1
|
Li X, Yao L, Wu H, Tan W, Zhou W, Zhang J, Dong Z, Ding X, Yu H. A deep learning-based, real-time image report system for linear EUS. Gastrointest Endosc 2025; 101:1166-1173.e11. [PMID: 39427992 DOI: 10.1016/j.gie.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND AIMS The integrity of image acquisition is critical for biliopancreatic EUS reporting, significantly affecting the quality of EUS examinations and disease-related decision-making. However, the quality of EUS reports varies among endoscopists. To address this issue, we developed a deep learning-based EUS automatic image report system (EUS-AIRS), aiming to achieve automatic photodocumentation in real-time during EUS, including capturing standard stations, lesions, and puncture procedures. METHODS Eight deep learning models trained and tested using 235,784 images were integrated to construct the EUS-AIRS. The performance of EUS-AIRS was tested through man-machine comparisons at 2 levels: a retrospective test (include internal and external testing) and a prospective test. From May 2023 to October 2023, a total of 114 patients undergoing EUS at Renmin Hospital of Wuhan University were consecutively recruited for prospective testing. The primary outcome was the completeness of the EUS-AIRS for capturing standard stations. RESULTS In terms of completeness in capturing biliopancreatic standard stations, EUS-AIRS exceeded the capabilities of endoscopists at all levels of expertise in retrospective internal testing (90.8% [95% confidence interval (CI), 88.7%-92.9%] vs 70.5% [95% CI, 67.2%-73.8%]; P < .001) and external testing (91.4% [95% CI, 88.4%-94.4%] vs 68.2% [95% CI, 63.3%-73.2%]; P < .001). EUS-AIRS exhibited high accuracy and completeness in capturing standard station images. The completeness of the EUS-AIRS significantly outperformed manual endoscopist reports (91.4% [95% CI, 89.4%-93.4%] vs 78.1% [95% CI, 75.1%-81.0%); P < .001). CONCLUSIONS EUS-AIRS exhibits exceptional capabilities in real-time, capturing high-quality and high-integrity biliopancreatic EUS images. This showcases the potential of applying an artificial intelligence image report system in the EUS field.
Collapse
Affiliation(s)
- Xun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liwen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiling Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangwu Ding
- Digestive Endoscopy Center, Wuhan Fourth Hospital, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Robles-Medranda C, Verpalen I, Schulz D, Spadaccini M. Artificial Intelligence in Biliopancreatic Disorders: Applications in Cross-Imaging and Endoscopy. Gastroenterology 2025:S0016-5085(25)00648-1. [PMID: 40311821 DOI: 10.1053/j.gastro.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 04/11/2025] [Indexed: 05/03/2025]
Abstract
This review explores the transformative potential of artificial intelligence (AI) in the diagnosis and management of biliopancreatic disorders. By leveraging cutting-edge techniques, such as deep learning and convolutional neural networks, AI has significantly advanced gastroenterology, particularly in endoscopic procedures, such as colonoscopy; upper endoscopy; and capsule endoscopy. These applications enhance adenoma detection rates and improve lesion characterization and diagnostic accuracy. AI's integration in cross-sectional imaging modalities, such as computed tomography and magnetic resonance imaging, has remarkable potential. Models have demonstrated high accuracy in identifying pancreatic ductal adenocarcinoma; pancreatic cystic lesions; and pancreatic neuroendocrine tumors, aiding in early diagnosis; resectability assessment; and personalized treatment planning. In advanced endoscopic procedures, such as digital single-operator cholangioscopy and endoscopic ultrasound, AI enhances anatomic recognition and improves lesion classification, with a potential for reduction in procedural variability, enabling more consistent diagnostic and therapeutic outcomes. Promising applications in biliopancreatic endoscopy include the detection of biliary stenosis, classification of dysplastic precursor lesions, and assessment of pancreatic abnormalities. This review aims to capture the current state of AI application in biliopancreatic disorders, summarizing the results of early studies and paving the path for future directions.
Collapse
Affiliation(s)
| | - Inez Verpalen
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Marco Spadaccini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Humanitas Clinical and Research Center, Endoscopy Unit, Scientific Institute for Research, Hospitalization and Healthcare, Rozzano, Italy
| |
Collapse
|
3
|
Zhang D, Shen T, Gao F, Sun Y, Dai Z, Luo H, Sun Y, Yang Z, Gu J. Endoscopic treatment of unresectable perihilar cholangiocarcinoma: beyond biliary drainage. Therap Adv Gastroenterol 2025; 18:17562848251328595. [PMID: 40292090 PMCID: PMC12033555 DOI: 10.1177/17562848251328595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/27/2025] [Indexed: 04/30/2025] Open
Abstract
Perihilar cholangiocarcinoma (PHCC) is an aggressive biliary malignancy originating from the epithelial cells of the bile duct, typically located in the extrahepatic biliary tree, proximal to the cystic duct. PHCC often presents with a rapid onset of jaundice. While radical surgical resection remains the only curative treatment, only a minority of patients are eligible due to early metastasis and challenges associated with preoperative evaluations. Comprehensive treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, are crucial for managing PHCC. However, in advanced stages, complications such as cholestatic liver injury, malnutrition, and biliary infections pose significant obstacles to these treatments. Therefore, biliary drainage (BD) is essential in the management of PHCC. In addition to external drainage methods like percutaneous transhepatic biliary drainage (PTBD), endoscopic biliary drainage (EBD), particularly endoscopic retrograde cholangiopancreatography (ERCP), offer an effective option for internal drainage, which is more physiologically compatible and better tolerated. Furthermore, the integration of various endoscopic techniques has expanded the management of PHCC beyond mere drainage. Techniques such as radiofrequency ablation (RFA), photodynamic therapy (PDT), and endoscopic ultrasound (EUS) based methods present new therapeutic avenues, albeit with variable results. This review aims to summarize current advancements and ongoing debates in the field of endoscopic treatment for unresectable PHCC.
Collapse
Affiliation(s)
- Di Zhang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tianci Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Feng Gao
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yong Sun
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zihao Dai
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanan Sun
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zhuo Yang
- Department of Endoscope, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Jiangning Gu
- Department of Endoscope, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| |
Collapse
|
4
|
Carrara S, Andreozzi M, Terrin M, Spadaccini M. Role of Artificial Intelligence for Endoscopic Ultrasound. Gastrointest Endosc Clin N Am 2025; 35:407-418. [PMID: 40021237 DOI: 10.1016/j.giec.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Endoscopic ultrasound (EUS) is widely used for the diagnosis of biliopancreatic and gastrointestinal tract diseases, but it is one of the most operator-dependent endoscopic techniques, requiring a long and complex learning curve. The role of artificial intelligence (AI) in EUS is growing as AI algorithms can assist in lesion detection and characterization by analyzing EUS images. Deep learning (DL) techniques, such as convolutional neural networks, have shown great potential for tumor identification; the application of AI models can increase the EUS diagnostic accuracy, provide faster diagnoses, and provide more information that can be helpful also for a training program.
Collapse
Affiliation(s)
- Silvia Carrara
- Gastroenterology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan 20072, Italy.
| | - Marta Andreozzi
- Gastroenterology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Maria Terrin
- Gastroenterology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan 20072, Italy
| | - Marco Spadaccini
- Gastroenterology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan 20072, Italy
| |
Collapse
|
5
|
Araújo CC, Frias J, Mendes F, Martins M, Mota J, Almeida MJ, Ribeiro T, Macedo G, Mascarenhas M. Unlocking the Potential of AI in EUS and ERCP: A Narrative Review for Pancreaticobiliary Disease. Cancers (Basel) 2025; 17:1132. [PMID: 40227709 PMCID: PMC11988021 DOI: 10.3390/cancers17071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
Artificial Intelligence (AI) is transforming pancreaticobiliary endoscopy by enhancing diagnostic accuracy, procedural efficiency, and clinical outcomes. This narrative review explores AI's applications in endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP), emphasizing its potential to address diagnostic and therapeutic challenges in pancreaticobiliary diseases. In EUS, AI improves pancreatic mass differentiation, malignancy prediction, and landmark recognition, demonstrating high diagnostic accuracy and outperforming traditional guidelines. In ERCP, AI facilitates precise biliary stricture identification, optimizes procedural techniques, and supports decision-making through real-time data integration, improving ampulla recognition and predicting cannulation difficulty. Additionally, predictive analytics help mitigate complications like post-ERCP pancreatitis. The future of AI in pancreaticobiliary endoscopy lies in multimodal data fusion, integrating imaging, genomic, and molecular data to enable personalized medicine. However, challenges such as data quality, external validation, clinician training, and ethical concerns-like data privacy and algorithmic bias-must be addressed to ensure safe implementation. By overcoming these challenges, AI has the potential to redefine pancreaticobiliary healthcare, improving diagnostic accuracy, therapeutic outcomes, and personalized care.
Collapse
Affiliation(s)
- Catarina Cardoso Araújo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Frias
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
6
|
Zhang YH, Fang AQ, Zhu HY, Du YQ. Facing the challenges of autoimmune pancreatitis diagnosis: The answer from artificial intelligence. World J Gastroenterol 2025; 31:102950. [PMID: 40182594 PMCID: PMC11962844 DOI: 10.3748/wjg.v31.i12.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Current diagnosis of autoimmune pancreatitis (AIP) is challenging and often requires combining multiple dimensions. There is a need to explore new methods for diagnosing AIP. The development of artificial intelligence (AI) is evident, and it is believed to have potential in the clinical diagnosis of AIP. This article aims to list the current diagnostic difficulties of AIP, describe existing AI applications, and suggest directions for future AI usages in AIP diagnosis.
Collapse
Affiliation(s)
- You-Han Zhang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Ai-Qiao Fang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Hui-Yun Zhu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yi-Qi Du
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| |
Collapse
|
7
|
Tacelli M, Lauri G, Tabacelia D, Tieranu CG, Arcidiacono PG, Săftoiu A. Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects. Best Pract Res Clin Gastroenterol 2025; 74:101975. [PMID: 40210329 DOI: 10.1016/j.bpg.2025.101975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/31/2024] [Indexed: 04/12/2025]
Abstract
The integration of Artificial Intelligence (AI) in endoscopic ultrasound (EUS) represents a transformative advancement in the early detection and management of biliopancreatic lesions. This review highlights the current state of AI-enhanced EUS (AI-EUS) for diagnosing solid and cystic pancreatic lesions, as well as biliary diseases. AI-driven models, including machine learning (ML) and deep learning (DL), have shown significant improvements in diagnostic accuracy, particularly in distinguishing pancreatic ductal adenocarcinoma (PDAC) from benign conditions and in the characterization of pancreatic cystic neoplasms. Advanced algorithms, such as convolutional neural networks (CNNs), enable precise image analysis, real-time lesion classification, and integration with clinical and genomic data for personalized care. In biliary diseases, AI-assisted systems enhance bile duct visualization and streamline diagnostic workflows, minimizing operator dependency. Emerging applications, such as AI-guided EUS fine-needle aspiration (FNA) and biopsy (FNB), improve diagnostic yields while reducing errors. Despite these advancements, challenges remain, including data standardization, model interpretability, and ethical concerns regarding data privacy. Future developments aim to integrate multimodal imaging, real-time procedural support, and predictive analytics to further refine the diagnostic and therapeutic potential of AI-EUS. AI-driven innovation in EUS stands poised to revolutionize pancreatico-biliary diagnostics, facilitating earlier detection, enhancing precision, and paving the way for personalized medicine in gastrointestinal oncology and beyond.
Collapse
Affiliation(s)
- Matteo Tacelli
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy.
| | - Gaetano Lauri
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy; "Vita-Salute" San Raffaele University, Milan, Italy
| | - Daniela Tabacelia
- Department of Gastroenterology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Universitatea de Medicină și Farmacie Carol Davila din București, Bucuresti, Romania
| | - Cristian George Tieranu
- Department of Gastroenterology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Universitatea de Medicină și Farmacie Carol Davila din București, Bucuresti, Romania
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Milan, Italy; "Vita-Salute" San Raffaele University, Milan, Italy
| | - Adrian Săftoiu
- Department of Gastroenterology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Universitatea de Medicină și Farmacie Carol Davila din București, Bucuresti, Romania
| |
Collapse
|
8
|
Raza D, Singh S, Crinò SF, Boskoski I, Spada C, Fuccio L, Samanta J, Dhar J, Spadaccini M, Gkolfakis P, Maida MF, Machicado J, Spampinato M, Facciorusso A. Diagnostic Approach to Biliary Strictures. Diagnostics (Basel) 2025; 15:325. [PMID: 39941254 PMCID: PMC11816488 DOI: 10.3390/diagnostics15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Biliary strictures represent a narrowing of the bile ducts, leading to obstruction that may result from benign or malignant etiologies. Accurate diagnosis is crucial but challenging due to overlapping features between benign and malignant strictures. This review presents a comprehensive diagnostic approach that integrates biochemical markers, imaging modalities, and advanced endoscopic techniques to distinguish between these causes. Imaging tools such as ultrasound, MRI/MRCP, and CECT are commonly used, each with distinct advantages and limitations. Furthermore, endoscopic procedures such as ERCP and EUS are key in tissue acquisition, enhancing diagnostic accuracy, especially for indeterminate or complex strictures. Recent innovations, including artificial intelligence and new endoscopic techniques, hold promise in enhancing precision and reducing diagnostic challenges. This review emphasizes a multidisciplinary strategy to improve diagnostic pathways, ensuring timely management for patients with biliary strictures.
Collapse
Affiliation(s)
- Daniyal Raza
- Department of Internal Medicine, LSU Health Shreveport, Shreveport, LA 71103, USA;
| | - Sahib Singh
- Department of Internal Medicine, Sinai Hospital, Baltimore, MD 21215, USA;
| | - Stefano Francesco Crinò
- Gastroenterology and Digestive Endoscopy Unit, University Hospital of Verona, 37134 Verona, Italy;
| | - Ivo Boskoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Roma, Italy; (I.B.); (C.S.)
| | - Cristiano Spada
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Roma, Italy; (I.B.); (C.S.)
| | - Lorenzo Fuccio
- Department of Medical Sciences and Surgery, University of Bologna, 40126 Bologna, Italy;
| | - Jayanta Samanta
- Gastroenterology Unit, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India; (J.S.); (J.D.)
| | - Jahnvi Dhar
- Gastroenterology Unit, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India; (J.S.); (J.D.)
| | - Marco Spadaccini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milano, Italy;
| | - Paraskevas Gkolfakis
- Department of Gastroenterology, “Konstantopoulio-Patision” General Hospital of Nea Ionia, 142 33 Athens, Greece
| | | | - Jorge Machicado
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Antonio Facciorusso
- Gastroenterology Unit, Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
9
|
Jain A, Pabba M, Jain A, Singh S, Ali H, Vinayek R, Aswath G, Sharma N, Inamdar S, Facciorusso A. Impact of Artificial Intelligence on Pancreaticobiliary Endoscopy. Cancers (Basel) 2025; 17:379. [PMID: 39941748 PMCID: PMC11815774 DOI: 10.3390/cancers17030379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Pancreaticobiliary diseases can lead to significant morbidity and their diagnoses rely on imaging and endoscopy which are dependent on operator expertise. Artificial intelligence (AI) has seen a rapid uptake in the field of luminal endoscopy, such as polyp detection during colonoscopy. However, its use for pancreaticobiliary endoscopic modalities such as endoscopic ultrasound (EUS) and cholangioscopy remains scarce, with only few studies available. In this review, we delve into the current evidence, benefits, limitations, and future scope of AI technologies in pancreaticobiliary endoscopy.
Collapse
Affiliation(s)
- Aryan Jain
- Department of Gastroenterology, Albany Medical College, Albany, NY 12208, USA; (A.J.); (M.P.); (A.J.)
| | - Mayur Pabba
- Department of Gastroenterology, Albany Medical College, Albany, NY 12208, USA; (A.J.); (M.P.); (A.J.)
| | - Aditya Jain
- Department of Gastroenterology, Albany Medical College, Albany, NY 12208, USA; (A.J.); (M.P.); (A.J.)
| | - Sahib Singh
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA
| | - Hassam Ali
- Department of Gastroenterology, ECU Health Medical Center/Brody School of Medicine, Greenville, NC 27834, USA;
| | - Rakesh Vinayek
- Department of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA;
| | - Ganesh Aswath
- Department of Gastroenterology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA;
| | - Neil Sharma
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Sumant Inamdar
- Department of Gastroenterology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
- Clinical Effectiveness Research Group, Faculty of Medicine, Institute of Health and Society, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
10
|
Lin CK, Wu SH, Chua YW, Fan HJ, Cheng YC. TransEBUS: The interpretation of endobronchial ultrasound image using hybrid transformer for differentiating malignant and benign mediastinal lesions. J Formos Med Assoc 2025; 124:28-37. [PMID: 38702216 DOI: 10.1016/j.jfma.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
The purpose of this study is to establish a deep learning automatic assistance diagnosis system for benign and malignant classification of mediastinal lesions in endobronchial ultrasound (EBUS) images. EBUS images are in the form of video and contain multiple imaging modes. Different imaging modes and different frames can reflect the different characteristics of lesions. Compared with previous studies, the proposed model can efficiently extract and integrate the spatiotemporal relationships between different modes and does not require manual selection of representative frames. In recent years, Vision Transformer has received much attention in the field of computer vision. Combined with convolutional neural networks, hybrid transformers can also perform well on small datasets. This study designed a novel deep learning architecture based on hybrid transformer called TransEBUS. By adding learnable parameters in the temporal dimension, TransEBUS was able to extract spatiotemporal features from insufficient data. In addition, we designed a two-stream module to integrate information from three different imaging modes of EBUS. Furthermore, we applied contrastive learning when training TransEBUS, enabling it to learn discriminative representation of benign and malignant mediastinal lesions. The results show that TransEBUS achieved a diagnostic accuracy of 82% and an area under the curve of 0.8812 in the test dataset, outperforming other methods. It also shows that several models can improve performance by incorporating two-stream module. Our proposed system has shown its potential to help physicians distinguishing benign and malignant mediastinal lesions, thereby ensuring the accuracy of EBUS examination.
Collapse
Affiliation(s)
- Ching-Kai Lin
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Shao-Hua Wu
- Department of Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan.
| | - Yi-Wei Chua
- Department of Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Hung-Jen Fan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Biomedical Park Hospital, Hsin-Chu County, 302, Taiwan
| | - Yun-Chien Cheng
- Department of Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan.
| |
Collapse
|
11
|
Noort FVD, Borg FT, Guitink A, Faber J, Wolterink JM. Deep learning for segmentation of colorectal carcinomas on endoscopic ultrasound. Tech Coloproctol 2024; 29:20. [PMID: 39671056 DOI: 10.1007/s10151-024-03056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Bowel-preserving local resection of early rectal cancer is less successful if the tumor infiltrates the muscularis propria as opposed to submucosal infiltration only. Magnetic resonance imaging currently lacks the spatial resolution to provide a reliable estimation of the infiltration depth. Endoscopic ultrasound (EUS) has better resolution, but its interpretation is investigator dependent. We hypothesize that automated image segmentation of EUS could be a way to standardize EUS interpretation. METHODS EUS media and outcome data were collected prospectively. Based on 373 expert manual segmentations, a convolutional neural network was developed to perform segmentation of the submucosa, muscularis propria, and tumors. The mean surface distance (MSD), maximal distance between segmentations (Hausdorff distance; HDD), and overlap (Dice similarity index; DSI) were calculated. RESULTS The median MSD and HDD values were 3.2 and 17.7 pixels for the tumor, 3.4 and 24.7 pixels for the submucosa, and 2.6 and 20.0 pixels for the muscularis propria, respectively. The median DSI values for the tumor, submucosa, and muscularis propria were 0.82, 0.57, and 0.59, respectively. These values reflect good agreement between manual and deep learning segmentation. CONCLUSIONS This study found encouraging results of using automated analysis of EUS images of early rectal cancer, supporting further exploration in clinical practice.
Collapse
Affiliation(s)
- F van den Noort
- Department of Applied Mathematics, Technical Medical Center, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands.
| | - F Ter Borg
- Department of Gastroenterology & Hepatology, Deventer Hospital, Deventer, the Netherlands
| | - A Guitink
- Department of Gastroenterology & Hepatology, Deventer Hospital, Deventer, the Netherlands
| | - J Faber
- Department of Epidemiology, Deventer Hospital, Deventer, the Netherlands
| | - J M Wolterink
- Department of Applied Mathematics, Technical Medical Center, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| |
Collapse
|
12
|
Orzan RI, Santa D, Lorenzovici N, Zareczky TA, Pojoga C, Agoston R, Dulf EH, Seicean A. Deep Learning in Endoscopic Ultrasound: A Breakthrough in Detecting Distal Cholangiocarcinoma. Cancers (Basel) 2024; 16:3792. [PMID: 39594747 PMCID: PMC11593152 DOI: 10.3390/cancers16223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a highly lethal malignancy originating in the bile ducts, often diagnosed late with poor prognosis. Differentiating benign from malignant biliary tumors remains challenging, necessitating advanced diagnostic techniques. OBJECTIVE This study aims to enhance the diagnostic accuracy of endoscopic ultrasound (EUS) for distal cholangiocarcinoma (dCCA) using advanced convolutional neural networks (CCNs) for the classification and segmentation of EUS images, specifically targeting dCCAs, the pancreas, and the bile duct. MATERIALS AND METHODS In this retrospective study, EUS images from patients diagnosed with dCCA via biopsy and an EUS-identified bile duct tumor were evaluated. A custom CNN was developed for classification, trained on 156 EUS images. To enhance the model's robustness, image augmentation techniques were applied, generating a total of 1248 images. For tumor and organ segmentation, the DeepLabv3+ network with ResNet50 architecture was utilized, employing Tversky loss to manage unbalanced classes. Performance evaluation included metrics such as accuracy, sensitivity, specificity, and Intersection over Union (IoU). These methods were implemented in collaboration with the ADAPTED Research Group at the Technical University of Cluj-Napoca. RESULTS The classification model achieved a high accuracy of 97.82%, with precision and specificity both at 100% and sensitivity at 94.44%. The segmentation models for the pancreas and bile duct demonstrated global accuracies of 84% and 90%, respectively, with robust IoU scores indicating good overlap between predicted and actual contours. The application performed better than the UNet model, particularly in generalization and boundary delineation. CONCLUSIONS This study demonstrates the significant potential of AI in EUS imaging for dCCA, presenting a robust tool that enhances diagnostic accuracy and efficiency. The developed MATLAB application serves as a valuable aid for medical professionals, facilitating informed decision-making and improving patient outcomes in the diagnosis of cholangiocarcinoma and related pathologies.
Collapse
Affiliation(s)
- Rares Ilie Orzan
- 3rd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Victor Babeș Str., No. 8, 400012 Cluj-Napoca, Romania
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Str., No. 19-21, 400162 Cluj-Napoca, Romania;
| | - Delia Santa
- Automation Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, G. Baritiu Str., No. 26-28, 400027 Cluj-Napoca, Romania (N.L.)
| | - Noemi Lorenzovici
- Automation Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, G. Baritiu Str., No. 26-28, 400027 Cluj-Napoca, Romania (N.L.)
| | - Thomas Andrei Zareczky
- Automation Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, G. Baritiu Str., No. 26-28, 400027 Cluj-Napoca, Romania (N.L.)
| | - Cristina Pojoga
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Str., No. 19-21, 400162 Cluj-Napoca, Romania;
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Sindicatelor Str., No. 7, 400029 Cluj-Napoca, Romania
| | - Renata Agoston
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Victor Babes Str., No. 8, 400012 Cluj-Napoca, Romania
| | - Eva-Henrietta Dulf
- Automation Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, G. Baritiu Str., No. 26-28, 400027 Cluj-Napoca, Romania (N.L.)
| | - Andrada Seicean
- 3rd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Victor Babeș Str., No. 8, 400012 Cluj-Napoca, Romania
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Str., No. 19-21, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
13
|
Agudo Castillo B, Mascarenhas M, Martins M, Mendes F, de la Iglesia D, Costa AMMPD, Esteban Fernández-Zarza C, González-Haba Ruiz M. Advancements in biliopancreatic endoscopy - A comprehensive review of artificial intelligence in EUS and ERCP. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:613-622. [PMID: 38832589 DOI: 10.17235/reed.2024.10456/2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The development and implementation of artificial intelligence (AI), particularly deep learning (DL) models, has generated significant interest across various fields of gastroenterology. While research in luminal endoscopy has seen rapid translation to clinical practice with approved AI devices, its potential extends far beyond, offering promising benefits for biliopancreatic endoscopy like optical characterization of strictures during cholangioscopy or detection and classification of pancreatic lesions during diagnostic endoscopic ultrasound (EUS). This narrative review provides an up-to-date of the latest literature and available studies in this field. Serving as a comprehensive guide to the current landscape of AI in biliopancreatic endoscopy, emphasizing technological advancements, main applications, ethical considerations, and future directions for research and clinical implementation.
Collapse
Affiliation(s)
| | | | - Miguel Martins
- Gastroenterology, Centro Hospitalar Universitário de São João
| | - Francisco Mendes
- Gastroenterology, Centro Hospitalar Universitário de São João, Portugal
| | | | | | | | | |
Collapse
|
14
|
Bush N, Khashab M, Akshintala VS. Current and Emerging Applications of Artificial Intelligence (AI) in the Management of Pancreatobiliary (PB) disorders. Curr Gastroenterol Rep 2024; 26:304-309. [PMID: 39134866 DOI: 10.1007/s11894-024-00942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW: In this review, we aim to summarize the existing literature and future directions on the use of artificial intelligence (AI) for the diagnosis and treatment of PB (pancreaticobiliary) disorders. RECENT FINDINGS: AI models have been developed to aid in the diagnosis and management of PB disorders such as pancreatic adenocarcinoma (PDAC), pancreatic neuroendocrine tumors (pNETs), acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, choledocholithiasis, indeterminate biliary strictures, cholangiocarcinoma and endoscopic procedures such as ERCP, EUS, and cholangioscopy. Recent studies have integrated radiological, endoscopic and pathological data to develop models to aid in better detection and prognostication of these disorders. AI is an indispensable proponent in the future practice of medicine. It has been extensively studied and approved for use in the detection of colonic polyps. AI models based on clinical, laboratory, and radiomics have been developed to aid in the diagnosis and management of various PB disorders and its application is ever expanding. Despite promising results, these AI-based models need further external validation to be clinically applicable.
Collapse
Affiliation(s)
- Nikhil Bush
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mouen Khashab
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Venkata S Akshintala
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Daum N, Blaivas M, Goudie A, Hoffmann B, Jenssen C, Neubauer R, Recker F, Moga TV, Zervides C, Dietrich CF. Student ultrasound education, current view and controversies. Role of Artificial Intelligence, Virtual Reality and telemedicine. Ultrasound J 2024; 16:44. [PMID: 39331224 PMCID: PMC11436506 DOI: 10.1186/s13089-024-00382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 09/28/2024] Open
Abstract
The digitization of medicine will play an increasingly significant role in future years. In particular, telemedicine, Virtual Reality (VR) and innovative Artificial Intelligence (AI) systems offer tremendous potential in imaging diagnostics and are expected to shape ultrasound diagnostics and teaching significantly. However, it is crucial to consider the advantages and disadvantages of employing these new technologies and how best to teach and manage their use. This paper provides an overview of telemedicine, VR and AI in student ultrasound education, presenting current perspectives and controversies.
Collapse
Affiliation(s)
- Nils Daum
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
- Brandenburg Institute for Clinical Ultrasound (BICUS) at Brandenburg Medical University, Neuruppin, Germany
| | - Michael Blaivas
- Department of Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Beatrice Hoffmann
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christian Jenssen
- Brandenburg Institute for Clinical Ultrasound (BICUS) at Brandenburg Medical University, Neuruppin, Germany
- Department for Internal Medicine, Krankenhaus Märkisch Oderland, Strausberg, Germany
| | | | - Florian Recker
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Tudor Voicu Moga
- Department of Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Piața Eftimie Murgu 2, 300041, Timișoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, 300041, Timisoara, Romania
| | | | - Christoph Frank Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland.
| |
Collapse
|
16
|
Jiang H, Ye LS, Yuan XL, Luo Q, Zhou NY, Hu B. Artificial intelligence in pancreaticobiliary endoscopy: Current applications and future directions. J Dig Dis 2024; 25:564-572. [PMID: 39740251 DOI: 10.1111/1751-2980.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Pancreaticobiliary endoscopy is an essential tool for diagnosing and treating pancreaticobiliary diseases. However, it does not fully meet clinical needs, which presents challenges such as significant difficulty in operation and risks of missed diagnosis or misdiagnosis. In recent years, artificial intelligence (AI) has enhanced the diagnostic and treatment efficiency and quality of pancreaticobiliary endoscopy. Diagnosis and differential diagnosis based on endoscopic ultrasound (EUS) images, pathology of EUS-guided fine-needle aspiration or biopsy, need for endoscopic retrograde cholangiopancreatography (ERCP) and assessment of operational difficulty, postoperative complications and prediction of patient prognosis, and real-time procedure guidance. This review provides an overview of AI applications in pancreaticobiliary endoscopy and proposes future development directions in aspects such as data quality and algorithmic interpretability, aiming to provide new insights for the integration of AI technology with pancreaticobiliary endoscopy.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Song Ye
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiang Lei Yuan
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Nuo Ya Zhou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
17
|
Gupta P, Basu S, Arora C. Applications of artificial intelligence in biliary tract cancers. Indian J Gastroenterol 2024; 43:717-728. [PMID: 38427281 DOI: 10.1007/s12664-024-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024]
Abstract
Biliary tract cancers are malignant neoplasms arising from bile duct epithelial cells. They include cholangiocarcinomas and gallbladder cancer. Gallbladder cancer has a marked geographical preference and is one of the most common cancers in women in northern India. Biliary tract cancers are usually diagnosed at an advanced, unresectable stage. Hence, the prognosis is extremely dismal. The five-year survival rate in advanced gallbladder cancer is < 5%. Hence, early detection and radical surgery are critical to improving biliary tract cancer prognoses. Radiological imaging plays an essential role in diagnosing and managing biliary tract cancers. However, the diagnosis is challenging because the biliary tract is affected by many diseases that may have radiological appearances similar to cancer. Artificial intelligence (AI) can improve radiologists' performance in various tasks. Deep learning (DL)-based approaches are increasingly incorporated into medical imaging to improve diagnostic performance. This paper reviews the AI-based strategies in biliary tract cancers to improve the diagnosis and prognosis.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| | - Soumen Basu
- Department of Computer Science and Engineering, Indian Institute of Technology - Delhi, New Delhi, 110 016, India
| | - Chetan Arora
- Department of Computer Science and Engineering, Indian Institute of Technology - Delhi, New Delhi, 110 016, India
| |
Collapse
|
18
|
Rousta F, Esteki A, Shalbaf A, Sadeghi A, Moghadam PK, Voshagh A. Application of artificial intelligence in pancreas endoscopic ultrasound imaging- A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108205. [PMID: 38703435 DOI: 10.1016/j.cmpb.2024.108205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The pancreas is a vital organ in digestive system which has significant health implications. It is imperative to evaluate and identify malignant pancreatic lesions promptly in light of the high mortality rate linked to such malignancies. Endoscopic Ultrasound (EUS) is a non-invasive precise technique to detect pancreas disorders, but it is highly operator dependent. Artificial intelligence (AI), including traditional machine learning (ML) and deep learning (DL) techniques can play a pivotal role to enhancing the performance of EUS regardless of operator. AI performs a critical function in the detection, classification, and segmentation of medical images. The utilization of AI-assisted systems has improved the accuracy and productivity of pancreatic analysis, including the detection of diverse pancreatic disorders (e.g., pancreatitis, masses, and cysts) as well as landmarks and parenchyma. This systematic review examines the rapidly developing domain of AI-assisted system in EUS of the pancreas. Its objective is to present a thorough study of the present research status and developments in this area. This paper explores the significant challenges of AI-assisted system in pancreas EUS imaging, highlights the potential of AI techniques in addressing these challenges, and suggests the scope for future research in domain of AI-assisted EUS systems.
Collapse
Affiliation(s)
- Fatemeh Rousta
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esteki
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Ketabi Moghadam
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardalan Voshagh
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Zhao SQ, Liu WT. Progress in artificial intelligence assisted digestive endoscopy diagnosis of digestive system diseases. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:171-181. [DOI: 10.11569/wcjd.v32.i3.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
20
|
Ali H, Muzammil MA, Dahiya DS, Ali F, Yasin S, Hanif W, Gangwani MK, Aziz M, Khalaf M, Basuli D, Al-Haddad M. Artificial intelligence in gastrointestinal endoscopy: a comprehensive review. Ann Gastroenterol 2024; 37:133-141. [PMID: 38481787 PMCID: PMC10927620 DOI: 10.20524/aog.2024.0861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 02/14/2025] Open
Abstract
Integrating artificial intelligence (AI) into gastrointestinal (GI) endoscopy heralds a significant leap forward in managing GI disorders. AI-enabled applications, such as computer-aided detection and computer-aided diagnosis, have significantly advanced GI endoscopy, improving early detection, diagnosis and personalized treatment planning. AI algorithms have shown promise in the analysis of endoscopic data, critical in conditions with traditionally low diagnostic sensitivity, such as indeterminate biliary strictures and pancreatic cancer. Convolutional neural networks can markedly improve the diagnostic process when integrated with cholangioscopy or endoscopic ultrasound, especially in the detection of malignant biliary strictures and cholangiocarcinoma. AI's capacity to analyze complex image data and offer real-time feedback can streamline endoscopic procedures, reduce the need for invasive biopsies, and decrease associated adverse events. However, the clinical implementation of AI faces challenges, including data quality issues and the risk of overfitting, underscoring the need for further research and validation. As the technology matures, AI is poised to become an indispensable tool in the gastroenterologist's arsenal, necessitating the integration of robust, validated AI applications into routine clinical practice. Despite remarkable advances, challenges such as operator-dependent accuracy and the need for intricate examinations persist. This review delves into the transformative role of AI in enhancing endoscopic diagnostic accuracy, particularly highlighting its utility in the early detection and personalized treatment of GI diseases.
Collapse
Affiliation(s)
- Hassam Ali
- Department of Gastroenterology and Hepatology, ECU Health Medical Center/Brody School of Medicine, Greenville, North Carolina, USA (Hassam Ali, Muhammad Khalaf)
| | - Muhammad Ali Muzammil
- Department of Internal Medicine, Dow University of Health Sciences, Sindh, PK (Muhammad Ali Muzammil)
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, Kansas, USA (Dushyant Singh Dahiya)
| | - Farishta Ali
- Department of Internal Medicine, Khyber Girls Medical College, Peshawar, PK (Farishta Ali)
| | - Shafay Yasin
- Department of Internal Medicine, Quaid-e-Azam Medical College, Punjab, PK (Shafay Yasin, Waqar Hanif)
| | - Waqar Hanif
- Department of Internal Medicine, Quaid-e-Azam Medical College, Punjab, PK (Shafay Yasin, Waqar Hanif)
| | - Manesh Kumar Gangwani
- Department of Medicine, University of Toledo Medical Center, Toledo, OH, USA (Manesh Kumar Gangwani)
| | - Muhammad Aziz
- Department of Gastroenterology and Hepatology, The University of Toledo Medical Center, Toledo, OH, USA (Muhammad Aziz)
| | - Muhammad Khalaf
- Department of Gastroenterology and Hepatology, ECU Health Medical Center/Brody School of Medicine, Greenville, North Carolina, USA (Hassam Ali, Muhammad Khalaf)
| | - Debargha Basuli
- Department of Internal Medicine, East Carolina University/Brody School of Medicine, Greenville, North Carolina, USA (Debargha Basuli)
| | - Mohammad Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA (Mohammad Al-Haddad)
| |
Collapse
|
21
|
Tian S, Shi H, Chen W, Li S, Han C, Du F, Wang W, Wen H, Lei Y, Deng L, Tang J, Zhang J, Lin J, Shi L, Ning B, Zhao K, Miao J, Wang G, Hou H, Huang X, Kong W, Jin X, Ding Z, Lin R. Artificial intelligence-based diagnosis of standard endoscopic ultrasonography scanning sites in the biliopancreatic system: a multicenter retrospective study. Int J Surg 2024; 110:1637-1644. [PMID: 38079604 PMCID: PMC10942157 DOI: 10.1097/js9.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND There are challenges for beginners to identify standard biliopancreatic system anatomical sites on endoscopic ultrasonography (EUS) images. Therefore, the authors aimed to develop a convolutional neural network (CNN)-based model to identify standard biliopancreatic system anatomical sites on EUS images. METHODS The standard anatomical structures of the gastric and duodenal regions observed by EUS was divided into 14 sites. The authors used 6230 EUS images with standard anatomical sites selected from 1812 patients to train the CNN model, and then tested its diagnostic performance both in internal and external validations. Internal validation set tests were performed on 1569 EUS images of 47 patients from two centers. Externally validated datasets were retrospectively collected from 16 centers, and finally 131 patients with 85 322 EUS images were included. In the external validation, all EUS images were read by CNN model, beginners, and experts, respectively. The final decision made by the experts was considered as the gold standard, and the diagnostic performance between CNN model and beginners were compared. RESULTS In the internal test cohort, the accuracy of CNN model was 92.1-100.0% for 14 standard anatomical sites. In the external test cohort, the sensitivity and specificity of CNN model were 89.45-99.92% and 93.35-99.79%, respectively. Compared with beginners, CNN model had higher sensitivity and specificity for 11 sites, and was in good agreement with the experts (Kappa values 0.84-0.98). CONCLUSIONS The authors developed a CNN-based model to automatically identify standard anatomical sites on EUS images with excellent diagnostic performance, which may serve as a potentially powerful auxiliary tool in future clinical practice.
Collapse
Affiliation(s)
- Shuxin Tian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi
- National Health Commission Key Laboratory of Central Asia High Incidence Disease Prevention and Control, Shihezi
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Weigang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi
- National Health Commission Key Laboratory of Central Asia High Incidence Disease Prevention and Control, Shihezi
| | - Shijie Li
- National Health Commission Key Laboratory of Central Asia High Incidence Disease Prevention and Control, Shihezi
- Department of Endoscopy Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing
| | - Chaoqun Han
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Fan Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Weijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Hongxu Wen
- Department of Gastroenterology, Lanzhou Second People’s Hospital, Lanzhou
| | - Yali Lei
- Department of Gastroenterology, Weinan Central Hospital, Weinan
| | - Liang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Jing Tang
- Department of Gastroenterology, Fuling Hospital Affiliated to Chongqing University, Chongqing
| | - Jinjie Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Baotou
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District People’s Hospital, Shenzhen
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou
| | - Bo Ning
- Department of Gastroenterology, The Second Affiliated Hospital Chongqing Medical University, Chongqing
| | - Kui Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Chendu Medical College, Chengdu
| | - Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming
| | - Guobao Wang
- Department of endoscopy, Sun Yat-sen University Cancer Center,Guangzhou
| | - Hui Hou
- Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi
| | - Xiaoxi Huang
- Department of Gastroenterology, Haikou People’s Hospital, Haikou
| | - Wenjie Kong
- Department of Gastroenterology, People’s Hospital of Xinjiang Autonomous Region, Urumqi
| | - Xiaojuan Jin
- Department of Gastroenterology, Suining Central Hospital, Suining, People’s Republic of China
| | - Zhen Ding
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Endoscopy Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
22
|
Abstract
Artificial intelligence (AI) is an epoch-making technology, among which the 2 most advanced parts are machine learning and deep learning algorithms that have been further developed by machine learning, and it has been partially applied to assist EUS diagnosis. AI-assisted EUS diagnosis has been reported to have great value in the diagnosis of pancreatic tumors and chronic pancreatitis, gastrointestinal stromal tumors, esophageal early cancer, biliary tract, and liver lesions. The application of AI in EUS diagnosis still has some urgent problems to be solved. First, the development of sensitive AI diagnostic tools requires a large amount of high-quality training data. Second, there is overfitting and bias in the current AI algorithms, leading to poor diagnostic reliability. Third, the value of AI still needs to be determined in prospective studies. Fourth, the ethical risks of AI need to be considered and avoided.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai hospital, Naval Medical University, Shanghai 200433, China
| | - Chang Wu
- Department of Gastroenterology, Changhai hospital, Naval Medical University, Shanghai 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Changhai hospital, Naval Medical University, Shanghai 200433, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- Department of Gastroenterology, Changhai hospital, Naval Medical University, Shanghai 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Changhai hospital, Naval Medical University, Shanghai 200433, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai hospital, Naval Medical University, Shanghai 200433, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
23
|
Wu HL, Yao LW, Shi HY, Wu LL, Li X, Zhang CX, Chen BR, Zhang J, Tan W, Cui N, Zhou W, Zhang JX, Xiao B, Gong RR, Ding Z, Yu HG. Validation of a real-time biliopancreatic endoscopic ultrasonography analytical device in China: a prospective, single-centre, randomised, controlled trial. Lancet Digit Health 2023; 5:e812-e820. [PMID: 37775472 DOI: 10.1016/s2589-7500(23)00160-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Endoscopic ultrasonography (EUS) is a key procedure for the diagnosis of biliopancreatic diseases. However, the performance among EUS endoscopists varies greatly and leads to blind spots during the operation, which can impair the health outcomes of patients. We previously developed an artificial intelligence (AI) device that accurately identified EUS standard stations and significantly reduced the difficulty of ultrasonography image interpretation. In this study, we updated the device (named EUS-IREAD) and validated its performance in improving the quality of EUS procedures. METHODS In this single-centre, randomised, controlled trial, we updated EUS-IREAD so it consisted of five learning models to identify eight EUS stations and 24 anatomical structures. The trial was done at the Renmin Hospital of Wuhan University (Wuhan, China) and included patients aged 18 years or older with suspected biliopancreatic (pancreas and biliopancreatic duct) lesions due to clinical symptoms, radiological findings, or laboratory findings, and with a high risk of pancreatic cancer. Patients were randomly assigned (1:1) by a dedicated research assistant using a computer-generated random number series (with a block size of four) to undergo the EUS procedure with or without the assistance of EUS-IREAD. Endoscopists in the EUS-IREAD-assisted group were required to observe all standard stations and anatomical structures according to the prompts by the AI device. Data collectors, the independent data anaylsis team, and patients were masked to group allocation. The primary outcome was the missed scanning rate of standard stations between the two groups, which was assessed in patients who underwent EUS procedure in accordance with the assigned intervention (per protocol). This trial is registered with ClinicalTrials.gov, NCT05457101. FINDINGS Between July 9, 2022, and Feb 28, 2023, 290 patients (mean age 55·93 years [SD 14·06], 152 [52%] male, and 138 [48%] female) were randomly assigned and analysed, including 144 in the EUS-IREAD-assisted group and 146 in the control group. The EUS-IREAD-assisted group had a lower missed scanning rate of stations than the control group (4·5% [SD 0·8] vs 14·3% [1·0], -9·8% [95% CI -12·2 to -7·5]; odds ratio 3·6 [95% Cl 2·6 to 4·9]; p<0·0001). No significant adverse event was found during the study. INTERPRETATION Our study confirms the capability of EUS-IREAD to monitor the blind spots and reduce the missed rate of stations and structures during EUS procedures. The EUS-IREAD has the potential to play an essential part in EUS quality control. FUNDING Innovation Team Project of Health Commission of Hubei Province and College-enterprise Deepening Reform Project of Wuhan University.
Collapse
Affiliation(s)
- Hui Ling Wu
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Wen Yao
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Ying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian Lian Wu
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xun Li
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Xia Zhang
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Ru Chen
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Cui
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji Xiang Zhang
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing Xiao
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Rong Gong
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Ding
- Endoscopy Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hong Gang Yu
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, and Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Chen CC, Wu CT, Chen CPC, Chung CY, Chen SC, Lee MS, Cheng CT, Liao CH. Predicting the Risk of Total Hip Replacement by Using A Deep Learning Algorithm on Plain Pelvic Radiographs: Diagnostic Study. JMIR Form Res 2023; 7:e42788. [PMID: 37862084 PMCID: PMC10625092 DOI: 10.2196/42788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/27/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Total hip replacement (THR) is considered the gold standard of treatment for refractory degenerative hip disorders. Identifying patients who should receive THR in the short term is important. Some conservative treatments, such as intra-articular injection administered a few months before THR, may result in higher odds of arthroplasty infection. Delayed THR after functional deterioration may result in poorer outcomes and longer waiting times for those who have been flagged as needing THR. Deep learning (DL) in medical imaging applications has recently obtained significant breakthroughs. However, the use of DL in practical wayfinding, such as short-term THR prediction, is still lacking. OBJECTIVE In this study, we will propose a DL-based assistant system for patients with pelvic radiographs to identify the need for THR within 3 months. METHODS We developed a convolutional neural network-based DL algorithm to analyze pelvic radiographs, predict the hip region of interest (ROI), and determine whether or not THR is required. The data set was collected from August 2008 to December 2017. The images included 3013 surgical hip ROIs that had undergone THR and 1630 nonsurgical hip ROIs. The images were split, using split-sample validation, into training (n=3903, 80%), validation (n=476, 10%), and testing (n=475, 10%) sets to evaluate the algorithm performance. RESULTS The algorithm, called SurgHipNet, yielded an area under the receiver operating characteristic curve of 0.994 (95% CI 0.990-0.998). The accuracy, sensitivity, specificity, and F1-score of the model were 0.977, 0.920, 0932, and 0.944, respectively. CONCLUSIONS The proposed approach has demonstrated that SurgHipNet shows the ability and potential to provide efficient support in clinical decision-making; it can assist physicians in promptly determining the optimal timing for THR.
Collapse
Affiliation(s)
- Chih-Chi Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Ta Wu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Carl P C Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Ying Chung
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Mel S Lee
- Department of Orthopaedic Surgery, Pao-Chien Hospital, Pingtung, Taiwan
| | - Chi-Tung Cheng
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taoyuan, Taiwan
| | - Chien-Hung Liao
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taoyuan, Taiwan
| |
Collapse
|
25
|
Khalaf K, Terrin M, Jovani M, Rizkala T, Spadaccini M, Pawlak KM, Colombo M, Andreozzi M, Fugazza A, Facciorusso A, Grizzi F, Hassan C, Repici A, Carrara S. A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound. J Clin Med 2023; 12:3757. [PMID: 37297953 PMCID: PMC10253269 DOI: 10.3390/jcm12113757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial Intelligence in healthcare in growing. This review aimed to provide an overview of the current state of AI in EUS from imaging to pathological diagnosis and training. METHODS AI algorithms can assist in lesion detection and characterization in EUS by analyzing EUS images and identifying suspicious areas that may require further clinical evaluation or biopsy sampling. Deep learning techniques, such as convolutional neural networks (CNNs), have shown great potential for tumor identification and subepithelial lesion (SEL) evaluation by extracting important features from EUS images and using them to classify or segment the images. RESULTS AI models with new features can increase the accuracy of diagnoses, provide faster diagnoses, identify subtle differences in disease presentation that may be missed by human eyes, and provide more information and insights into disease pathology. CONCLUSIONS The integration of AI in EUS images and biopsies has the potential to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in repeated procedures in case of non-diagnostic biopsies.
Collapse
Affiliation(s)
- Kareem Khalaf
- Division of Gastroenterology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada; (K.K.); (K.M.P.)
| | - Maria Terrin
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Manol Jovani
- Division of Gastroenterology, Maimonides Medical Center, SUNY Downstate University, Brooklyn, NY 11219, USA;
| | - Tommy Rizkala
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Marco Spadaccini
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Katarzyna M. Pawlak
- Division of Gastroenterology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada; (K.K.); (K.M.P.)
| | - Matteo Colombo
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Marta Andreozzi
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Alessandro Fugazza
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy;
| | - Cesare Hassan
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Alessandro Repici
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Silvia Carrara
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| |
Collapse
|
26
|
Njei B, McCarty TR, Mohan BP, Fozo L, Navaneethan U. Artificial intelligence in endoscopic imaging for detection of malignant biliary strictures and cholangiocarcinoma: a systematic review. Ann Gastroenterol 2023; 36:223-230. [PMID: 36864938 PMCID: PMC9932867 DOI: 10.20524/aog.2023.0779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Background Artificial intelligence (AI), when applied to computer vision using a convolutional neural network (CNN), is a promising tool in "difficult-to-diagnose" conditions such as malignant biliary strictures and cholangiocarcinoma (CCA). The aim of this systematic review is to summarize and review the available data on the diagnostic utility of endoscopic AI-based imaging for malignant biliary strictures and CCA. Methods In this systematic review, PubMed, Scopus and Web of Science databases were reviewed for studies published from January 2000 to June 2022. Extracted data included type of endoscopic imaging modality, AI classifiers, and performance measures. Results The search yielded 5 studies involving 1465 patients. Of the 5 included studies, 4 (n=934; 3,775,819 images) used CNN in combination with cholangioscopy, while one study (n=531; 13,210 images) used CNN with endoscopic ultrasound (EUS). The average image processing speed of CNN with cholangioscopy was 7-15 msec per frame while that of CNN with EUS was 200-300 msec per frame. The highest performance metrics were observed with CNN-cholangioscopy (accuracy 94.9%, sensitivity 94.7%, and specificity 92.1%). CNN-EUS was associated with the greatest clinical performance application, providing station recognition and bile duct segmentation; thus reducing procedure length and providing real-time feedback to the endoscopist. Conclusions Our results suggest that there is increasing evidence to support a role for AI in the diagnosis of malignant biliary strictures and CCA. CNN-based machine leaning of cholangioscopy images appears to be the most promising, while CNN-EUS has the best clinical performance application.
Collapse
Affiliation(s)
- Basile Njei
- Global Clinical Scholars Program, Harvard Medical School, Boston, MA, USA (Basile Njei)
- Investigative Medicine Program, Yale University School of Medicine, New Haven, CT, USA (Basile Njei)
- Oxford Artificial Intelligence Programme, University of Oxford, United Kingdom (Basile Njei)
| | - Thomas R. McCarty
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital, TX, USA (Thomas R. McCarty)
| | - Babu P Mohan
- Division of Gastroenterology and Hepatology, University of Utah School of Medicine, Salt Lake City, USA (Babu P Mohan)
| | - Lydia Fozo
- Johns Hopkins University, Baltimore, MD, USA (Lydia Fozo)
| | - Udayakumar Navaneethan
- Center for IBD and Interventional IBD Unit, Digestive Health Institute, Orlando Health, FL, USA (Udayakumar Navaneethan)
| |
Collapse
|
27
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
28
|
Brenner AR, Laoveeravat P, Carey PJ, Joiner D, Mardini SH, Jovani M. Artificial intelligence using advanced imaging techniques and cholangiocarcinoma: Recent advances and future direction. Artif Intell Gastroenterol 2022; 3:88-95. [DOI: 10.35712/aig.v3.i3.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
While cholangiocarcinoma represents only about 3% of all gastrointestinal tumors, it has a dismal survival rate, usually because it is diagnosed at a late stage. The utilization of Artificial Intelligence (AI) in medicine in general, and in gastroenterology has made gigantic steps. However, the application of AI for biliary disease, in particular for cholangiocarcinoma, has been sub-optimal. The use of AI in combination with clinical data, cross-sectional imaging (computed tomography, magnetic resonance imaging) and endoscopy (endoscopic ultrasound and cholangioscopy) has the potential to significantly improve early diagnosis and the choice of optimal therapeutic options, leading to a transformation in the prognosis of this feared disease. In this review we summarize the current knowledge on the use of AI for the diagnosis and management of cholangiocarcinoma and point to future directions in the field.
Collapse
Affiliation(s)
- Aaron R Brenner
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Passisd Laoveeravat
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Patrick J Carey
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Danielle Joiner
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Samuel H Mardini
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KENTUCKY 40536, United States
| | - Manol Jovani
- Digestive Diseases and Nutrition, University of Kentucky Albert B. Chandler Hospital, Lexington, KY 40536, United States
| |
Collapse
|
29
|
Correia FP, Lourenço LC. Artificial intelligence in the endoscopic approach of biliary tract diseases: A current review. Artif Intell Gastrointest Endosc 2022; 3:9-15. [DOI: 10.37126/aige.v3.i2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years there have been major developments in the field of artificial intelligence. The different areas of medicine have taken advantage of this tool to make various diagnostic and therapeutic methods more effective, safe, and user-friendly. In this way, artificial intelligence has been an increasingly present reality in medicine. In the field of Gastroenterology, the main application has been in the detection and characterization of colonic polyps, but an increasing number of studies have been published on the application of deep learning systems in other pathologies of the gastrointestinal tract. Evidence of the application of artificial intelligence in the assessment of biliary tract is still scarce. Some studies support the usefulness of these systems in the investigation and treatment of choledocholithiasis, demonstrating that they have the potential to be integrated into clinical practice and endoscopic procedures, such as endoscopic retrograde cholangiopancreatography. Its application in cholangioscopy for the investigation of undetermined biliary strictures also seems to be promising. Assessing the bile duct through endoscopic ultrasound can be challenging, especially for less experienced operators, thus becoming an area of potential interest for artificial intelligence. In this review, we summarize the state of the art of artificial intelligence in the endoscopic diagnosis and treatment of biliary diseases.
Collapse
Affiliation(s)
- Fábio Pereira Correia
- Department of Gastroenterology, Hospital Prof. Dr Fernando Fonseca, Amadora 2720-276, Portugal
| | - Luís Carvalho Lourenço
- Department of Gastroenterology, Hospital Prof. Dr Fernando Fonseca, Amadora 2720-276, Portugal
- Gastroenterology Center, Hospital Cuf Tejo - Nova Medical School/Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisbon 1350-352, Portugal
| |
Collapse
|
30
|
Zhuang H, Zhang J, Liao F. A systematic review on application of deep learning in digestive system image processing. THE VISUAL COMPUTER 2021; 39:2207-2222. [PMID: 34744231 PMCID: PMC8557108 DOI: 10.1007/s00371-021-02322-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 05/07/2023]
Abstract
With the advent of the big data era, the application of artificial intelligence represented by deep learning in medicine has become a hot topic. In gastroenterology, deep learning has accomplished remarkable accomplishments in endoscopy, imageology, and pathology. Artificial intelligence has been applied to benign gastrointestinal tract lesions, early cancer, tumors, inflammatory bowel diseases, livers, pancreas, and other diseases. Computer-aided diagnosis significantly improve diagnostic accuracy and reduce physicians' workload and provide a shred of evidence for clinical diagnosis and treatment. In the near future, artificial intelligence will have high application value in the field of medicine. This paper mainly summarizes the latest research on artificial intelligence in diagnosing and treating digestive system diseases and discussing artificial intelligence's future in digestive system diseases. We sincerely hope that our work can become a stepping stone for gastroenterologists and computer experts in artificial intelligence research and facilitate the application and development of computer-aided image processing technology in gastroenterology.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Jixiang Zhang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|