1
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Azzalini E, Stanta G, Canzonieri V, Bonin S. Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers. Int J Mol Sci 2023; 24:15077. [PMID: 37894756 PMCID: PMC10606847 DOI: 10.3390/ijms242015077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancers encompass a group of neoplasms originating from germinal tissues and exhibiting distinct clinical, pathological, and molecular features. Among these, epithelial ovarian cancers (EOCs) are the most prevalent, comprising five distinct tumor histotypes. Notably, high-grade serous ovarian cancers (HGSOCs) represent the majority, accounting for over 70% of EOC cases. Due to their silent and asymptomatic behavior, HGSOCs are generally diagnosed in advanced stages with an evolved and complex genomic state, characterized by high intratumor heterogeneity (ITH) due to chromosomal instability that distinguishes HGSOCs. Histologically, these cancers exhibit significant morphological diversity both within and between tumors. The histologic patterns associated with solid, endometrioid, and transitional (SET) and classic subtypes of HGSOCs offer prognostic insights and may indicate specific molecular profiles. The evolution of HGSOC from primary to metastasis is typically characterized by clonal ITH, involving shared or divergent mutations in neoplastic sub-clones within primary and metastatic sites. Disease progression and therapy resistance are also influenced by non-clonal ITH, related to interactions with the tumor microenvironment and further genomic changes. Notably, significant alterations occur in nonmalignant cells, including cancer-associated fibroblast and immune cells, during tumor progression. This review provides an overview of the complex nature of HGSOC, encompassing its various aspects of intratumor heterogeneity, histological patterns, and its dynamic evolution during progression and therapy resistance.
Collapse
Affiliation(s)
- Eros Azzalini
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
| | - Giorgio Stanta
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
| | - Vincenzo Canzonieri
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
- Pathology Unit, Centro di Riferimento Oncologico (CRO) IRCCS, Aviano-National Cancer Institute, 33081 Pordenone, Italy
| | - Serena Bonin
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (E.A.); (G.S.); (V.C.)
| |
Collapse
|
3
|
Steenbruggen TG, Wolf DM, Campbell MJ, Sanders J, Cornelissen S, Thijssen B, Salgado RA, Yau C, O-Grady N, Basu A, Bhaskaran R, Mittempergher L, Hirst GL, Coppe JP, Kok M, Sonke GS, van 't Veer LJ, Horlings HM. B-cells and regulatory T-cells in the microenvironment of HER2+ breast cancer are associated with decreased survival: a real-world analysis of women with HER2+ metastatic breast cancer. Breast Cancer Res 2023; 25:117. [PMID: 37794508 PMCID: PMC10552219 DOI: 10.1186/s13058-023-01717-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Despite major improvements in treatment of HER2-positive metastatic breast cancer (MBC), only few patients achieve complete remission and remain progression free for a prolonged time. The tumor immune microenvironment plays an important role in the response to treatment in HER2-positive breast cancer and could contain valuable prognostic information. Detailed information on the cancer-immune cell interactions in HER2-positive MBC is however still lacking. By characterizing the tumor immune microenvironment in patients with HER2-positive MBC, we aimed to get a better understanding why overall survival (OS) differs so widely and which alternative treatment approaches may improve outcome. METHODS We included all patients with HER2-positive MBC who were treated with trastuzumab-based palliative therapy in the Netherlands Cancer Institute between 2000 and 2014 and for whom pre-treatment tissue from the primary tumor or from metastases was available. Infiltrating immune cells and their spatial relationships to one another and to tumor cells were characterized by immunohistochemistry and multiplex immunofluorescence. We also evaluated immune signatures and other key pathways using next-generation RNA-sequencing data. With nine years median follow-up from initial diagnosis of MBC, we investigated the association between tumor and immune characteristics and outcome. RESULTS A total of 124 patients with 147 samples were included and evaluated. The different technologies showed high correlations between each other. T-cells were less prevalent in metastases compared to primary tumors, whereas B-cells and regulatory T-cells (Tregs) were comparable between primary tumors and metastases. Stromal tumor-infiltrating lymphocytes in general were not associated with OS. The infiltration of B-cells and Tregs in the primary tumor was associated with unfavorable OS. Four signatures classifying the extracellular matrix of primary tumors showed differential survival in the population as a whole. CONCLUSIONS In a real-world cohort of 124 patients with HER2-positive MBC, B-cells, and Tregs in primary tumors are associated with unfavorable survival. With this paper, we provide a comprehensive insight in the tumor immune microenvironment that could guide further research into development of novel immunomodulatory strategies.
Collapse
Affiliation(s)
- Tessa G Steenbruggen
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands.
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94115, USA.
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Michael J Campbell
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands
| | - Sten Cornelissen
- Core Facility Molecular Pathology and Biobanking, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands
| | - Bram Thijssen
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands
| | - Roberto A Salgado
- Department of Pathology, GZA-ZNA Hospitals, 2020, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Nick O-Grady
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Amrita Basu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Rajith Bhaskaran
- Research and Development, Agendia N.V, 1043 NT, Amsterdam, North Holland, The Netherlands
| | - Lorenza Mittempergher
- Research and Development, Agendia N.V, 1043 NT, Amsterdam, North Holland, The Netherlands
| | - Gillian L Hirst
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Jean-Philippe Coppe
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Marleen Kok
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands
- Department of Clinical Oncology, University of Amsterdam, 1012 WX, Amsterdam, North Holland, The Netherlands
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Hugo M Horlings
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, North Holland, The Netherlands
| |
Collapse
|
4
|
Masud MA, Kim JY, Kim E. Effective dose window for containing tumor burden under tolerable level. NPJ Syst Biol Appl 2023; 9:17. [PMID: 37221258 DOI: 10.1038/s41540-023-00279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
A maximum-tolerated dose (MTD) reduces the drug-sensitive cell population, though it may result in the competitive release of drug resistance. Alternative treatment strategies such as adaptive therapy (AT) or dose modulation aim to impose competitive stress on drug-resistant cell populations by maintaining a sufficient number of drug-sensitive cells. However, given the heterogeneous treatment response and tolerable tumor burden level of individual patients, determining an effective dose that can fine-tune competitive stress remains challenging. This study presents a mathematical model-driven approach that determines the plausible existence of an effective dose window (EDW) as a range of doses that conserve sufficient sensitive cells while maintaining the tumor volume below a threshold tolerable tumor volume (TTV). We use a mathematical model that explains intratumor cell competition. Analyzing the model, we derive an EDW determined by TTV and the competitive strength. By applying a fixed endpoint optimal control model, we determine the minimal dose to contain cancer at a TTV. As a proof of concept, we study the existence of EDW for a small cohort of melanoma patients by fitting the model to longitudinal tumor response data. We performed identifiability analysis, and for the patients with uniquely identifiable parameters, we deduced patient-specific EDW and minimal dose. The tumor volume for a patient could be theoretically contained at the TTV either using continuous dose or AT strategy with doses belonging to EDW. Further, we conclude that the lower bound of the EDW approximates the minimum effective dose (MED) for containing tumor volume at the TTV.
Collapse
Affiliation(s)
- M A Masud
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea.
| |
Collapse
|
5
|
M A M, Kim JY, Pan CH, Kim E. The impact of the spatial heterogeneity of resistant cells and fibroblasts on treatment response. PLoS Comput Biol 2022; 18:e1009919. [PMID: 35263336 PMCID: PMC8906648 DOI: 10.1371/journal.pcbi.1009919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
A long-standing practice in the treatment of cancer is that of hitting hard with the maximum tolerated dose to eradicate tumors. This continuous therapy, however, selects for resistant cells, leading to the failure of the treatment. A different type of treatment strategy, adaptive therapy, has recently been shown to have a degree of success in both preclinical xenograft experiments and clinical trials. Adaptive therapy is used to maintain a tumor's volume by exploiting the competition between drug-sensitive and drug-resistant cells with minimum effective drug doses or timed drug holidays. To further understand the role of competition in the outcomes of adaptive therapy, we developed a 2D on-lattice agent-based model. Our simulations show that the superiority of the adaptive strategy over continuous therapy depends on the local competition shaped by the spatial distribution of resistant cells. Intratumor competition can also be affected by fibroblasts, which produce microenvironmental factors that promote cancer cell growth. To this end, we simulated the impact of different fibroblast distributions on treatment outcomes. As a proof of principle, we focused on five types of distribution of fibroblasts characterized by different locations, shapes, and orientations of the fibroblast region with respect to the resistant cells. Our simulation shows that the spatial architecture of fibroblasts modulates tumor progression in both continuous and adaptive therapy. Finally, as a proof of concept, we simulated the outcomes of adaptive therapy of a virtual patient with four metastatic sites composed of different spatial distributions of fibroblasts and drug-resistant cell populations. Our simulation highlights the importance of undetected metastatic lesions on adaptive therapy outcomes.
Collapse
Affiliation(s)
- Masud M A
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| |
Collapse
|
6
|
Jiang J, Tekin B, Guo R, Liu H, Huang Y, Wang C. Digital Pathology-based Study of Cell- and Tissue-level Morphologic Features in Serous Borderline Ovarian Tumor and High-grade Serous Ovarian Cancer. J Pathol Inform 2021; 12:24. [PMID: 34447604 PMCID: PMC8356706 DOI: 10.4103/jpi.jpi_76_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Serous borderline ovarian tumor (SBOT) and high-grade serous ovarian cancer (HGSOC) are two distinct subtypes of epithelial ovarian tumors, with markedly different biologic background, behavior, prognosis, and treatment. However, the histologic diagnosis of serous ovarian tumors can be subjectively variable and labor-intensive as multiple tumor slides/blocks need to be thoroughly examined to search for these features. Materials and Methods: We developed a novel informatics system to facilitate objective and scalable diagnosis screening for SBOT and HGSOC. The system was built upon Groovy scripts and QuPath to enable interactive annotation and data exchange. Results: The system was used to successfully detect cellular boundaries and extract an expanded set of cellular features representing cell- and tissue-level characteristics. The performance of cell-level classification for both tumor and stroma cells achieved >90% accuracy. The performance of differentiating HGSOC versus SBOT achieved 91%–95% accuracy for 6485 imaging patches which have sufficient tumor and stroma cells (minimum of ten each) and 97% accuracy for classifying patients when aggregating the results to whole-slide image based on consensus. Conclusions: Cellular features digitally extracted from pathological images can be used for cell classification and SBOT v. HGSOC differentiation. Introducing digital pathology into ovarian cancer research could be beneficial to discover potential clinical implications. A larger cohort is required to further evaluate the system.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hongfang Liu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Yajue Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|