1
|
Zhou J, Liu S, Zhang J, Zeng Q, Lin Z, Fu R, Lin Y, Hu Z. Discovery and validation of Hsa-microRNA-3665 promoter methylation as a potential biomarker for the prognosis of esophageal squaous cell carcinoma. Int J Clin Oncol 2025; 30:309-319. [PMID: 39630213 PMCID: PMC11785691 DOI: 10.1007/s10147-024-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/03/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Methylation of microRNA (miRNA) promoters associated with diseases is a common epigenetic mechanism in the development of various human cancers. However, its relationship with prognosis in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aims to explore the association between the methylation level of has-miR-3665 promoter and prognosis in ESCC. METHODS Human miRNA data were downloaded from miRbase, and we identified CpG islands of these human miRNAs by genomics browser analysis. MiRNA methylation levels were detected by methylation-specific high-resolution melting. Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of hsa-miR-3665. Cox regression analysis was used to investigate prognostic factors. The overall survival rate was predicted by a nomogram. RESULTS We found that 88 human miRNAs had promoter methylatio, of which 15 miRNAs were found to be epigenetically regulated in ESCC cells compared with their normal counterparts, including hsa-miR-3665. Meanwhile, hsa-miR-3665 expression was significantly lower in ESCC tumour tissue than in adjacent tissue (P = 0.03). GO and KEGG analyses demonstrated that the target genes are involved in protein transport, transcription regulator activity, MAPK and RAS signaling pathway. High hsa-miR-3665 promoter methylation levels were associated with a poor prognosis (HR = 3.89, 95% CI 1.11 ~ 13.55). Moreover, a nomogram incorporating the hsa-miR-3665 methylation level and clinical factors presented a good performance for predicting survival in the training and validation tests, with C-indices of 0.748 and 0.751, respectively. CONCLUSIONS High hsa-miR-3665 promoter methylation levels may be a potential biomarker for the progression of ESCC.
Collapse
Affiliation(s)
- Jinsong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Shuang Liu
- Sun Yat-Sen University Cancer Center/Cancer Hospital, Guangzhou, 510060, China
| | - Juwei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Qiaoyan Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Rong Fu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Yulan Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Hu J, Zhang J, Han B, Qu Y, Zhang Q, Yu Z, Zhang L, Han J, Liu H, Gao L, Feng T, Dou B, Chen W, Sun F. PLXNA1 confers enzalutamide resistance in prostate cancer via AKT signaling pathway. Neoplasia 2024; 57:101047. [PMID: 39226661 PMCID: PMC11419896 DOI: 10.1016/j.neo.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Although targeting the androgen signaling pathway by androgen receptor (AR) inhibitors, including enzalutamide, has shown therapeutic effectiveness, inevitable emergence of acquired resistance remains a critical challenge in the treatment of advanced prostate cancer (PCa). Recognizing targetable genomic aberrations that trigger endocrine treatment failure holds great promise for advancing therapeutic interventions. Here, we characterized PLXNA1, amplified in a subset of PCa patients, as a contributor to enzalutamide resistance (ENZR). Elevated PLXNA1 expression facilitated PCa proliferation under enzalutamide treatment due to AKT signaling activation. Mechanistically, PLXNA1 recruited NRP1 forming a PLXNA1-NRP1 complex, which in turn potentiated the phosphorylation of the AKT. Either inhibiting PLXNA1-NRP1 complex with an NRP1 inhibitor, EG01377, or targeting PLXNA1-mediated ENZR with AKT inhibitors, abolished the pro-resistance phenotype of PLXNA1. Taken together, combination of AKT inhibitor and AR inhibitors presents a promising therapeutic strategy for PCa, especially in advanced PCa patients exhibiting PLXNA1 overexpression.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bo Han
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Ying Qu
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Zeyuan Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Zhang
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Jingying Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jinan 250012, China
| | - Feifei Sun
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Wang N, Pan D, Zhu X, Ren X, Jin X, Chen X, Wang Y, Su M, Sun G, Wang S. Selenium May Be Involved in Esophageal Squamous Cancer Prevention by Affecting GPx3 and FABP1 Expression: A Case-Control Study Based on Bioinformatic Analysis. Nutrients 2024; 16:1322. [PMID: 38732573 PMCID: PMC11085500 DOI: 10.3390/nu16091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The role of selenium in the developmental process of esophageal cancer (EC) requires further investigation. To explore the relationship between selenium-related factors and EC through bioinformatic analysis, a case-control study was conducted to verify the results. Utilizing the GEPIA and TCGA databases, we delineated the differential expression of glutathione peroxidase 3 (GPx3) in EC and normal tissues, identified differentially expressed genes (DEGs), and a performed visualization analysis. Additionally, 100 pairs of dietary and plasma samples from esophageal precancerous lesions (EPLs) of esophageal squamous cancer (ESCC) cases and healthy controls from Huai'an district, Jiangsu, were screened. The levels of dietary selenium, plasma selenium, and related enzymes were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) or ELISA kits. The results showed lower GPx3 expression in tumor tissues compared to normal tissues. Further analysis revealed that DEGs were mainly involved in the fat digestion and absorption pathway, and the core protein fatty acid binding protein 1 (FABP1) was significantly upregulated and negatively correlated with GPx3 expression. Our case-control study found that selenium itself was not associated with EPLs risk. However, both the decreased concentration of GPx3 and the increase in FABP1 were positively correlated with the EPLs risk (p for trend = 0.035 and 0.046, respectively). The different expressions of GPx3 and FABP1 reflect the potential of selenium for preventing ESCC at the EPLs stage. GPx3 may affect EC through FABP1, which remains to be further studied.
Collapse
Affiliation(s)
- Niannian Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xiaopan Zhu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xingyuan Ren
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xingyi Jin
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xiangjun Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Ming Su
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China;
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| |
Collapse
|
4
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
苏 莉, 梁 晚, 吕 振, 韩 啸. [PLXNA1 is highly expressed in hepatocellular carcinoma and affects patients' survival and immune microenvironment]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1909-1918. [PMID: 38081609 PMCID: PMC10713469 DOI: 10.12122/j.issn.1673-4254.2023.11.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To investigate PLXNA1 expression in hepatocellular carcinoma (HCC) and explore its biological function and impacts on patients' survival outcomes and immune microenvironment. METHODS Bioinformatic analysis of highly expressed immune-related genes in HCC were performed using TCGA database and Immport website, and 7 genes associated with the survival outcomes of the patients were identified using univariate Cox regression analysis, Gene Expression Profiling Interactive Analysis, and Kaplan Meier plotter website. The expression profile of PLXNA1 in HCC was verified using GEO database. The impact of PLXNA1 expression on survival outcomes of HCC patients was analyzed using TCGA database, Kaplan Meier, and timeROC curve analyses, and its association with immune cell infiltration was explored using TIMER website, CIBERSORT, and ssGSEA. Immunohistochemmistry was used to detect PLXNA1 expression in clinical specimens of HCC and adjacent tissues, and the correlation of PLXNA1 expression level with the patients' survival was analyzed. RT-qPCR was used to examine PLXNA1 expressions in different HCC cell lines, and the effects of PLXNA1 knockdown on proliferation and migration of SMMC-7721 cells were evaluated using CCK-8 and Transwell assays. RESULTS Bioinformatic analyses suggested that PLXNA1 was highly expressed in HCC, and its high expression was associated with poor survival outcomes of the patients. PLXNA1 expression level was significantly correlated with immune cell infiltration in HCC. Immunohistochemmistry showed that compared with the adjacent tissues, HCC tissues had significantly higher PLXNA1 expressions, which were associated with a poor patient survival and served also as a diagnostic indicator for HCC (AUC= 0.9346). In cultured HCC cell lines, SMMC-7721 cells showed a higher PLXNA1 expression than HL-7702 cells, and PLXNA1 knockdown significantly suppressed proliferation and migration of SMMC-7721 cells. CONCLUSION PLXNA1 is highly expressed in HCC to promote tumor cell migration and proliferation and affect the patients' survival outcomes and immune microenvironment.
Collapse
Affiliation(s)
- 莉莉 苏
- />蚌埠医学院第一附属医院肿瘤科,安徽 蚌埠 233000Department of Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 晚晴 梁
- />蚌埠医学院第一附属医院肿瘤科,安徽 蚌埠 233000Department of Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 振宇 吕
- />蚌埠医学院第一附属医院肿瘤科,安徽 蚌埠 233000Department of Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 啸 韩
- />蚌埠医学院第一附属医院肿瘤科,安徽 蚌埠 233000Department of Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
6
|
Guo Y, Zhao T, Chu X, Cheng Z. Development of a diagnostic and risk prediction model for Alzheimer's disease through integration of single-cell and bulk transcriptomic analysis of glutamine metabolism. Front Aging Neurosci 2023; 15:1275793. [PMID: 38020758 PMCID: PMC10667556 DOI: 10.3389/fnagi.2023.1275793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background In this study, we present a novel system for quantifying glutamine metabolism (GM) to enhance the effectiveness of Alzheimer's disease (AD) diagnosis and risk prediction. Methods Single-cell RNA sequencing (scRNA-seq) analysis was utilized to comprehensively assess the expression patterns of GM. The WGCNA algorithm was applied to investigate the most significant genes related to GM. Subsequently, three machine learning algorithms (Boruta, LASSO, and SVM-RFE) were employed to identify GM-associated characteristic genes and develop a risk model. Patients were divided into high- and low-risk groups based on this model. Moreover, we explored biological properties, distinct signaling pathways, and immunological characteristics of AD patients at different risk levels. Finally, in vitro and in vivo models of AD were constructed to validate the characteristics of the feature genes. Results Both scRNA-seq and bulk transcriptomic analyses revealed increased GM activity in AD patients, specifically in certain cell subsets (pDC, Tem/Effector helper T cells (LTB), and plasma cells). Cells with higher GM scores demonstrated more significant numbers and strengths of interactions with other cell types. The WGCNA algorithm identified 360 genes related to GM, and a risk score was constructed based on nine characteristic genes (ATP13A4, PIK3C2A, CD164, PHF1, CES2, PDGFB, LCOR, TMEM30A, and PLXNA1) identified through multiple machine learning algorithms displayed reliable diagnostic efficacy for AD onset. Nomograms, calibration curves, and decision curve analysis (DCA) based on these characteristic genes provided significant clinical benefits for AD patients. High-risk AD patients exhibited higher levels of immune-related functions and pathways, increased immune cell infiltration, and elevated expressions of immune modulators. RT-qPCR analysis revealed that the majority of the nine characteristic genes were differentially expressed in AD-induced rat neurons. Knocking down PHF1 could protect against neurite loss and alleviate cell injury in AD neurons. In vivo, down-regulation of PHF1 in AD models decreases GM metabolism levels and modulates the immunoinflammatory response in the brain. Conclusion This comprehensive identification of gene expression patterns contributes to a deeper understanding of the underlying pathological mechanisms driving AD pathogenesis. Furthermore, the risk model based on the nine-gene signature offers a promising theoretical foundation for developing individualized treatments for AD patients.
Collapse
Affiliation(s)
- Yan Guo
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tingru Zhao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xi Chu
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenyun Cheng
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Wen K, Yang F, Hu L, Shi J, Mui S, Wang W, Liao H, Li H, Xiao Z, Yan Y. Analysis of the potential association between ferroptosis and immune in hepatocellular carcinoma and their relationship with prognosis. Front Oncol 2023; 12:1031156. [PMID: 36776357 PMCID: PMC9910086 DOI: 10.3389/fonc.2022.1031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023] Open
Abstract
Background The development of targeted therapy and immunotherapy has enriched the treatment of hepatocellular carcinoma (HCC), however, have had poor or no reponse, or even no response. Previous research suggested that ferroptosis and tumor immune microenvironment (TIME) may have a fundamental impact on efficacy during HCC immunotherapy and targeted therapy. Therefore, there is a clinical need to develop a signature that categorizes HCC patients in order to make more accurate clinical decisions. Methods Clinical data and gene expression data of HCC patients were obtained from The Cancer Genome Atlas (TCGA) portal and International Cancer Genome Consortium (ICGC) portal. To identify ferroptosis-related immune-related genes (ferroptosis-related IRGs), Pearson correlation analysis was conducted. The ferroptosis-related IRGs prognostic signature (FIPS) was constructed using Univariate Cox and LASSO Cox algorithms. The predictive effectiveness of FIPS was evaluated using Receiver Operating Characteristic (ROC) curves and survivorship curve. The correlation ship between FIPS and TIME was evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA) and CIBERSORT. The relationship between FIPS and immunotherapy responsiveness was evaluated using immunophenoscore. The expression level of 10 ferroptosis-related IRGs in normal liver tissues and HCC tissues was compared using immunohistochemistry. Finally, we established a nomogram (based on FIPS, TNM stage, and age) for clinical application. Results The FIPS was established with ten ferroptosis-related IRGs. The high-FIPS subgroup showed a poor clinical prognosis and an obviously higher proportion of HCC patients with advanced TNM stage, high WHO grade and high alpha fetoprotein(AFP) value. Analysis of TIME indicated that patients in the high-FIPS subgroup may be in immunosuppressed state. Meanwhile, we found that ferroptosis may be inhibited in the high-FIPS subgroup and this subgroup may be impervious to immunotherapy and sorafenib. Conclusion We constructed a novel potential prognostic signature for HCC patients that predicts overall survival, ferroptosis and immune status, sorafenib sensitivity, and immunotherapy responsiveness.
Collapse
Affiliation(s)
- Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feng Yang
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Lei Hu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sintim Mui
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,*Correspondence: Zhiyu Xiao, ; Yongcong Yan,
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,*Correspondence: Zhiyu Xiao, ; Yongcong Yan,
| |
Collapse
|
8
|
Wang N, Pan D, Wang X, Su M, Wang X, Yan Q, Sun G, Wang S. NAPRT, but Not NAMPT, Provides Additional Support for NAD Synthesis in Esophageal Precancerous Lesions. Nutrients 2022; 14:4916. [PMID: 36432602 PMCID: PMC9695206 DOI: 10.3390/nu14224916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
It is hypothesized that esophageal precancerous lesions (EPLs) have a surge requirement for coenzyme I (NAD). The purpose of this study is to clarify the key control points of NAD synthesis in developing EPL by detecting related markers and the gene polymorphism of NAD synthesis and metabolism. This case-control study was conducted in Huai'an, China. In total, 100 healthy controls and 100 EPL cases matched by villages, gender, and age (±2 years) were included. The levels of plasma niacin and nicotinamide, and the protein concentration of NAMPT, NAPRT, and PARP-1 were quantitatively analyzed. PARP-1 gene polymorphism was detected to determine if the cases differed genetically in NAD synthesis. The levels of plasma niacin and nicotinamide and the concentrations of NAMPT were not related to the risk of EPL, but the over-expressions of NAPRT (p = 0.014, 0.001, and 0.016, respectively) and PARP-1 (p for trend = 0.021) were associated with the increased EPL risk. The frequency distribution of APRP-1 genotypes was found to not differ between the two groups, while the EPL group showed an increased frequency of the variant C allele. NAPRT, but not NAMPT, was found to be responsible for the stress of excess NAD synthesis in EPL. Focusing on the development of NAPRT inhibitors may be beneficial to prevent and control ESCC.
Collapse
Affiliation(s)
- Niannian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xuemei Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ming Su
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Xin Wang
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Qingyang Yan
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| |
Collapse
|
9
|
Luo H, Lv W, Zhang H, Lin C, Li F, Zheng F, Zhong B. miR-204-5p inhibits cell proliferation and induces cell apoptosis in esophageal squamous cell carcinoma by regulating Nestin. Int J Med Sci 2022; 19:472-483. [PMID: 35370458 PMCID: PMC8964316 DOI: 10.7150/ijms.67286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/09/2022] [Indexed: 11/05/2022] Open
Abstract
Esophageal cancer (EC) is a highly malignant gastrointestinal tumor, and esophageal squamous cell carcinoma (ESCC) is one of the most common histological types of EC. MicroRNAs (miRNAs) are small noncoding RNAs closely related to tumorigenesis and tumor progression. In addition, Nestin is an intermediate filament protein (class VI) and contributes to the progression of numerous tumors. However, the correlation between miRNAs and Nestin in ESCC remains unclear. This study aimed to investigate the relationship between miR-204-5p and Nestin in ESCC. First, Nestin-related miRNAs in ESCC were explored using RNA sequencing. In ESCC tissues and cell lines, the expression of miR-204-5p was decreased detected by quantitative real-time polymerase chain reaction (qPCR), whereas Nestin protein level was upregulated identified by Western blotting (WB). Besides, Nestin was the direct target of miR-204-5p in ESCC determined via the luciferase reported assay. Moreover, miR-204-5p regulated Nestin to inhibit ESCC cell proliferation detected by the colony formation assay and promote ESCC cell apoptosis identified using the flow cytometry and TUNEL assay. Furthermore, miR-204-5p suppressed tumorigenesis in vivo evaluated by the murine xenograft tumor model. In conclusion, these results indicated that miR-204-5p inhibited cell proliferation and induced cell apoptosis in ESCC through targeting Nestin, which might provide novel therapeutic targets for ESCC therapy.
Collapse
Affiliation(s)
- Honghe Luo
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weize Lv
- Department of Interventional Medicine, the Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Huayong Zhang
- Department of Thyroid and Breast Surgery, the Fifth Affiliated Hospital of Sun Yat sen University, Zhuhai, Guangdong 519000, China
| | - Chunxia Lin
- Department of Pediatrics, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Fei Li
- Department of Pharmacy, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000suppl, China
| | - Fangfang Zheng
- Department of Pediatrics, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Beilong Zhong
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Department of Thoracic Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
10
|
Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:163-180. [PMID: 34729394 PMCID: PMC8526502 DOI: 10.1016/j.omto.2021.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
Cancer-cell-released exosomal microRNAs (miRNAs) are important mediators of cell-cell communication in the tumor microenvironment. In this study, we sequenced serum exosome miRNAs from esophageal squamous cell carcinoma (ESCC) patients and identified high expression of miR-320b to be closely associated with peritumoral lymphangiogenesis and lymph node (LN) metastasis. Functionally, miR-320b could be enriched and transferred by ESCC-released exosomes directly to human lymphatic endothelial cells (HLECs), promoting tube formation and migration in vitro and facilitating lymphangiogenesis and LN metastasis in vivo as assessed by gain- and loss-of-function experiments. Furthermore, we found programmed cell death 4 (PDCD4) as a direct target of miR-320b through bioinformatic prediction and luciferase reporter assay. Re-expression of PDCD4 could rescue the effects induced by exosomal miR-320b. Notably, the miR-320b-PDCD4 axis activates the AKT pathway in HLECs independent of vascular endothelial growth factor-C (VEGF-C). Moreover, overexpression of miR-320b promotes the proliferation, migration, invasion, and epithelial-mesenchymal transition progression of ESCC cells. Finally, we demonstrate that METTL3 could interact with DGCR8 protein and positively modulate pri-miR-320b maturation process in an N6-methyladenosine (m6A)-dependent manner. Therefore, our findings uncover a VEGF-C-independent mechanism of exosomal and intracellular miR-320b-mediated LN metastasis and identify miR-320b as a novel predictive marker and therapeutic target for LN metastasis in ESCC.
Collapse
|
11
|
Li P, Huang G. Long noncoding RNA LINC00858 promotes the progression of ovarian cancer via regulating the miR-134-5p/TRIM44 axis. J Recept Signal Transduct Res 2021; 42:382-389. [PMID: 34423728 DOI: 10.1080/10799893.2021.1968433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recent studies have shown that many long noncoding RNAs (lncRNAs) are abnormally expressed in ovarian cancer and involved in the pathological progress of ovarian cancer. In the present study, we aimed to investigate the role of lncRNA LINC00858 and the potential mechanism in ovarian cancer. The qRT-PCR was used to measure the expression levels of LINC00858 and miR-134-5p in ovarian cancer tissue specimens and cell lines. Loss-of-function assays were performed to investigate the role of LINC00858 in ovarian cancer. MTT assay was carried out to measure cell proliferation. Transwell assays were performed to determine cell migration and invasion. Biological information analysis and luciferase report gene assay were used to verify potential downstream genes of LINC00858. The xenograft mouse model was established to analyze tumor growth in vivo. Our results showed that LINC00858 was highly expressed in human ovarian cancer tissues and cell lines. Knockdown of LINC00858 inhibited cell proliferation, migration and invasion of SKOV3 cells, and suppressed tumor growth in mouse xenograft models. Mechanistic studies revealed that LINC00858 acted as a sponge of miR-134-5p and then regulated TRIM44 expression in SKOV3 cells. Furthermore, rescue experiments illustrated that inhibition of miR-134-5p restored the inhibitory effects of LINC00858 knockdown on cell proliferation, migration and invasion. TRIM44 overexpression could counteract the inhibitory effects of miR-134-5p mimics on ovarian cancer cells. In conclusion, these findings demonstrated that LINC00858 exerted oncogenic role in ovarian cancer, which was mediated by miR-134-5p/TRIM44 axis. Thus, LINC00858 might be a therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
| | - Gang Huang
- Department of Neurology, Luohe Central Hospital, Luohe, China
| |
Collapse
|
12
|
Liu T, Han X, Zheng S, Liu Q, Tuerxun A, Zhang Q, Yang L, Lu X. CALM1 promotes progression and dampens chemosensitivity to EGFR inhibitor in esophageal squamous cell carcinoma. Cancer Cell Int 2021; 21:121. [PMID: 33602237 PMCID: PMC7890995 DOI: 10.1186/s12935-021-01801-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Calmodulin1 (CALM1) has been identified as one of the overexpression genes in a variety of cancers and EGFR inhibitor have been widely used in clinical treatment but it is unknown whether CALM1 and epidermal growth factor receptor (EGFR) have a synergistic effect in esophageal squamous cell carcinoma (ESCC). The aim of the present study was to explore the synergistic effects of knock-out CALM1 combined with EGFR inhibitor (Afatinib) and to elucidate the role of CALM1 in sensitizing the resistance to Afatinib in ESCC. METHOD Immunohistochemistry (IHC) and qRT-PCR were used to examine the expression of CALM1 and EGFR in ESCC tissues. Kaplan-Meier survival analysis was used to analyze the clinical and prognostic significance of CALM1 and EGFR expression in ESCC. Furthermore, to evaluate the biological function of CALM1 in ESCC, the latest gene editing technique CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats)was applied to knockout CALM1 in ESCC cell lines KYSE150, Eca109 and TE-1. MTT, flow cytometry, Transwell migration, scratch wound-healing and colony formation assays were performed to assay the combined effect of knock-out CALM1 and EGFR inhibitor on ESCC cell proliferation and migration. In addition, nude mice xenograft model was used to observe the synergistic inhibition of knock-out CALM1 and Afatinib. RESULTS Both CALM1 and EGFR were found to be significantly over-expressed in ESCC compared with paired normal control. Over-expressed CALM1 and EGFR were significantly associated with clinical stage, T classification and poor overall prognosis, respectively. In vitro, the combined effect of knock-out CALM1 mediated by the lentivirus and EGFR inhibitor was shown to be capable of inhibiting the proliferation, inducing cell cycle arrest at G1/S stage and increasing apoptosis of KYSE-150 and Eca109 cells; invasion and migration were also suppressed. In vivo, the results of tumor weight and total fluorescence were markedly reduced compared with the sgCtrl-infected group and sgCAML1 group. CONCLUSION Our data demonstrated that knock-out of CALM1 could sensitize ESCC cells to EGFR inhibitor, and it may exert oncogenic role via promotion of EMT. Taken together, CALM1 may be a tempting target to overcome Afatinib resistance.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiujuan Han
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Aerziguli Tuerxun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qiqi Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Lifei Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China.
| |
Collapse
|
13
|
Wang X, Zhu Y, Wang T, Chen B, Xing J, Xiao W. MiR
‐483‐5p downregulation contributed to cell proliferation, metastasis, and inflammation of clear cell renal cell carcinoma. Kaohsiung J Med Sci 2020; 37:192-199. [PMID: 33151036 DOI: 10.1002/kjm2.12320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xue‐Gang Wang
- Department of Urology The First Affiliated Hospital, School of Medicine, Xiamen University Xiamen Fujian China
| | - Yong‐Wu Zhu
- The School of Clinical Medicine Fujian Medical University Fujian China
| | - Tao Wang
- Department of Urology The First Affiliated Hospital, School of Medicine, Xiamen University Xiamen Fujian China
- The School of Clinical Medicine Fujian Medical University Fujian China
| | - Bin Chen
- Department of Urology The First Affiliated Hospital, School of Medicine, Xiamen University Xiamen Fujian China
- The School of Clinical Medicine Fujian Medical University Fujian China
| | - Jin‐Chun Xing
- Department of Urology The First Affiliated Hospital, School of Medicine, Xiamen University Xiamen Fujian China
- The School of Clinical Medicine Fujian Medical University Fujian China
| | - Wen Xiao
- Department of Urology The First Affiliated Hospital, School of Medicine, Xiamen University Xiamen Fujian China
- The School of Clinical Medicine Fujian Medical University Fujian China
- Department of Urology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
14
|
Li ZW, Zhang TY, Yue GJ, Tian X, Wu JZ, Feng GY, Wang YS. Small nucleolar RNA host gene 22 (SNHG22) promotes the progression of esophageal squamous cell carcinoma by miR-429/SESN3 axis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1007. [PMID: 32953807 PMCID: PMC7475482 DOI: 10.21037/atm-20-5332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background It has been observed that lncRNAs have been taking part in many cancer progressions, including non-small cell lung cancer and gastric cancer. Meanwhile, lncRNA small nucleolar RNA host gene 22 (SNHG22) has been studied, taking part in the progression of ovarian epithelial carcinoma. However, we know little about the function of SNHG22 in esophageal squamous cell carcinoma (ESCC). Methods In this study, we will explore the inner mechanism of SNHG22 in ESCC. Quantitative real-time PCR (qRT-PCR) assay was implemented in ESCC cells for detecting the expression of lncRNA, SNHG22, and miR-429. Also, functional experiments, including CCK8 and colony formation assay, were implemented to assess the growth of ESCC cells. Meanwhile, flow cytometry analysis was conducted to test the apoptosis of ESCC cells. The immunofluorescence (IF) assay and western blot were conducted to verify the autophagy of ESCC cells. Results Inhibition of SNHG22 was found that can inhibit the progression and promotes autophagy and apoptosis of ESCC cells. Meanwhile, as subcellular fraction assay and FISH assay found that SNHG22 mainly in the cytoplasm, miR-429 was found can bind to SNHG22 and SESN3 by RIP assay and luciferase reporter assay. SESN3 was found it can play the oncogene in ESCC cells. Conclusions SNHG22 promotes the progression of ESCC by the miR-429/SESN3 axis.
Collapse
Affiliation(s)
- Zhong-Wen Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu, China.,Institute of Clinical Pharmacology, GCP Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Oncology (Section Three), Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting-You Zhang
- Department of Oncology (Section One), Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guo-Jun Yue
- Department of Oncology (Section One), Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Tian
- Department of Oncology (Section Three), Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jin-Zhi Wu
- Department of Oncology (Section Three), Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guang-Yong Feng
- Department of Oncology (Section Three), Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yong-Sheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu, China.,Institute of Clinical Pharmacology, GCP Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Shi ZZ, Wang WJ, Chen YX, Fan ZW, Xie XF, Yang LY, Chang C, Cai Y, Hao JJ, Wang MR, Bai J. The miR-1224-5p/TNS4/EGFR axis inhibits tumour progression in oesophageal squamous cell carcinoma. Cell Death Dis 2020; 11:597. [PMID: 32732965 PMCID: PMC7393493 DOI: 10.1038/s41419-020-02801-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a common and aggressive malignancy. Although many molecular alterations have been observed in ESCC, the mechanisms underlying the development and progression of this disease remain unclear. In the present study, miR-1224-5p was identified to be downregulated in ESCC tissues compared to normal tissues, and its low expression was correlated with shorter survival time in patients. In vitro experiments showed that miR-1224-5p inhibited the proliferation, colony formation, migration and invasion of ESCC cells. Mechanistic investigation revealed that miR-1224-5p directly targeted TNS4 and inhibited its expression, which led to the inactivation of EGFR-EFNA1/EPHA2-VEGFA (vascular endothelial growth factor A) signalling. Experiments in vivo confirmed the suppressive effect of miR-1224-5p on oesophageal cancer cells. By immunohistochemistry analysis of ESCC specimens, we found that TNS4 expression was positively correlated with that of VEGFA, and was significantly associated with lymph node metastasis and shorter survival time in patients. Together, our data suggest that miR-1224-5p downregulation is a frequent alteration in ESCC that promotes cell proliferation, migration, invasion and tumour growth by activating the EGFR-EFNA1/EPHA2-VEGFA signalling pathway via inhibition of TNS4 expression. Decreased miR-1224-5p and elevated TNS4 are unfavourable prognostic factors for ESCC patients.
Collapse
Affiliation(s)
- Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Wen-Jun Wang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yun-Xia Chen
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ze-Wen Fan
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiu-Feng Xie
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
16
|
Sang C, Chao C, Wang M, Zhang Y, Luo G, Zhang X. Identification and validation of hub microRNAs dysregulated in esophageal squamous cell carcinoma. Aging (Albany NY) 2020; 12:9807-9824. [PMID: 32412911 PMCID: PMC7288914 DOI: 10.18632/aging.103245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers worldwide, and its morbidity is exacerbated by the lack of early symptoms. Bioinformatics analyses enable discovery of differentially expressed genes and non-protein-coding RNAs of potential prognostic and/or therapeutic relevance in ESCC and other cancers. Using bioinformatics tools, we searched for dysregulated miRNAs in two ESCC microarray datasets from the Gene Expression Omnibus (GEO) database. After identification of three upregulated and five downregulated miRNAs shared between databases, protein-protein interaction (PPI) network analysis was used to identify the top 10 hub-gene targets. Thereafter, a miRNA-gene interaction network predicted that most hub genes are regulated by miR-196a-5p and miR-1-3p, which are respectively upregulated and downregulated in ESCC. Functional enrichment analyses in the GO and KEGG databases indicated the potential involvement of these miRNAs in tumorigenesis-related processes and pathways, while both differential expression and correlation with T stage were demonstrated for each miRNA in a cohort of ESCC patients. Overexpression showed that miR-196a-5p increased, whereas miR-1-3p attenuated, proliferation and invasion in human ESCC cell lines grown in vitro. These findings suggest miR-196a-5p and miR-1-3p jointly contribute to ESCC tumorigenesis and are potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Chen Sang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Youpu Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
17
|
Jian J, Li S, Liu LZ, Zhen L, Yao L, Gan LH, Huang YQ, Fang N. XPD inhibits cell growth and invasion and enhances chemosensitivity in esophageal squamous cell carcinoma by regulating the PI3K/AKT signaling pathway. Int J Mol Med 2020; 46:201-210. [PMID: 32377720 PMCID: PMC7255471 DOI: 10.3892/ijmm.2020.4593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a lethal disease due to its high aggressiveness. The aim of the present study was to investigate the role of xeroderma pigmentosum complementation group D (XPD) in the growth and invasion of ESCC and to elucidate the potential underlying molecular mechanisms. Western blot analysis and RT-qPCR were used to detect the expression level of XPD in ESCC tissue samples and adjacent normal esophageal tissue samples. The pEGFP-N2/XPD plasmid was transfected into human ESCC cell lines (EC9706 and EC109). The proliferation, apoptosis, migration and invasion of EC9706 or EC109 cells were assessed following transfection with the XPD overexpression plasmid. The chemosensitivity of EC9706 or EC109 cells to cisplatin or fluorouracil was evaluated by CCK-8 assay. The expression levels of phosphoinositide 3-kinase (PI3K)/AKT, nuclear factor (NF)-κB, Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathway-related genes were detected by RT-qPCR and western blot analysis. The results demonstrated that the expression level of XPD was markedly lower in ESCC tissue samples than in adjacent normal esophageal tissue samples. The pEGFP-N2/XPD plasmid was successfully transfected into EC9706 or EC109 cells, inducing XPD overexpression. A High XPD expression markedly suppressed cell proliferation, migration and invasion, and increased the apoptotic rate of EC9706 and EC109 cells. Furthermore, the overexpression of XPD significantly increased the chemosensitivity of EC9706 and EC109 cells to cisplatin or fluorouracil. Following XPD overexpression, the expression levels of PI3K, p-AKT, c-Myc, Cyclin D1, Bcl-2, vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-9 were markedly downregulated, while the expression level of p21 was markedly upregulated. On the whole, the findings of the present study demonstrate that XPD inhibits the growth and invasion of EC9706 and EC109 cells, whilst also enhancing the chemosensitivity of EC9706 and EC109 cells to cisplatin or fluorouracil by regulating the PI3K/AKT signaling pathway. XPD may thus be an underlying target for ESCC treatment and drug resistance.
Collapse
Affiliation(s)
- Jie Jian
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Shuang Li
- Department of Geriatrics and General Medicine, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Li-Zhen Liu
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Li Zhen
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ling Yao
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Li-Hong Gan
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ya-Qing Huang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Nian Fang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
18
|
Wang X, Gu M, Ju Y, Zhou J. PIK3C3 Acts as a Tumor Suppressor in Esophageal Squamous Cell Carcinoma and Was Regulated by MiR-340-5p. Med Sci Monit 2020; 26:e920642. [PMID: 32207410 PMCID: PMC7111147 DOI: 10.12659/msm.920642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC), a major histological subtype of esophageal cancer, is a common cause of tumor-related deaths in the world. Due to the lack of understanding of the pathogenesis of ESCC, its clinical treatment is still a big challenge. In the present study, we aimed to identify an ESCC-related gene in the GEO dataset, and to explore its function and mechanism in ESCC. MATERIAL AND METHODS The GSE dataset (GSE100492) consisting of 10 samples was analyzed using GEO2R for identifying the differentially expressed genes between ESCC and normal samples. Expression levels of mRNA and miRNA in ESCC tissues and cells were detected via quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot. Cell proliferation viability was determined through MTT and colony formation. Cell distribution and apoptosis was detected by flow cytometry. MiRNA target prediction was analyzed by bioinformatics. The interplay between miR-340-5p and PIK3C3 was validated by dual-luciferase reporter assay. RESULTS PIK3C3 was lowly expressed in ESCC tissue and indicated a poor prognosis in patents. Overexpression of PIK3C3 in vitro repressed cell proliferation of KYSE-150 and TE-12 cells. Moreover, PIK3C3 overexpression was demonstrated to enhance the sensitivity of KYSE-150 and TE-12 cells to irradiation. In addition, miR-340-5p was revealed to directly bind and negatively modulate PIK3C3 expression in ESCC. Blockage of miR-340-5p promoted ESCC cell proliferation, while rescue of PIK3C3 reversed this effect. MiR-340-5p was highly expressed in ESCC tissue and it exhibited a negative correlation with PIK3C3 expression. CONCLUSIONS MiR-340-5p functioned as an oncogene of ESCC by directly binding and repressing the expression of PIK3C3.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Radiation Oncology, The First People's Hospital of Nantong, Nantong, Jiangsu, China (mainland)
| | - Min Gu
- Department of Radiation Oncology, The First People's Hospital of Nantong, Nantong, Jiangsu, China (mainland)
| | - Yongjian Ju
- Department of Radiation Oncology, The First People's Hospital of Nantong, Nantong, Jiangsu, China (mainland)
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
19
|
Chen L, Wei Q, Bi S, Xie S. Maternal Embryonic Leucine Zipper Kinase Promotes Tumor Growth and Metastasis via Stimulating FOXM1 Signaling in Esophageal Squamous Cell Carcinoma. Front Oncol 2020; 10:10. [PMID: 32047721 PMCID: PMC6997270 DOI: 10.3389/fonc.2020.00010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal malignancy and is one of the most important cause of cancer related mortalities in the world. However, there is no clinically effective targeted therapeutic drugs for ESCC due to lack of valuable molecular therapeutic targets. In the present study, we investigated the biological function and molecular mechanisms of maternal embryonic leucine zipper kinase (MELK) in ESCC. The expression of MELK mRNA and protein was determined in cell lines and clinical samples of ESCC. MTT, focus formation and soft agar assays were carried out to measure cell proliferation and colony formation. Wound healing and transwell assays were used to assess the capacity of tumor cell migration and invasion. Nude mice models of subcutaneous tumor growth and lung metastasis were performed to examine the function of MELK in tumorigenecity and metastasis of ESCC cells. High expression of MELK was observed in ESCC cell line and human samples, especially in the metastatic tumor tissues. Moreover, overexpression of MELK promoted cell proliferation, colony formation, migration and invasion, and increased the expression and enzyme activity of MMP-2 and MMP-9 in ESCC cells. More importantly, enhanced expression of MELK greatly accelerated tumor growth and lung metastasis of ESCC cells in vivo. In contrast, knockdown of MELK by lentiviral shRNA resulted in an opposite effect both in vitro and in animal models. Mechanistically, MELK facilitated the phosphorylation of FOXM1, leading to activation of its downstream targets (PLK1, Cyclin B1, and Aurora B), and thereby promoted tumorigenesis and metastasis of ESCC cells. In conclusion, MELK enhances tumorigenesis, migration, invasion and metastasis of ESCC cells via activation of FOXM1 signaling pathway, suggesting MELK is a potential therapeutic target for ESCC patients, even those in an advanced stage.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmacy, Henan University, Kaifeng, China
| | - Qiuren Wei
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shuning Bi
- School of Pharmacy, Henan University, Kaifeng, China
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Xie Y, Dong CD, Wu Q, Jiang Y, Yao K, Zhang J, Zhao S, Ren Y, Yuan Q, Chen X, Liu Z, Zhao J, Liu K. Ornithine decarboxylase inhibition downregulates multiple pathways involved in the formation of precancerous lesions of esophageal squamous cell cancer. Mol Carcinog 2019; 59:215-226. [PMID: 31793679 DOI: 10.1002/mc.23144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The high incidence and mortality of esophageal squamous cell cancer (ESCC) is a major health problem worldwide. Precancerous lesions of ESCC may either progress to cancer or revert to normal epithelium with appropriate interventions; the bidirectional instability of the precancerous lesions of ESCC provides opportunities for intervention. Reports suggest that the upregulation of ornithine decarboxylase (ODC) is closely related to carcinogenesis. In this study, we investigated whether ODC may act as a target for chemoprevention in ESCC. Immunohistochemistry (IHC) assays indicate that ODC expression is higher in esophageal precancerous lesions compared with normal tissue controls. Its overexpression promotes cell proliferation and transformation of normal esophageal epithelial cells, and its activity is increased after N-nitrosomethylbenzylamine (NMBA) induction in Shantou human embryonic esophageal cell line (SHEE) and human immortalized cells (Het1A) cells. In addition, p38 α, extracellular regulated kinase (ERK1/2) in the mitogen-activated protein kinase pathway and protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (p70S6K) pathways are activated in response to NMBA treatment. Difluoromethylornithine (DFMO) is an ODC inhibitor, which inhibits NMBA-induced activation of p38 α, ERK1/2 and AKT/mTOR/p70S6K pathways; this has been verified by Western blotting. DFMO was also found to suppress the development of esophageal precancerous lesions in an NMBA-induced rat model; IHC demonstrated p38 α, ERK1/2, and AKT/mTOR/p70S6K pathways to be downregulated in these rats. These findings indicate the mechanisms by which ODC inhibition suppresses the development of esophageal precancerous lesions by downregulating p38 α, ERK1/2, and AKT/mTOR/p70S6k signaling pathways, ODC may be a potential target for chemoprevention in ESCC.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Qiong Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Jing Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Simin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ren
- Pathology Department, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qiang Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.,Henan Provincial Key Laboratory of Esophageal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Xu Z, Tie X, Li N, Yi Z, Shen F, Zhang Y. Circular RNA hsa_circ_0000654 promotes esophageal squamous cell carcinoma progression by regulating the miR‐149‐5p/IL‐6/STAT3 pathway. IUBMB Life 2019; 72:426-439. [PMID: 31778020 DOI: 10.1002/iub.2202] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Zhiqiao Xu
- Department of Tumor CenterKaifeng Central Hospital Kaifeng Henan China
| | - Xiaojing Tie
- Department of Tumor CenterKaifeng Central Hospital Kaifeng Henan China
| | - Ning Li
- Department of Tumor CenterKaifeng Central Hospital Kaifeng Henan China
| | - Zhenying Yi
- Department of Tumor CenterKaifeng Central Hospital Kaifeng Henan China
| | - Fengqian Shen
- Department of Tumor CenterKaifeng Central Hospital Kaifeng Henan China
| | - Yan Zhang
- Department of Tumor CenterKaifeng Central Hospital Kaifeng Henan China
| |
Collapse
|