1
|
Rostoker G, Dekeyser M, Francisco S, Loridon C, Griuncelli M, Languille-Llitjos E, Boulahia G, Cohen Y. Relationship between bone marrow iron load and liver iron concentration in dialysis-associated haemosiderosis. EBioMedicine 2024; 99:104929. [PMID: 38128412 PMCID: PMC10776950 DOI: 10.1016/j.ebiom.2023.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Iron overload due to the excessive use of parenteral iron in haemodialysis is now an increasingly recognised clinical issue. Before erythropoiesis-stimulating agents (ESA) were introduced, a specific feature of patients treated by dialysis and having iron overload was that iron levels in the bone marrow were paradoxically low in most of them, despite severe hepatosplenic siderosis. Whether or not this paradox persists in the actual ESA era was unknown until recently, when an autopsy study in 21 patients treated by haemodialysis revealed similarities between liver and bone marrow iron content. The aim of this study was to further explore these recent findings in a cohort of alive patients on dialysis and to analyse the determinants of iron bone marrow. METHODS Liver iron concentration (LIC) and vertebral T2∗ (a surrogate marker of bone marrow iron) were analysed retrospectively in 152 alive patients on dialysis (38.8% female) of whom 47.4% had iron overload by quantitative magnetic resonance imaging (MRI). FINDINGS Vertebral T2∗ differed significantly between patients classified according to liver iron content at MRI: those with mild or moderate and severe liver iron overload had increased vertebral iron content at R2∗ relaxometry MRI (mild: vertebral T2∗ = 9.9 ms (4-24.8); moderate and severe: vertebral T2∗ = 8.5 ms (4.9-22.8)) when compared to patients with normal LIC (vertebral T2∗ = 13.2 ms (6.6-30.5) (p < 0.0001 Kruskal-Wallis test)). INTERPRETATION The paradoxical discrepancy between bone marrow and liver iron-storage compartments observed in the pre-ESA era has disappeared today, as shown by a recent autopsy study and the present study in a cohort of alive patients treated by dialysis. FUNDING None.
Collapse
Affiliation(s)
- Guy Rostoker
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart 91480, France; Collège de Médecine des Hôpitaux de Paris, 10 Rue des Fossés Saint-Marcel, Paris 75005, France.
| | - Manon Dekeyser
- Department of Nephrology, Regional University Centre, Orléans and INSERM 1186, Gustave Roussy Institute, Paris-Saclay University, Villejuif, Paris, France
| | - Sergio Francisco
- Division of Radiology, Ramsay Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart 91480, France
| | - Christelle Loridon
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart 91480, France
| | - Mireille Griuncelli
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart 91480, France
| | - Eva Languille-Llitjos
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart 91480, France
| | - Ghada Boulahia
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart 91480, France
| | - Yves Cohen
- Division of Radiology, Ramsay Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart 91480, France
| |
Collapse
|
2
|
Majoni SW, Nelson J, Germaine D, Hoppo L, Long S, Divakaran S, Turner B, Graham J, Cherian S, Pawar B, Rathnayake G, Heron B, Maple-Brown L, Batey R, Morris P, Davies J, Fernandes DK, Sundaram M, Abeyaratne A, Wong YHS, Lawton PD, Taylor S, Barzi F, Cass A. INFERR-Iron infusion in haemodialysis study: INtravenous iron polymaltose for First Nations Australian patients with high FERRitin levels on haemodialysis-a protocol for a prospective open-label blinded endpoint randomised controlled trial. Trials 2021; 22:868. [PMID: 34857020 PMCID: PMC8641231 DOI: 10.1186/s13063-021-05854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effectiveness of erythropoiesis-stimulating agents, which are the main stay of managing anaemia of chronic kidney disease (CKD), is largely dependent on adequate body iron stores. The iron stores are determined by the levels of serum ferritin concentration and transferrin saturation. These two surrogate markers of iron stores are used to guide iron replacement therapy. Most Aboriginal and/or Torres Islander Australians of the Northern Territory (herein respectfully referred to as First Nations Australians) with end-stage kidney disease have ferritin levels higher than current guideline recommendations for iron therapy. There is no clear evidence to guide safe and effective treatment with iron in these patients. We aim to assess the impact of intravenous iron treatment on all-cause death and hospitalisation with a principal diagnosis of all-cause infection in First Nations patients on haemodialysis with anaemia, high ferritin levels and low transferrin saturation METHODS: In a prospective open-label blinded endpoint randomised controlled trial, a total of 576 participants on maintenance haemodialysis with high ferritin (> 700 μg/L and ≤ 2000 μg/L) and low transferrin saturation (< 40%) from all the 7 renal units across the Northern Territory of Australia will be randomised 1:1 to receive intravenous iron polymaltose 400 mg once monthly (200 mg during 2 consecutive haemodialysis sessions) (Arm A) or no IV iron treatment (standard treatment) (Arm B). Rescue therapy will be administered when the ferritin levels fall below 700 μg/L or when clinically indicated. The primary outcome will be the differences between the two study arms in the risk of hospitalisation with all-cause infection or death. An economic analysis and several secondary and tertiary outcomes analyses will also be performed. DISCUSSION The INFERR clinical trial will address significant uncertainty on the safety and efficacy of iron therapy in First Nations Australians with CKD with hyperferritinaemia and evidence of iron deficiency. This will hopefully lead to the development of evidence-based guidelines. It will also provide the opportunity to explore the causes of hyperferritinaemia in First Nations Australians from the Northern Territory. TRIAL REGISTRATION This trial is registered with The Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12620000705987 . Registered 29 June 2020.
Collapse
Affiliation(s)
- Sandawana William Majoni
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia.
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia.
| | - Jane Nelson
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Darren Germaine
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Libby Hoppo
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Stephanie Long
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Shilpa Divakaran
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Brandon Turner
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jessica Graham
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sajiv Cherian
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Basant Pawar
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Geetha Rathnayake
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Chemical Pathology-Territory Pathology, Department of Health, Northern Territory Government, Darwin, Northern Territory, Australia
| | - Bianca Heron
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Louise Maple-Brown
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Endocrinology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Robert Batey
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
- New South Wales Health, St Leonards, NSW, Australia
| | - Peter Morris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Pediatrics, Division of Women, Children and Youth, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Jane Davies
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - David Kiran Fernandes
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Madhivanan Sundaram
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Asanga Abeyaratne
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
| | - Yun Hui Sheryl Wong
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Paul D Lawton
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- The Central Clinical School, Monash University & Alfred Health, Melbourne, Australia
| | - Sean Taylor
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Federica Barzi
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- UQ Poche Centre for Indigenous Health, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Alan Cass
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
3
|
Murea M, Deira J, Kalantar-Zadeh K, Casino FG, Basile C. The spectrum of kidney dysfunction requiring chronic dialysis therapy: Implications for clinical practice and future clinical trials. Semin Dial 2021; 35:107-116. [PMID: 34643003 DOI: 10.1111/sdi.13027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Staging to capture kidney function and pathophysiologic processes according to severity is widely used in chronic kidney disease or acute kidney injury not requiring dialysis. Yet the diagnosis of "end-stage kidney disease" (ESKD) considers patients as a single homogeneous group, with negligible kidney function, in need of kidney replacement therapy. Herein, we review the evidence behind the heterogeneous nature of ESKD and discuss potential benefits of recasting the terminology used to describe advanced kidney dysfunction from a monolithic entity to a disease with stages of ascending severity. We consider kidney assistance therapy in lieu of kidney replacement therapy to better reconcile all available types of therapy for advanced kidney failure including dietary intervention, kidney transplantation, and dialysis therapy at varied schedules. The lexicon "kidney dysfunction requiring dialysis" (KDRD) with stages of ascending severity based on levels of residual kidney function (RKF)-that is, renal urea clearance-and manifestations related to uremia, fluid status, and other abnormalities is discussed. Subtyping KDRD by levels of RKF could advance dialysis therapy as a form of kidney assistance therapy adjusted based on RKF and clinical symptoms. We focus on intermittent hemodialysis and underscore the need to personalize dialysis treatments and improve characterization of patients included in clinical trials.
Collapse
Affiliation(s)
- Mariana Murea
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine, Orange, California, USA
| | - Francesco G Casino
- Clinical Research Branch, Division of Nephrology, Miulli General Hospital, Acquaviva delle Fonti, Italy.,Dialysis Centre SM2, Policoro, Italy
| | - Carlo Basile
- Clinical Research Branch, Division of Nephrology, Miulli General Hospital, Acquaviva delle Fonti, Italy
| |
Collapse
|
4
|
Savković M, Simić-Ogrizović S, Dopsaj V. Assessment of positive iron balance in end-stage renal disease: Could hepcidin-25 be useful? Int J Lab Hematol 2021; 43:1159-1167. [PMID: 33835732 DOI: 10.1111/ijlh.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The aim of our study was to examine the relationship of hepcidin-25 with red blood cell and reticulocyte indices and to evaluate the diagnostic properties of hepcidin-25 in the assessment of positive iron balance in end-stage renal disease (ESRD) patients. METHODS Eighty anemic ESRD patients (hemoglobin < 110 g/L) were classified as having iron deficiency (ID, N = 20), iron sufficiency (IS, N = 29), and positive iron balance (PB, N = 31) using the conventional biomarkers for iron status evaluation. Hepcidin-25 was determined by a chemiluminescent direct ELISA. RESULTS Hepcidin-25 was significantly negatively correlated with the proportion of hypochromic erythrocytes (%HYPO) (P = .034) and immature reticulocyte fraction (P = .010) in ID and with the absolute reticulocyte concentration in ID (P = .048) and PB (P = .040). In multivariate models, hepcidin-25 was independently negatively associated with the mean reticulocyte hemoglobin content (CHr; β = -0.493, P = .004) and red blood cell size factor (RSf) (β = -0.334, P = .036) only in the PB group. The best hepcidin-25 value to exclude PB was 66.13 µg/L, showing a sensitivity of 61.3%, a specificity of 75.5%, and an AUC of 0.808. CONCLUSION Our results suggest that hepcidin-25 levels are independently negatively associated with the iron demand for the most recent erythropoiesis only in PB. Hepcidin-25 performed acceptable in discriminating anemic ESRD patients with positive iron balance and may prove to be a useful additional tool in the evaluation of iron status.
Collapse
Affiliation(s)
- Miljan Savković
- Center for Medical Biochemistry, Clinical Center of Serbia, Belgrade, Serbia
| | - Sanja Simić-Ogrizović
- General Hospital Medigroup, Belgrade, Serbia.,Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Violeta Dopsaj
- Center for Medical Biochemistry, Clinical Center of Serbia, Belgrade, Serbia.,Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
5
|
Majoni SW, Lawton PD, Rathnayake G, Barzi F, Hughes JT, Cass A. Narrative Review of Hyperferritinemia, Iron Deficiency, and the Challenges of Managing Anemia in Aboriginal and Torres Strait Islander Australians With CKD. Kidney Int Rep 2021; 6:501-512. [PMID: 33615076 PMCID: PMC7879094 DOI: 10.1016/j.ekir.2020.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Aboriginal and Torres Strait Islander Australians (Indigenous Australians) suffer some of the highest rates of chronic kidney disease (CKD) in the world. Among Indigenous Australians in remote areas of the Northern Territory, prevalence rates for renal replacement therapy (RRT) are up to 30 times higher than national prevalence. Anemia among patients with CKD is a common complication. Iron deficiency is one of the major causes. Iron deficiency is also one of the key causes of poor response to the mainstay of anemia therapy with erythropoiesis-stimulating agents (ESAs). Therefore, the effective management of anemia in people with CKD is largely dependent on effective identification and correction of iron deficiency. The current identification of iron deficiency in routine clinical practice is dependent on 2 surrogate markers of iron status: serum ferritin concentration and transferrin saturation (TSAT). However, questions exist regarding the use of serum ferritin concentration in people with CKD because it is an acute-phase reactant that can be raised in the context of acute and chronic inflammation. Serum ferritin concentration among Indigenous Australians receiving RRT is often markedly elevated and falls outside reference ranges within most national and international guidelines for iron therapy for people with CKD. This review explores published data on the challenges of managing anemia in Indigenous people with CKD and the need for future research on the efficacy and safety of treatment of anemia of CKD in patients with high ferritin and evidence iron deficiency.
Collapse
Affiliation(s)
- Sandawana William Majoni
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Paul D. Lawton
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Geetha Rathnayake
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Chemical Pathology–Territory Pathology, Department of Health, Northern Territory Government, Northern Territory, Australia
| | - Federica Barzi
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Jaquelyne T. Hughes
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Alan Cass
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| |
Collapse
|
8
|
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and premature mortality and represents a significant global public health issue. Underlying this burden are the many complications of CKD, including mineral and bone disorders, anemia, and accelerated cardiovascular disease. Hyperphosphatemia and elevated levels of fibroblast growth factor 23 (FGF23) have been identified as key independent risk factors for the adverse cardiovascular outcomes that frequently occur in patients with CKD. Auryxia® (ferric citrate; Keryx Biopharmaceuticals, Inc., Boston, MA, USA) is an iron-based compound with distinctive chemical characteristics and a mechanism of action that render it dually effective as a therapy in patients with CKD; it has been approved as a phosphate binder for the control of serum phosphate levels in adult CKD patients treated with dialysis and as an iron replacement product for the treatment of iron deficiency anemia in adult CKD patients not treated with dialysis. This review focuses on Auryxia, its mechanism of action, and the clinical attributes that differentiate it from other, non-pharmaceutical-grade, commercially available forms of ferric citrate and from other commonly used phosphate binder and iron supplement therapies for patients with CKD. Consistent with the chemistry and mechanism of action of Auryxia, multiple clinical studies have demonstrated its efficacy in both lowering serum phosphate levels and improving iron parameters in patients with CKD. Levels of FGF23 decrease significantly with Auryxia treatment, but the effects associated with the cardiovascular system remain to be evaluated in longer-term studies.
Collapse
Affiliation(s)
- Tomas Ganz
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- CHS 47-200J, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
- CHS 47-200J, Department of Pathology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
| | - Avi Bino
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isidro B Salusky
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|