fluid (BALF) metagenomic next-generation sequencing (mNGS) reported Leptospira interrogans. A diagnosis of diffuse alveolar hemorrhage caused by leptospirosis was made. After immediately receiving antibiotics and hormone therapy, the patient achieved a complete recovery upon discharge. CONCLUSION Leptospirosis presenting as severe diffuse alveolar hemorrhage is rare but should be considered in the differential diagnosis. mNGS can help identify pathogens and treat them early, which can improve prognosis.
Collapse
Affiliation(s)
- Meiqin Chen
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Weili Lu
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Shugen Wu
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Shun Wang
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Tao Lu
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Chunxian Peng
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
8
|
Daroz BB, Fernandes LGV, Cavenague MF, Kochi LT, Passalia FJ, Takahashi MB, Nascimento Filho EG, Teixeira AF, Nascimento ALTO. A Review on Host- Leptospira Interactions: What We Know and Future Expectations. Front Cell Infect Microbiol 2021; 11:777709. [PMID: 34900757 PMCID: PMC8657130 DOI: 10.3389/fcimb.2021.777709] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is considered a neglected infectious disease of human and veterinary concern. Our group has been investigating proteins annotated as hypothetical, predicted to be located on the leptospiral surface. Because of their location, these proteins may have the ability to interact with various host components, which could allow establishment of the infection. These proteins act as adherence factors by binding to host receptor molecules, such as the extracellular matrix (ECM) components laminin and glycosaminoglycans to help bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which has been demonstrated to be a powerful tool for invasion mechanisms. The interaction with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally, the degradation of coagulation cascade components by secreted proteases or by acquired surface plasmin could also play a role in reducing clot formation, hence facilitating dissemination during infection. Interaction with host complement system regulators also plays a role in helping bacteria to evade the immune system, facilitating invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to investigate molecules that participate in virulence. To achieve a better understanding of the host-pathogen interaction, leptospiral mutagenesis tools have been developed and explored. This work presents several proteins that mediate binding to components of the ECM, plasma, components of the complement system and cells, to gather research achievements that can be helpful in better understanding the mechanisms of leptospiral-host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein function validation.
Collapse
Affiliation(s)
- Brenda B. Daroz
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Luis G. V. Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Maria F. Cavenague
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Leandro T. Kochi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Felipe J. Passalia
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Maria B. Takahashi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Edson G. Nascimento Filho
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Aline F. Teixeira
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Philip N, Jani J, Azhari NN, Sekawi Z, Neela VK. In vivo and in silico Virulence Analysis of Leptospira Species Isolated From Environments and Rodents in Leptospirosis Outbreak Areas in Malaysia. Front Microbiol 2021; 12:753328. [PMID: 34803975 PMCID: PMC8602918 DOI: 10.3389/fmicb.2021.753328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira. With the advancement of studies in leptospirosis, several new species are being reported. It has always been a query, whether Leptospira species, serovars, and strains isolated from different geographical locations contribute to the difference in the disease presentations and severity. In an epidemiological surveillance study performed in Malaysia, we isolated seven novel intermediate and saprophytic species (Leptospira semungkisensis, Leptospira fletcheri, Leptospira langatensis, Leptospira selangorensis, Leptospira jelokensis, Leptospira perdikensis, Leptospira congkakensis) from environments and three pathogenic species from rodents (Leptospira borgpetersenii strain HP364, Leptospira weilii strain SC295, Leptospira interrogans strain HP358) trapped in human leptospirosis outbreak premises. To evaluate the pathogenic potential of these isolates, we performed an in vivo and in silico virulence analysis. Environmental isolates and strain HP364 did not induce any clinical manifestations in hamsters. Strain SC295 caused inactivity and weight loss with histopathological changes in kidneys, however, all hamsters survived until the end of the experiment. Strain HP358 showed a high virulent phenotype as all infected hamsters died or were moribund within 7 days postinfection. Lungs, liver, and kidneys showed pathological changes with hemorrhage as the main presentation. In silico analysis elucidated the genome size of strain HP358 to be larger than strains HP364 and SC295 and containing virulence genes reported in Leptospira species and a high number of specific putative virulence factors. In conclusion, L. interrogans strain HP358 was highly pathogenic with fatal outcome. The constituent of Leptospira genomes may determine the level of disease severity and that needs further investigations.
Collapse
Affiliation(s)
- Noraini Philip
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jaeyres Jani
- Borneo Medical and Health Research Center, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Nurul Natasya Azhari
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
10
|
TcpC inhibits toll-like receptor signaling pathway by serving as an E3 ubiquitin ligase that promotes degradation of myeloid differentiation factor 88. PLoS Pathog 2021; 17:e1009481. [PMID: 33788895 PMCID: PMC8041205 DOI: 10.1371/journal.ppat.1009481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/12/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
TcpC is a virulence factor of uropathogenic E. coli (UPEC). It was found that TIR domain of TcpC impedes TLR signaling by direct association with MyD88. It has been a long-standing question whether bacterial pathogens have evolved a mechanism to manipulate MyD88 degradation by ubiquitin-proteasome pathway. Here, we show that TcpC is a MyD88-targeted E3 ubiquitin ligase. Kidney macrophages from mice with pyelonephritis induced by TcpC-secreting UPEC showed significantly decreased MyD88 protein levels. Recombinant TcpC (rTcpC) dose-dependently inhibited protein but not mRNA levels of MyD88 in macrophages. Moreover, rTcpC significantly promoted MyD88 ubiquitination and accumulation in proteasomes in macrophages. Cys12 and Trp106 in TcpC are crucial amino acids in maintaining its E3 activity. Therefore, TcpC blocks TLR signaling pathway by degradation of MyD88 through ubiquitin-proteasome system. Our findings provide not only a novel biochemical mechanism underlying TcpC-medicated immune evasion, but also the first example that bacterial pathogens inhibit MyD88-mediated signaling pathway by virulence factors that function as E3 ubiquitin ligase. Toll/interleukin-1 receptor domain-containing protein encoded by E. coli (TcpC) is an important virulence factor in many strains of uropathogenic E. coli (UPEC). TcpC-mediated evasion of innate immunity plays an important role in the pathogenesis of UPEC caused urinary tract infection (UTI) including pyelonephritis. In the present study, we show TcpC is an E3 ubiquitin ligase that promotes ubiquitination and degradation of MyD88, hereby blocking the TLR signaling pathway. Our findings not only illuminate the novel biochemical mechanisms underlying TcpC-mediated evasion of innate immunity, but also provide the first example that bacterial pathogens can subvert TLR signaling pathway through virulence factors that function as MyD88-targeted E3 ubiquitin ligase.
Collapse
|
11
|
Ge YM, Sun AH, Ojcius DM, Li SJ, Hu WL, Lin X, Yan J. M16-Type Metallopeptidases Are Involved in Virulence for Invasiveness and Diffusion of Leptospira interrogans and Transmission of Leptospirosis. J Infect Dis 2021; 222:1008-1020. [PMID: 32274497 DOI: 10.1093/infdis/jiaa176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leptospirosis is a global zoonotic infectious disease caused by Leptospira interrogans. The pathogen rapidly invades into hosts and diffuses from bloodstream into internal organs and excretes from urine to cause transmission of leptospirosis. However, the mechanism of leptospiral invasiveness remains poorly understood. METHODS Proteolytic activity of M16-type metallopeptidases (Lep-MP1/2/3) of L. interrogans was determined by spectrophotometry. Expression and secretion of Lep-MP1/2/3 during infection of cells were detected by quantitative reverse-transcription polymerase chain reaction, Western blot assay, and confocal microscopy. Deletion and complementation mutants of the genes encoding Lep-MP1/2/3 were generated to determine the roles of Lep-MP1/2/3 in invasiveness using transwell assay and virulence in hamsters. RESULTS Leptospira interrogans but not saprophytic Leptospira biflexa strains were detectable for Lep-MP-1/2/3-encoding genes. rLep-MP1/2/3 hydrolyzed extracellular matrix proteins, but rLep-MP1/3 displayed stronger proteolysis than rLep-MP2, with 123.179/340.136 μmol/L Km and 0.154/0.159 s-1 Kcat values. Expression, secretion and translocation of Lep-MP1/2/3 during infection of cells were increased. ΔMP1/3 but not ΔMP2 mutant presented attenuated transmigration through cell monolayers, decreased leptospiral loading in the blood, lungs, liver, kidneys, and urine, and 10/13-fold decreased 50% lethal dose and milder histopathologic injury in hamsters. CONCLUSIONS Lep-MP1 and 3 are involved in virulence of L. interrogans in invasion into hosts and diffusion in vivo, and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yu-Mei Ge
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - David M Ojcius
- Department of Biomedical Sciences, School of Dentistry, University of the Pacific, San Francisco, California, USA.,Université de Paris, Paris, France
| | - Shi-Jun Li
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, People's Republic of China
| | - Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
12
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
13
|
Vieira ML, Nascimento ALTO. Virulent Leptospira interrogans Induce Cytotoxic Effects in Human Platelets in vitro Through Direct Interactions. Front Microbiol 2020; 11:572972. [PMID: 33117318 PMCID: PMC7552899 DOI: 10.3389/fmicb.2020.572972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Leptospirosis is a prevalent zoonotic disease, caused by bacteria of the genus Leptospira. Leptospirosis frequently leads to hemostatic disturbances, and the severe cases are marked by hemorrhages and low platelet number in circulation, which is associated with the patients’ poor outcomes. Nevertheless, Leptospira-platelet interactions remain poorly explored. In this study, we performed a series of in vitro experiments evaluating whether leptospires induce human platelet aggregation, activation, and morphological changes. Platelets were incubated with virulent L. interrogans and the platelet outcomes were assessed by aggregometry, flow cytometry, and scanning and transmission electron microscopy. Our results show that leptospires alone do not induce platelet aggregation and activation, and induce platelet cytotoxic effects instead, by clearly inducing platelet disruption and detachment. We show for the first time that virulent leptospires do interact directly with platelets, an event that could trigger pathophysiological effects during the infection. This study might serve as a basis for the development of novel treatments for the disease.
Collapse
Affiliation(s)
- Monica Larucci Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratório de Desenvolvimento de Vacinas, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
14
|
Zhao X, Duan X, Dai Y, Zhen J, Guo J, Zhang K, Wang X, Kuang Z, Wang H, Niu J, Fan L, Xie J. Mycobacterium Von Willebrand factor protein MSMEG_3641 is involved in biofilm formation and intracellular survival. Future Microbiol 2020; 15:1033-1044. [PMID: 32811177 DOI: 10.2217/fmb-2020-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Mycobacterium tuberculosis in vitro biofilm is associated with the virulence and persistence capability. Our aim is to delineate factors involved in biofilms development. Materials & methods: We performed transposon mutants screen and found that mutation of MSMEG_3641, a homolog of M. tuberculosis Rv1836c, can change M. smegmatis colony morphology and biofilm. Results: MSMEG_3641 contains a vWA domain that is highly conserved among Mycobacteria. The phenotypes of MSMEG_3641 mutants include disrupted biofilm, weakened migration ability and changed colony morphology. All phenotypes might be contributed to the enhanced cell wall permeability and declined cell aggregation ability. Conclusion: To our knowledge, this is the first report concerning the mycobacteria Von Willebrand factor domain function, especially in colony morphology and biofilm development.
Collapse
Affiliation(s)
- Xiaokang Zhao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yongdong Dai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaohan Guo
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ke Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hao Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jingjing Niu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lin Fan
- Shanghai Clinic & Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai 200433, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Vieira ML, Herwald H, Nascimento ALTO. The interplay between host haemostatic systems and Leptospira spp. infections. Crit Rev Microbiol 2020; 46:121-135. [PMID: 32141788 DOI: 10.1080/1040841x.2020.1735299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
16
|
Sun AH, Liu XX, Yan J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomed J 2020; 43:24-31. [PMID: 32200953 PMCID: PMC7090314 DOI: 10.1016/j.bj.2019.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Leptospira species are the causative agents of leptospirosis, a world-spreading zoonotic infectious disease. The pathogens possess a powerful invasiveness by invading human body through mucosal/skin barriers, rapid entry into bloodstream to cause septicemia, diffusion from bloodstream into internal organs and tissues to cause aggravation of disease, and discharge from urine through renal tubules to form natural infectious sources. Leptospirosis patients present severe inflammatory symptoms such as high fever, myalgia and lymphadenectasis. Hemorrhage and jaundice are the pathological features of this disease. Previous studies revealed that some outer membrane proteins of Leptospira interrogans, the most important pathogenic Leptospira species, acted as adherence factors to binding to receptor molecules (fibronectin, laminin and collagens) in extracellular matrix of host cells. Collagenase, metallopeptidases and endoflagellum contributed to the invasiveness of L. interrogans. Except for lipopolysaccharide, multiple hemolysins of L. interrogans displayed a powerful ability to induce pro-inflammatory cytokines and hepatocyte apoptosis. vWA and platelet activating factor acetylhydrolase-like proteins from L. interrogans could induce severe pulmonary hemorrhage in mice. L. interrogans utilized cellular endocytic recycling and vesicular transport systems for intracellular migration and transcellular transport. All the research achievements are helpful for further understanding the virulence of pathogenic Leptospira species and pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Xiao-Xiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
17
|
Passalia FJ, Heinemann MB, de Andrade SA, Nascimento ALTO, Vieira ML. Leptospira interrogans Bat proteins impair host hemostasis by fibrinogen cleavage and platelet aggregation inhibition. Med Microbiol Immunol 2020; 209:201-213. [PMID: 32078713 DOI: 10.1007/s00430-020-00664-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023]
Abstract
Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.
Collapse
Affiliation(s)
- Felipe José Passalia
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Lab. de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Lucia T O Nascimento
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mônica Larucci Vieira
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Alvarez-Torres E, Acaba LA, Berrocal MH. Sub-internal limiting membrane hemorrhage associated with Weil's disease. Am J Ophthalmol Case Rep 2019; 16:100546. [PMID: 31517138 PMCID: PMC6732731 DOI: 10.1016/j.ajoc.2019.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/05/2022] Open
Abstract
Purpose Leptospirosis is a rare, typically tropical disease associated with water sources infected with rat urine. Symptoms can range from asymptomatic to a severe, deadly form known as Weil's disease, and ocular manifestations can arise. As global temperatures continue to rise, leptospirosis will become a larger problem worldwide. Here we describe the first case to our knowledge of foveal sub-internal limiting membrane (sub-ILM) hemorrhage due to Weil's disease. Observations A 56-year-old female presented with floaters and decreased vision to 20/200 in the right eye after being hospitalized for Weil's disease. Funduscopic examination and optical coherence tomography (OCT) demonstrated a foveal sub-ILM hemorrhage in the right eye. The patient was treated with pars-plana vitrectomy with internal limiting membrane removal and blood aspiration, and her best corrected visual acuity improved to 20/60. Conclusions and Importance Here we report the first case of sub-ILM hemorrhage following Weil's disease. Patients with leptospirosis and Weil's disease can develop retinal complications and therefore should be followed with fundoscopic eye examination after resolution of systemic symptoms. For those with retinal hemorrhages, OCT evaluation should be used to differentiate sub-hyaloid and sub-ILM hemorrhages.
Collapse
|