1
|
Satyanarayanan SK, Yip TF, Han Z, Zhu H, Qin D, Lee SMY. Role of toll-like receptors in post-COVID-19 associated neurodegenerative disorders? Front Med (Lausanne) 2025; 12:1458281. [PMID: 40206484 PMCID: PMC11979212 DOI: 10.3389/fmed.2025.1458281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In the intricate realm of interactions between hosts and pathogens, Toll-like receptors (TLRs), which play a crucial role in the innate immune response, possess the ability to identify specific molecular signatures. This includes components originating from pathogens such as SARS-CoV-2, as well as the resulting damage-associated molecular patterns (DAMPs), the endogenous molecules released after cellular damage. A developing perspective suggests that TLRs play a central role in neuroinflammation, a fundamental factor in neurodegenerative conditions like Alzheimer's and Parkinson's disease (PD). This comprehensive review consolidates current research investigating the potential interplay between TLRs, their signaling mechanisms, and the processes of neurodegeneration following SARS-CoV-2 infection with an aim to elucidate the involvement of TLRs in the long-term neurological complications of COVID-19 and explore the potential of targeting TLRs as a means of implementing intervention strategies for the prevention or treatment of COVID-19-associated long-term brain outcomes.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Yip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Dos Reis RS, Selvam S, Ayyavoo V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev Med Virol 2024; 34:e70009. [PMID: 39558491 DOI: 10.1002/rmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 triggered a swift global spread, leading to a devastating pandemic. Alarmingly, approximately one in four individuals diagnosed with coronavirus disease 2019 (COVID-19) experience varying degrees of cognitive impairment, raising concerns about a potential increase in neurological sequelae cases. Neuroinflammation seems to be the key pathophysiological hallmark linking mild respiratory COVID-19 to cognitive impairment, fatigue, and neurological sequelae in COVID-19 patients, highlighting the interaction between the nervous and immune systems following SARS-CoV-2 infection. Several hypotheses have been proposed to explain how the virus disrupts physiological pathways to trigger inflammation within the CNS, potentially leading to neuronal damage. These include neuroinvasion, systemic inflammation, disruption of the lung and gut-brain axes, and reactivation of latent viruses. This review explores the potential origins of neuroinflammation and the underlying neuroimmune cross-talk, highlighting important unanswered questions in the field. Addressing these fundamental issues could enhance our understanding of the virus's impact on the CNS and inform strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sathish Selvam
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Li J, Kong X, Liu T, Xian M, Wei J. The Role of ACE2 in Neurological Disorders: From Underlying Mechanisms to the Neurological Impact of COVID-19. Int J Mol Sci 2024; 25:9960. [PMID: 39337446 PMCID: PMC11431863 DOI: 10.3390/ijms25189960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has become a hot topic in neuroscience research in recent years, especially in the context of the global COVID-19 pandemic, where its role in neurological diseases has received widespread attention. ACE2, as a multifunctional metalloprotease, not only plays a critical role in the cardiovascular system but also plays an important role in the protection, development, and inflammation regulation of the nervous system. The COVID-19 pandemic further highlights the importance of ACE2 in the nervous system. SARS-CoV-2 enters host cells by binding to ACE2, which may directly or indirectly affect the nervous system, leading to a range of neurological symptoms. This review aims to explore the function of ACE2 in the nervous system as well as its potential impact and therapeutic potential in various neurological diseases, providing a new perspective for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Xiangrui Kong
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Agoston DV. Of artificial intelligence, machine learning, and the human brain. Celebrating Miklos Palkovits' 90th birthday. Front Neuroanat 2024; 18:1374864. [PMID: 38764486 PMCID: PMC11099251 DOI: 10.3389/fnana.2024.1374864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
5
|
Sun Z, Shi C, Jin L. Mechanisms by Which SARS-CoV-2 Invades and Damages the Central Nervous System: Apart from the Immune Response and Inflammatory Storm, What Else Do We Know? Viruses 2024; 16:663. [PMID: 38793545 PMCID: PMC11125732 DOI: 10.3390/v16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Initially reported as pneumonia of unknown origin, COVID-19 is increasingly being recognized for its impact on the nervous system, despite nervous system invasions being extremely rare. As a result, numerous studies have been conducted to elucidate the mechanisms of nervous system damage and propose appropriate coping strategies. This review summarizes the mechanisms by which SARS-CoV-2 invades and damages the central nervous system, with a specific focus on aspects apart from the immune response and inflammatory storm. The latest research findings on these mechanisms are presented, providing new insights for further in-depth research.
Collapse
Affiliation(s)
- Zihan Sun
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lixin Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Giunta S, Giordani C, De Luca M, Olivieri F. Long-COVID-19 autonomic dysfunction: An integrated view in the framework of inflammaging. Mech Ageing Dev 2024; 218:111915. [PMID: 38354789 DOI: 10.1016/j.mad.2024.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The recently identified syndrome known as Long COVID (LC) is characterized by a constellation of debilitating conditions that impair both physical and cognitive functions, thus reducing the quality of life and increasing the risk of developing the most common age-related diseases. These conditions are linked to the presence of symptoms of autonomic dysfunction, in association with low cortisol levels, suggestive of reduced hypothalamic-pituitary-adrenal (HPA) axis activity, and with increased pro-inflammatory condition. Alterations of dopamine and serotonin neurotransmitter levels were also recently observed in LC. Interestingly, at least some of the proposed mechanisms of LC development overlap with mechanisms of Autonomic Nervous System (ANS) imbalance, previously detailed in the framework of the aging process. ANS imbalance is characterized by a proinflammatory sympathetic overdrive, and a concomitant decreased anti-inflammatory vagal parasympathetic activity, associated with reduced anti-inflammatory effects of the HPA axis and cholinergic anti-inflammatory pathway (CAP). These neuro-immune-endocrine system imbalanced activities fuel the vicious circle of chronic inflammation, i.e. inflammaging. Here, we refine our original hypothesis that ANS dysfunction fuels inflammaging and propose that biomarkers of ANS imbalance could also be considered biomarkers of inflammaging, recognized as the main risk factor for developing age-related diseases and the sequelae of viral infections, i.e. LC.
Collapse
Affiliation(s)
- Sergio Giunta
- Casa di Cura Prof. Nobili (Gruppo Garofalo (GHC) Castiglione dei Pepoli -Bologna), Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
7
|
Zayeri ZD, Torabizadeh M, Kargar M, Kazemi H. The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens. Behav Brain Res 2024; 462:114868. [PMID: 38246395 DOI: 10.1016/j.bbr.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Severe acute respiratory syndrome coronavirus 2 attacks the neural system directly and indirectly via various systems, such as the nasal cavity, olfactory system, and facial nerves. Considering the high energy requirement, lack of antioxidant defenses, and high amounts of metal ions in the brain, oxidative damage is very harmful to the brain. Various neuropathic pain conditions, neurological disorders, and neuropsychiatric complications were reported in Coronavirus disease 2019, prolonged Coronavirus disease 2019, and after Coronavirus disease 2019 immunization. This manuscript offers a distinctive outlook on the interconnectedness between neurology and neuropsychiatry through its meticulous analysis of complications. DISCUSSION After recovering from Coronavirus disease 2019, approximately half of the patients reported developing Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Long Coronavirus disease 2019 imaging reports illustrated the hypometabolism in various parts of the brain, such as olfactory bulbs, limbic/paralimbic domains, the brainstem, and the cerebellum. Ninety imaging and neuropathological studies of Coronavirus disease 2019 have shown evidence of white matter, brainstem, frontotemporal, and oculofrontal lesions. Emotional functions, such as pleasant, long/short-term memory, movement, cognition and cognition in decision-making are controlled by these regions. The neuroinflammation and the mechanisms of defense are well presented in the discussion. The role of microglia activation, Inducible NO synthase, Cyclooxygenases ½, Reactive oxygen species, neurotoxic toxins and pro-inflammatory cytokines, such as Interleukin-1 beta, Interleukin-6 and Tumor Necrosis Factor-alpha are highlighted in neuronal dysfunction and death. Nuclear factor kappa-light-chain-enhancer of activated B cells, Mitogen-activated protein kinase, Activator Protein 1, and Interferon regulatory factors are the main pathways involved in microglia activation in Coronavirus disease 2019 neuroinflammation. CONCLUSION The neurological aspect of Coronavirus disease 2019 should be highlighted. Neurological, psychological, and behavioral aspects of Coronavirus disease 2019, prolonged Coronavirus disease 2019, and Coronavirus disease 2019 vaccines can be the upcoming issues. We need a global awareness where this aspect of the disease should be more considered in health research.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Kargar
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hashem Kazemi
- Department of Biology, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
8
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
9
|
Andersson U, Tracey KJ. Vagus nerve SARS-CoV-2 infection and inflammatory reflex dysfunction: Is there a causal relationship? J Intern Med 2024; 295:91-102. [PMID: 38018736 DOI: 10.1111/joim.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Autonomic dysfunction is a clinical hallmark of infection caused by SARS-CoV-2, but the underlying mechanisms are unknown. The vagus nerve inflammatory reflex is an important, well-characterized mechanism for the reflexive suppression of cytokine storm, and its experimental or clinical impairment facilitates the onset and progression of hyperinflammation. Recent pathological evidence from COVID-19 victims reveals viral infection and inflammation in the vagus nerve and associated nuclei in the medulla oblongata. Although it has been suggested that vagus nerve inflammation in these patients mediates dysregulated respiration, whether it also contributes to dysfunction of the vagus nerve inflammatory reflex has not been addressed. Because lethality and tissue injury in acute COVID-19 are characterized by cytokine storm, it is plausible to consider evidence that impairment of the inflammatory reflex may contribute to overproduction of cytokines and resultant hyperinflammatory pathogenesis. Accordingly, here the authors discuss the inflammatory reflex, the consequences of its dysfunction in COVID-19, and whether there are opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| |
Collapse
|
10
|
Hu B, Gong M, Xiang Y, Qu S, Zhu H, Ye D. Mechanism and treatment of olfactory dysfunction caused by coronavirus disease 2019. J Transl Med 2023; 21:829. [PMID: 37978386 PMCID: PMC10657033 DOI: 10.1186/s12967-023-04719-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the start of the pandemic, olfactory dysfunction (OD) has been reported as a common symptom of COVID-19. In some asymptomatic carriers, OD is often the first and even the only symptom. At the same time, persistent OD is also a long-term sequela seen after COVID-19 that can have a serious impact on the quality of life of patients. However, the pathogenesis of post-COVID-19 OD is still unclear, and there is no specific treatment for its patients. The aim of this paper was to review the research on OD caused by SARS-CoV-2 infection and to summarize the mechanism of action, the pathogenesis, and current treatments.
Collapse
Affiliation(s)
- Bian Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Ninghai First Hospital, Ningbo, 315600, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Hai Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
11
|
Woo MS, Shafiq M, Fitzek A, Dottermusch M, Altmeppen H, Mohammadi B, Mayer C, Bal LC, Raich L, Matschke J, Krasemann S, Pfefferle S, Brehm TT, Lütgehetmann M, Schädler J, Addo MM, Schulze Zur Wiesch J, Ondruschka B, Friese MA, Glatzel M. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol 2023; 146:387-394. [PMID: 37452829 PMCID: PMC10412500 DOI: 10.1007/s00401-023-02612-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.
Collapse
Affiliation(s)
- Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Fitzek
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Theo Brehm
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marylyn M Addo
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Heidari ME, Nazemi P, Feizabad E, Beiranvand F, Afzali M. Cranial nerve involvement among COVID-19 survivors. Front Neurol 2023; 14:1182543. [PMID: 37602247 PMCID: PMC10436332 DOI: 10.3389/fneur.2023.1182543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction COVID-19 was first reported in November 2019 in China and rapidly spread across the globe. COVID-19 causes neurologic symptoms and complications, which may persist even after recovery in patients. The objective of this research was to determine the involvement of cranial nerves in COVID-19 survivors. Method This was a retrospective study. The study was conducted between March and July of 2022. The analysis included 98 patients with a certain positive polymerase chain reaction. SPSS software version 19 was utilized for data analysis. Results The average age of the participants was 40.47 years (8.81). The olfactory nerve was found to be the most frequently involved cranial nerve (36.7%). Over 20% of participants had a taste disorder. The findings from the regression analysis indicated that lung involvement and age have a direct and significant relationship with cranial nerve involvement and can serve as its predictors (p = 0.001). Conclusion It seems that cranial nerve involvement was sustained in COVID-19 patients who survived. In addition, elderly patients and patients with severe illnesses were more likely to show cranial symptoms. It is necessary to monitor COVID-19 survivors for neurological symptoms.
Collapse
Affiliation(s)
| | - Pershang Nazemi
- Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Feizabad
- Community Medicine Specialist, Department of Obstetrics and Gynecology, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Beiranvand
- School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Afzali
- Department of Neurology, School of Medicine, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ding Q, Zhao H. Long-term effects of SARS-CoV-2 infection on human brain and memory. Cell Death Discov 2023; 9:196. [PMID: 37380640 DOI: 10.1038/s41420-023-01512-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have caused several waves of outbreaks. From the ancestral strain to Omicron variant, SARS-CoV-2 has evolved with the high transmissibility and increased immune escape against vaccines. Because of the multiple basic amino acids in the S1-S2 junction of spike protein, the widespread distribution of angiotensin-converting enzyme 2 (ACE2) receptor in human body and the high transmissibility, SARS-CoV-2 can infect multiple organs and has led to over 0.7 billion infectious cases. Studies showed that SARS-CoV-2 infection can cause more than 10% patients with the Long-COVID syndrome, including pathological changes in brains. This review mainly provides the molecular foundations for understanding the mechanism of SARS-CoV-2 invading human brain and the molecular basis of SARS-CoV-2 infection interfering with human brain and memory, which are associated with the immune dysfunction, syncytia-induced cell death, the persistence of SARS-CoV-2 infection, microclots and biopsychosocial aspects. We also discuss the strategies for reducing the Long-COVID syndrome. Further studies and analysis of shared researches will allow for further clarity regarding the long-term health consequences.
Collapse
Affiliation(s)
- Qiulu Ding
- School of Finance and Business, Shanghai Normal University, Shanghai, China
- School of Education, Shanghai Normal University, Shanghai, China
| | - HanJun Zhao
- Department of Microbiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Science Park, Hong Kong Special Administrative Region, China.
| |
Collapse
|
14
|
Emmi A, Tushevski A, Sinigaglia A, Barbon S, Sandre M, Stocco E, Macchi V, Antonini A, Barzon L, Porzionato A, De Caro R. ACE2 Receptor and TMPRSS2 Protein Expression Patterns in the Human Brainstem Reveal Anatomical Regions Potentially Vulnerable to SARS-CoV-2 Infection. ACS Chem Neurosci 2023. [PMID: 37172190 DOI: 10.1021/acschemneuro.3c00101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Angiotensin-converting enzyme 2 receptor (ACE2R) is a transmembrane protein expressed in various tissues throughout the body that plays a key role in the regulation of blood pressure. Recently, ACE2R has gained significant attention due to its involvement in the pathogenesis of COVID-19, the disease caused by the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). While ACE2 receptors serve as entry points for the novel coronavirus, Transmembrane Serine Protease 2 (TMPRSS2), an enzyme located on the cell membrane, is required for SARS-CoV-2 S protein priming. Even though numerous studies have assessed the effects of COVID-19 on the brain, very little information is available concerning the distribution of ACE2R and TMPRSS2 in the human brain, with particular regard to their topographical expression in the brainstem. In this study, we investigated the expression of ACE2R and TMPRSS2 in the brainstem of 18 adult subjects who died due to pneumonia/respiratory insufficiency. Our findings indicate that ACE2R and TMPRSS2 are expressed in neuronal and glial cells of the brainstem, particularly at the level of the vagal nuclei of the medulla and the midbrain tegmentum, thus confirming the expression and anatomical localization of these proteins within specific human brainstem nuclei. Furthermore, our findings help to define anatomically susceptible regions to SARS-CoV-2 infection in the brainstem, advancing knowledge on the neuropathological underpinnings of neurological manifestations in COVID-19.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Movement Disorders Unit, Padova University Hospital, 35121 Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, 35121 Padova, Italy
| | - Aleksandar Tushevski
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | | | - Silvia Barbon
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Michele Sandre
- Movement Disorders Unit, Padova University Hospital, 35121 Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, 35121 Padova, Italy
| | - Elena Stocco
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Angelo Antonini
- Movement Disorders Unit, Padova University Hospital, 35121 Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, 35121 Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, 35121 Padova, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, 35121 Padova, Italy
| |
Collapse
|
15
|
Woo MS, Mayer C, Fischer M, Kluge S, Roedl K, Gerloff C, Czorlich P, Thomalla G, Schulze Zur Wiesch J, Schweingruber N. Clinical surrogates of dysautonomia predict lethal outcome in COVID-19 on intensive care unit. Neurol Res Pract 2023; 5:17. [PMID: 37143130 PMCID: PMC10157117 DOI: 10.1186/s42466-023-00243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Unpredictable vegetative deteriorations made the treatment of patients with acute COVID-19 on intensive care unit particularly challenging during the first waves of the pandemic. Clinical correlates of dysautonomia and their impact on the disease course in critically ill COVID-19 patients are unknown. METHODS We retrospectively analyzed data collected during a single-center observational study (March 2020-November 2021) which was performed at the University Medical Center Hamburg-Eppendorf, a large tertiary medical center in Germany. All patients admitted to ICU due to acute COVID-19 disease during the study period were included (n = 361). Heart rate variability (HRV) and blood pressure variability (BPV) per day were used as clinical surrogates of dysautonomia and compared between survivors and non-survivors at different time points after admission. Intraindividual correlation of vital signs with laboratory parameters were calculated and corrected for age, sex and disease severity. RESULTS Patients who deceased in ICU had a longer stay (median days ± IQR, survivors 11.0 ± 27.3, non-survivors 14.1 ± 18.7, P = 0.85), in contrast time spent under invasive ventilation was not significantly different (median hours ± IQR, survivors 322 ± 782, non-survivors 286 ± 434, P = 0.29). Reduced HRV and BPV predicted lethal outcome in patients staying on ICU longer than 10 days after adjustment for age, sex, and disease severity. Accordingly, HRV was significantly less correlated with inflammatory markers (e.g. CRP and Procalcitonin) and blood carbon dioxide in non-survivors in comparison to survivors indicating uncoupling between autonomic function and inflammation in non-survivors. CONCLUSIONS Our study suggests autonomic dysfunction as a contributor to mortality in critically ill COVID-19 patients during the first waves of the pandemic. Serving as a surrogate for disease progression, these findings could contribute to the clinical management of COVID-19 patients admitted to the ICU. Furthermore, the suggested measure of dysautonomia and correlation with other laboratory parameters is non-invasive, simple, and cost-effective and should be evaluated as an additional outcome parameter in septic patients treated in the ICU in the future.
Collapse
Affiliation(s)
- Marcel Seungsu Woo
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christina Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marlene Fischer
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kevin Roedl
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246, Hamburg, Germany
| | - Nils Schweingruber
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
16
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
17
|
Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci 2023; 245:103071. [PMID: 36580747 PMCID: PMC9789535 DOI: 10.1016/j.autneu.2022.103071] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID. The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly. Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Judith Naddour
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Amir Madi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Hatoum
- Faculty of Medicine, American University of Beirut, Lebanon
| | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
18
|
Exploring the Role of ACE2 as a Connecting Link between COVID-19 and Parkinson's Disease. Life (Basel) 2023; 13:life13020536. [PMID: 36836893 PMCID: PMC9961012 DOI: 10.3390/life13020536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is frequently accompanied by neurological manifestations such as headache, delirium, and epileptic seizures, whereas ageusia and anosmia may appear before respiratory symptoms. Among the various neurological COVID-19-related comorbidities, Parkinson's disease (PD) has gained increasing attention. Some cases of PD disease have been linked to COVID-19, and both motor and non-motor symptoms in Parkinson's disease patients frequently worsen following SARS-CoV-2 infection. Although it is still unclear whether PD increases the susceptibility to SARS-CoV-2 infection or whether COVID-19 increases the risk of or unmasks future cases of PD, emerging evidence sheds more light on the molecular mechanisms underlying the relationship between these two diseases. Among them, angiotensin-converting enzyme 2 (ACE2), a significant component of the renin-angiotensin system (RAS), seems to play a pivotal role. ACE2 is required for the entry of SARS-CoV-2 to the human host cells, and ACE2 dysregulation is implicated in the severity of COVID-19-related acute respiratory distress syndrome (ARDS). ACE2 imbalance is implicated in core shared pathophysiological mechanisms between PD and COVID-19, including aberrant inflammatory responses, oxidative stress, mitochondrial dysfunction, and immune dysregulation. ACE2 may also be implicated in alpha-synuclein-induced dopaminergic degeneration, gut-brain axis dysregulation, blood-brain axis disruption, autonomic dysfunction, depression, anxiety, and hyposmia, which are key features of PD.
Collapse
|
19
|
Respiratory psychophysiology and COVID-19: A research agenda. Biol Psychol 2023; 176:108473. [PMID: 36535514 PMCID: PMC9756651 DOI: 10.1016/j.biopsycho.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
After multiple waves of the COVID-19 pandemic, it has become clear that the impact of SARS-CoV-2 will carry on for years to come. Acutely infected patients show a broad range of disease severity, depending on virus variant, vaccination status, age and the presence of underlying medical and physical conditions, including obesity. Additionally, a large number of patients who have been infected with the virus present with post-COVID syndrome. In September 2020, the International Society for the Advancement of Respiratory Psychophysiology organized a virtual interest meeting on 'Respiratory research in the age of COVID-19', which aimed to discuss how research in respiratory psychophysiology could contribute to a better understanding of psychophysiological interactions in COVID-19. In the resulting current paper, we propose an interdisciplinary research agenda discussing selected research questions on acute and long-term neurobiological, physiological and psychological outcomes and mechanisms related to respiration and the airways in COVID-19, as well as research questions on comorbidity and potential treatment options, such as physical rehabilitation.
Collapse
|
20
|
Miluzio A, Cuomo A, Cordiglieri C, Donnici L, Pesce E, Bombaci M, Conti M, Fasciani A, Terracciano L, Manganaro L, Toccafondi M, Scagliola A, Oliveto S, Ricciardi S, Grifantini R, De Francesco R, Abrignani S, Manfrini N, Biffo S. Mapping of functional SARS-CoV-2 receptors in human lungs establishes differences in variant binding and SLC1A5 as a viral entry modulator of hACE2. EBioMedicine 2022; 87:104390. [PMID: 36584595 PMCID: PMC9795807 DOI: 10.1016/j.ebiom.2022.104390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is an infectious disease caused by SARS-CoV-2. The first step of SARS-CoV-2 infection is the recognition of angiotensin-converting enzyme 2 (ACE2) receptors by the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein. Although the molecular and structural bases of the SARS-CoV-2-RBD/hACE2 interaction have been thoroughly investigated in vitro, the relationship between hACE2 expression and in vivo infection is less understood. METHODS Here, we developed an efficient SARS-CoV-2-RBD binding assay suitable for super resolution microscopy and simultaneous hACE2 immunodetection and mapped the correlation between hACE2 receptor abundance and SARS-CoV-2-RBD binding, both in vitro and in human lung biopsies. Next, we explored the specific proteome of SARS-CoV-2-RBD/hACE2 through a comparative mass spectrometry approach. FINDINGS We found that only a minority of hACE2 positive spots are actually SARS-CoV-2-RBD binding sites, and that the relationship between SARS-CoV-2-RBD binding and hACE2 presence is variable, suggesting the existence of additional factors. Indeed, we found several interactors that are involved in receptor localization and viral entry and characterized one of them: SLC1A5, an amino acid transporter. High-resolution receptor-binding studies showed that co-expression of membrane-bound SLC1A5 with hACE2 predicted SARS-CoV-2 binding and entry better than hACE2 expression alone. SLC1A5 depletion reduces SARS-CoV-2 binding and entry. Notably, the Omicron variant is more efficient in binding hACE2 sites, but equally sensitive to SLC1A5 downregulation. INTERPRETATION We propose a method for mapping functional SARS-CoV-2 receptors in vivo. We confirm the existence of hACE2 co-factors that may contribute to differential sensitivity of cells to infection. FUNDING This work was supported by an unrestricted grant from "Fondazione Romeo ed Enrica Invernizzi" to Stefano Biffo and by AIRC under MFAG 2021 - ID. 26178 project - P.I. Manfrini Nicola.
Collapse
Affiliation(s)
- Annarita Miluzio
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Lorena Donnici
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Elisa Pesce
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Mauro Bombaci
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Matteo Conti
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandra Fasciani
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Lara Manganaro
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Mirco Toccafondi
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandra Scagliola
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Sara Ricciardi
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Renata Grifantini
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Raffaele De Francesco
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Sergio Abrignani
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy,Corresponding author. National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy.
| | - Stefano Biffo
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy,Corresponding author. National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy.
| |
Collapse
|
21
|
Schambeck SE, Mateyka LM, Burrell T, Graf N, Brill I, Stark T, Protzer U, Busch DH, Gerhard M, Riehl H, Poppert H. Two-Year Follow-Up on Chemosensory Dysfunction and Adaptive Immune Response after Infection with SARS-CoV-2 in a Cohort of 44 Healthcare Workers. Life (Basel) 2022; 12:1556. [PMID: 36294991 PMCID: PMC9605261 DOI: 10.3390/life12101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Persistent chemosensory dysfunction (PCD) is a common symptom of long-COVID. Chemosensory dysfunction (CD) as well as SARS-CoV-2-specific antibody levels and CD8+ T-cell immunity were investigated in a cohort of 44 healthcare workers up to a median of 721 days after a positive PCR test. CD was assessed using questionnaires and psychophysical screening tests. After 721 days, 11 of 44 (25%) participants reported PCD, with five describing an impaired quality of life. One participant reported hyperosmia (increased sense of smell). The risk of PCD at 721 days was higher for participants reporting qualitative changes (parosmia (altered smell), dysgeusia (altered taste), or phantosmia (hallucination of smell)) during initial infection than in those with isolated quantitative losses during the first COVID-19 infection (62.5% vs. 7.1%). The main recovery rate occurred within the first 100 days and did not continue until follow-up at 2 years. No correlation was found between antibody levels and CD, but we observed a trend of a higher percentage of T-cell responders in participants with CD. In conclusion, a significant proportion of patients suffer from PCD and impaired quality of life 2 years after initial infection. Qualitative changes in smell or taste during COVID-19 pose a higher risk for PCD.
Collapse
Affiliation(s)
- Sophia E. Schambeck
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Laura M. Mateyka
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Teresa Burrell
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Natalia Graf
- Institute of Virology, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
| | - Ioana Brill
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
| | - Thomas Stark
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Henriette Riehl
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
| | - Holger Poppert
- Helios Klinikum Munich West, Steinerweg 5, 81241 Munich, Germany
- Klinik und Poliklinik für Neurologie im Neuro-Kopf-Zentrum, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
22
|
Xu W, Sunavala‐Dossabhoy G, Spielman AI. Chemosensory loss in
COVID
‐19. Oral Dis 2022; 28 Suppl 2:2337-2346. [PMID: 35790059 PMCID: PMC9349612 DOI: 10.1111/odi.14300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
Abstract
The COVID‐19 pandemic caused by SARS‐CoV‐2 virus quickly spread globally, infecting over half a billion individuals, and killing over 6 million*. One of the more unusual symptoms was patients' complaints of sudden loss of smell and/or taste, a symptom that has become more apparent as the virus mutated into different variants. Anosmia and ageusia, the loss of smell and taste, respectively, seem to be transient for some individuals, but for others persists even after recovery from the infection. Causes for COVID‐19‐associated chemosensory loss have undergone several hypotheses. These include non‐functional or destroyed olfactory neurons and gustatory receptors or of their supporting cells, disruption of the signaling protein Neuropilin‐1, and disruption in the interaction with semaphorins, key molecules in the gustatory and olfactory axon guidance. The current paper will review these hypotheses and chart out potential therapeutic avenues.
Collapse
Affiliation(s)
- Winnie Xu
- Department of Molecular Pathobiology New York University College of Dentistry New York NY
| | - Gulshan Sunavala‐Dossabhoy
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport and Feist Weiller Cancer Center Shreveport LA
| | - Andrew I. Spielman
- Department of Molecular Pathobiology New York University College of Dentistry New York NY
| |
Collapse
|
23
|
Matsunaga A, Tsuzuki S, Morioka S, Ohmagari N, Ishizaka Y. Long COVID: current status in Japan and knowledge about its molecular background. Glob Health Med 2022; 4:83-93. [PMID: 35586759 PMCID: PMC9066464 DOI: 10.35772/ghm.2022.01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Even after recovering from coronavirus disease 2019 (COVID-19), patients can experience prolonged complaints, referred to as "long COVID". Similar to reports in Caucasians, a follow-up study in Japan revealed that fatigue, dyspnea, cough, anosmia/dysgeusia, and dyssomnia are common symptoms. Although the precise mode of long COVID remains elusive, multiple etiologies such as direct organ damage by infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), autoimmunity, prolonged inflammatory reactions, and psychiatric impairment seem to be involved. Notably, SARS-CoV-2 is neurotropic, and viral RNA and proteins are continuously detectable in multiple organs, including the brain. Viral proteins exert a number of different toxic effects on cells, suggesting that persistent infection is a key element for understanding long COVID. Here, we first reviewed the current status of long COVID in Japan, and then summarized literature that help us understand the molecular background of the symptoms. Finally, we discuss the feasibility of vaccination as a treatment for patients with long COVID.
Collapse
Affiliation(s)
- Akihiro Matsunaga
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinya Tsuzuki
- AMR Clinical Reference Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Shinichiro Morioka
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|