1
|
Zhang X, Hao C, Li T, Gao W, Ren Y, Wang J, Zhang Y. Leptin attenuates diabetic cardiomyopathy-induced cardiac remodeling via regulating cGAS/STING signaling and Opa1-mediated mitochondrial fusion. Cell Signal 2025; 132:111805. [PMID: 40246132 DOI: 10.1016/j.cellsig.2025.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE This investigation seeks to elucidate the contribution of leptin to the pathogenesis of diabetic cardiomyopathy (DCM). METHODS Mice were rendered diabetic through the administration of streptozotocin (STZ). Leptin was delivered via subcutaneously implanted osmotic pumps. Assessments of cardiac performance, hypertrophy, and fibrosis were conducted using echocardiography, Hematoxylin and Eosin (H&E), Wheat Germ Agglutinin (WGA), and Masson trichrome staining. Myocardial apoptosis and oxidative stress were quantified through TUNEL assay and biochemical markers of oxidative stress, including Malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), and 3-Nitrotyrosine (3NT). Mitochondrial structure was examined using Transmission Electron Microscopy (TEM). Primary neonatal cardiomyocytes were subjected to high glucose (HG) conditions. The fluorescent indicators MitoTracker Green and MitoSOX Red were employed to evaluate mitochondrial morphology and function within the cardiomyocytes. RESULTS Mice with diabetes displayed marked cardiac hypertrophy and fibrosis, as indicated by H&E, WGA, and Masson staining. The administration of leptin significantly mitigated the cardiac pathological manifestations in diabetic mice. Leptin increased the expression of Opa1 and enhanced mitochondrial fusion and function in cardiomyocytes exposed to HG. The cGAS/STING signaling pathway may serve as a pivotal intermediary for leptin to facilitate Opa1-driven mitochondrial fusion. CONCLUSIONS Leptin appears to safeguard against hyperglycemia-induced mitochondrial oxidative damage and DCM by modulating the cGAS/STING signaling cascade and Opa1-mediated mitochondrial fusion. These results propose that leptin could be a promising agent for promoting mitochondrial fusion and preventing diabetes-associated cardiac pathologies.
Collapse
Affiliation(s)
| | - Chunyuan Hao
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Tonghua Li
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Weihua Gao
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Yang Ren
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Junzhe Wang
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Yuyang Zhang
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Lyu X, Yu Y, Jiang Y, Li Z, Qiao Q. The role of mitochondria transfer in cancer biological behavior, the immune system and therapeutic resistance. J Pharm Anal 2025; 15:101141. [PMID: 40115812 PMCID: PMC11925581 DOI: 10.1016/j.jpha.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 03/23/2025] Open
Abstract
Mitochondria play a crucial role as organelles, managing several physiological processes such as redox balance, cell metabolism, and energy synthesis. Initially, the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria. Recent scholarly works, however, suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer. This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms. Specifically, we review the role of mitochondria transfer in regulating cellular metabolism restoration, excess reactive oxygen species (ROS) generation, proliferation, invasion, metastasis, mitophagy activation, mitochondrial DNA (mtDNA) inheritance, immune system modulation and therapeutic resistance in cancer. Additionally, we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yangyang Yu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuanjun Jiang
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyuan Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Qiao Qiao
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
3
|
Chang X, Zhou S, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishen Huoxue decoction (ZSHX) alleviates ischemic myocardial injury (MI) via Sirt5-β-tubulin mediated synergistic mechanism of "mitophagy-unfolded protein response" and mitophagy. Chin J Nat Med 2025; 23:311-321. [PMID: 40122661 DOI: 10.1016/s1875-5364(25)60838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 03/25/2025]
Abstract
Zishen Huoxue decoction (ZSHX) enhances cardiomyocyte viability following hypoxic stress; however, its upstream therapeutic targets remain unclear. Network pharmacology and RNA sequencing analyses revealed that ZSHX target genes were closely associated with mitophagy and apoptosis in the mitochondrial pathway. In vitro, ZSHX inhibited pathological mitochondrial fission following hypoxic stress, regulated FUN14 domain-containing protein 1 (FUNDC1)-related mitophagy, and increased the levels of mitophagy lysosomes and microtubule-associated protein 1 light chain 3 beta II (LC3II)/translocase of outer mitochondrial membrane 20 (TOM20) expression while inhibiting the over-activated mitochondrial unfolded protein response. Additionally, ZSHX regulated the stability of beta-tubulin through Sirtuin 5 (SIRT5) and could modulate FUNDC1-related synergistic mechanisms of mitophagy and unfolded protein response in the mitochondria (UPRmt) via the SIRT5 and -β-tubulin axis. This targeting pathway may be crucial for cardiomyocytes to resist hypoxia. Collectively, these findings suggest that ZSHX can protect against cardiomyocyte injury via the SIRT5-β-tubulin axis, which may be associated with the synergistic protective mechanism of SIRT5-β-tubulin axis-related mitophagy and UPRmt on cardiomyocytes.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053,.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053,.
| |
Collapse
|
4
|
Li J, Li H, Niu N, Zhu Y, Hou S, Zhao W. NRF-1 promotes FUNDC1-mediated mitophagy as a protective mechanism against hypoxia-induced injury in cardiomyocytes. Exp Cell Res 2025; 446:114472. [PMID: 39978717 DOI: 10.1016/j.yexcr.2025.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Hypoxia-induced apoptosis and mitochondrial dysfunction in cardiomyocytes are involved in the mechanisms of heart failure. Our previous studies have confirmed that NRF-1 alleviates hypoxia-induced injury by promoting mitochondrial function and inhibiting apoptosis in cardiomyocytes. However, the mechanism by which NRF-1 attenuates hypoxia-induced injury in cardiomyocytes is still unclear. Mitophagy, a selective autophagy, has recently shown a remarkable correlation with hypoxia-induced cardiomyocyte injury. In this study, we evaluated whether NRF-1 protects cardiomyocytes from hypoxia-induced injury by regulating mitophagy. The findings indicate that hypoxia prevents H9c2 cells from growing, encourages mitochondrial dysfunction, and triggers mitophagy. In addition, promoting mitophagy by rapamycin reduces hypoxia-induced injury in H9c2 cells. Overexpression of NRF-1 in hypoxia-induced H9c2 cells promotes mitophagy and alleviates cell injury, and this effect can be inhibited by 3-MA. Further study found that NRF-1 promotes the expression of FUNDC1 by binding to its promoter region. Knockdown of FUNDC1 in NRF-1 over-expression H9c2 cells inhibited mitophagy and aggravated hypoxia-induced injury. In conclusion, our study suggests that NRF-1 protects against hypoxia-induced injury by regulating FUNDC1-mediated mitophagy in cardiomyocytes.
Collapse
Affiliation(s)
- Junliang Li
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Hui Li
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.
| | - Nan Niu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.
| | - Yazhou Zhu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Siyu Hou
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.
| |
Collapse
|
5
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
6
|
Zhang C, Xiang J, Wang G, Di T, Chen L, Zhao W, Wei L, Zhou S, Wu X, Zhang Y, Wang Y, Liu H. Salvianolic acid B improves diabetic skin wound repair through Pink1/Parkin-mediated mitophagy. Arch Physiol Biochem 2025; 131:40-51. [PMID: 39101795 DOI: 10.1080/13813455.2024.2387693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Diabetic skin wound is a disturbing and rapidly evolving clinical issue. Here, we investigated how salvianolic acid B (Sal B) affected the diabetic wound healing process. Following Sal B administration, histopathological damage was investigated by H&E and Masson staining, and CD34, apoptosis and mitophagy markers were measured by immunofluorescence, immunohistochemistry, and western blotting. Migration, proliferation, and mitochondrial function of high glucose (HG) -induced HMEC-1 cells were measured. The effects of si-Parkin on endothelial cell migration, apoptosis and mitochondrial autophagy were examined. Sal B alleviated inflammatory cell infiltration and promoted angiogenesis in skin wound tissue. Apoptosis and mitophagy were ameliorated by Sal B in diabetic skin wound tissues and HG-induced HMEC-1 cells. Parkin inhibition impaired the migratorypromoted cell apoptosis and inhibited mitophagy of HMEC-1 cells. This finding demonstrated that Sal B promoted diabetic skin wound repair via Pink1/Parkin-mediated mitophagy, improved our understanding of the diabetic wound healing process.
Collapse
Affiliation(s)
- Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Xiang
- Department of Monitoring, Guizhou Center for Disease Control and Prevention, Institute of Chronic Disease Prevention and Treatment, Guiyang, China
| | - Gengxin Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tietao Di
- Department of Trauma Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lianggang Wei
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shiyong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xueli Wu
- Central Laboratory, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yun Zhang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanhui Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haiyan Liu
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
7
|
Li Y, Chen Y, Yu P, Zhang D, Tang X, Zhu Z, Xiao F, Deng W, Liu Y, Tan Z, Zhang J, Yu S. Mild therapeutic hypothermic protection activates the PI3K/AKT signaling pathway to inhibit TRPM7 and suppress ferroptosis induced by myocardial ischemia‑reperfusion injury. Mol Med Rep 2024; 30:220. [PMID: 39364741 PMCID: PMC11462392 DOI: 10.3892/mmr.2024.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
The present study aimed to investigate the role of PI3K‑mediated ferroptosis signaling induced by mild therapeutic hypothermia (MTH), which was defined as a temperature of 34˚C, in protecting against myocardial ischemia-reperfusion (I/R) injury (MIRI). To meet this aim, H9C2 cells underwent hypoxia‑reperfusion (H/R) and/or MTH. The MTT assay was used to assess cell viability, cytotoxicity was measured using a lactate dehydrogenase cytotoxicity assay, and Annexin V‑FITC/PI flow cytometric analysis was used to analyze early and late cell apoptosis. In addition, 84 healthy adult male Sprague‑Dawley rats were randomly divided into seven groups (n=12), and underwent I/R and various treatments. Hemodynamics were monitored, and the levels of myocardial injury marker enzymes and oxidative stress markers in myocardial tissue were measured using ELISA. The expression levels of PI3K, AKT, transient receptor potential cation channel subfamily M member 7 (TRPM7), glutathione peroxidase 4 (GPX4) and acyl‑CoA synthetase long chain family member 4 (ACSL4) in animals and cells were measured using western blot analysis. These experiments revealed that MTH could effectively reduce myocardial infarct size, improve hemodynamic performance following MIRI and suppress myocardial apoptosis, thereby contributing to the recovery from H/R injury. Mechanistically, MTH was revealed to be able to activate the PI3K/AKT signaling pathway in cells, upregulating GPX4, and downregulating the expression levels of TRPM7 and ACSL4. Treatment with 2‑aminoethoxydiphenyl borate (an inhibitor of TRPM7) could further strengthen the myocardial protective effects of MTH, whereas treatment with erastin (promoter of ferroptosis) and wortmannin (inhibitor of PI3K) led to the effective elimination of the myocardial protective effects of MTH. Compared with in the I/R group, the PI3K/AKT activation level and the expression levels of GPX4 were both significantly increased, whereas the expression levels of TRPM7 and ACSL4 were significantly decreased in the I/R + MTH group. Taken together, the results of the present study indicated that MTH may activate the PI3K/AKT signaling pathway to inhibit TRPM7 and suppress ferroptosis induced by MIRI.
Collapse
Affiliation(s)
- Yaqi Li
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Anesthesiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, P.R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoying Tan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Wang J, Pu X, Zhuang H, Guo Z, Wang M, Yang H, Li C, Chang X. Astragaloside IV alleviates septic myocardial injury through DUSP1-Prohibitin 2 mediated mitochondrial quality control and ER-autophagy. J Adv Res 2024:S2090-1232(24)00471-5. [PMID: 39550027 DOI: 10.1016/j.jare.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
INTRODUCTION Septic cardiomyopathy (SCM) is a complication of myocardial injury in patients with severe sepsis. OBJECTIVES This study highlights the potential of Astragaloside IV(AS) in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2-related mitochondria-ER interaction. METHODS Dual specificity phosphatase-1 (DUSP1)/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) /DUSP1 transgenic mice (DUSP1/PHB2TG) were used to generate LPS-induced sepsis models. The pathological mechanism by which AS-IV improves heart injury was detected using cardiac ultrasound, fluorescence staining, transmission electron microscopy, and western blotting. After siRNA treatment of cardiomyocytes with DUSP-1/PHB2, changes in mitochondrial function and morphology were determined using qPCR, western blotting, ELISA, and laser confocal microscopy, and the targeted therapeutic effects of AS-IV were further examined. RESULTS SCM treatment leads to severe mitochondrial dysfunction. However, Astragaloside IV (AS) treatment normalizes mitochondrial homeostasis and ER function. Notably, the protective effect was blocked in DUSP1/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) but remained unaffected in DUSP1 transgenic mice (DUSP1/PHB2TG). CONCLUSION This study highlights the potential of AS in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2 related mitochondria-ER interaction.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huaihong Yang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| | - Chun Li
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin 519000, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
9
|
Zhuang H, Li C, Wang L, Zhou B, Guo Z, Huang Y, Deng B, Ouyang Y, Qiu J, Chang X, Wang W, Wang J. High-Throughput Screening of an FDA-Approved Compound Library Reveals a Novel GAS6 Receptor Agonist for Therapeutic Intervention in Septic Myocardial and microvascular Injury via Modulation of Danger-Associated Molecular Patterns. Int J Biol Sci 2024; 20:6222-6240. [PMID: 39664568 PMCID: PMC11628332 DOI: 10.7150/ijbs.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024] Open
Abstract
PGAM5 and VDAC1 have both been reported to regulate mitophagy. However, the mechanisms by which they regulate sepsis-induced inflammatory microvascular injury remain unverified. In previous studies, we established the role of this regulatory axis in various phenotypic processes, including mitophagy, mitochondrial biogenesis, the mitochondrial unfolded protein response, and mitochondrial dynamics, while further confirming the interactive regulatory proteins within this axis. However, the validation and elucidation of these regulatory phenotypes have primarily focused on ischemic heart diseases such as ischemic myocardial injury and heart failure. Sepsis-related myocardial injury is currently recognized as a significant cardiac impairment, and although there are cardioprotective and nutritional agents available for supportive therapy, fundamental research validating the upstream targets and mechanisms of microvascular injury is still lacking. Based on our previous research, we further explored the role of mitophagy dysfunction mediated by VDAC1 and its upstream regulatory protein PGAM5 in sepsis-induced coronary microvascular injury. We also confirmed the material basis and metabolic pathway regulation targeting the PGAM5- VDAC1 interactive mechanism with relevant drugs. Our findings suggest that PGAM5-mediated mitophagy dysfunction may be a crucial factor leading to sepsis-induced microvascular injury, primarily interacting with VDAC1-mediated mitochondrial membrane dysfunction. Animal experiments revealed that cardiac-specific knockout of PGAM5 could reverse LPS-induced coronary microvascular injury and inflammatory damage, restoring cardiac ejection function and mitophagy functionality. In vitro studies also confirmed that the PGAM5-VDAC1 interaction can normalize mitophagy, restoring the normal morphology and structure of mitochondria while maintaining normal mitochondrial energy metabolism levels and respiratory chain function. Further pharmacological research indicated that the active ingredients of traditional Chinese medicine-Puerarin (TCM, a GAS6 Receptor Agonist) can target the PGAM5- VDAC1 axis to regulate mitophagy and inhibit LPS-induced necrotic apoptosis in cardiomyocytes, potentially reversing mitochondrial pathway-related cardiac injury. TCM may emerge as a prospective therapeutic agent targeting the PGAM5- VDAC1 axis.
Collapse
Affiliation(s)
- Haowen Zhuang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lingjun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bei Zhou
- Center for Drug Evaluation, National Medical Products Administration, Beijing, 510260, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yusheng Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yulin Ouyang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Junxiong Qiu
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
10
|
Zhang M, Wu J, Cai K, Liu Y, Lu B, Zhang J, Xu J, Gu C, Chen T. From dysfunction to healing: advances in mitochondrial therapy for Osteoarthritis. J Transl Med 2024; 22:1013. [PMID: 39529128 PMCID: PMC11552139 DOI: 10.1186/s12967-024-05799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint condition characterised by cartilage deterioration and changes in bone morphology, resulting in pain and impaired joint mobility. Investigation into the pathophysiological mechanisms underlying OA has highlighted the significance of mitochondrial dysfunction in its progression. Mitochondria, which are cellular organelles, play a crucial role in regulating energy metabolism, generating reactive oxygen species, and facilitating essential biological processes including apoptosis. In recent years, the utilisation of exogenous drugs and MT to improve mitochondrial function in chondrocytes has shown great promise in OA treatment. Numerous studies have investigated the potential of stem cells and extracellular vesicles in mitochondrial transfer. This review aims to explore the underlying mechanisms of mitochondrial dysfunction in OA and assess the progress in utilising mitochondrial transfer as a therapeutic approach for this disease.
Collapse
Affiliation(s)
- Minghang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Junfeng Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Kehan Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Botao Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Jiaojiao Zhang
- Department of Gynaecology and Obstetrics Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Chenxi Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China.
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China.
| |
Collapse
|
11
|
Li B, Baima Y, De J, Wen D, Liu Y, Basang Z, Jiang N. Hypoxic stress caused apoptosis of MDBK cells by p53/BCL6-mitochondrial apoptosis pathway. Anim Biotechnol 2024; 35:2299241. [PMID: 38178593 DOI: 10.1080/10495398.2023.2299241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hypoxia is an important characteristic of Tibetan plateau environment. It can lead to apoptosis, but the mechanism of apoptosis caused by hypoxic stress needs further clarification. Here, cattle kidney cell MDBK were used as cell model. The effect of hypoxic stress on apoptosis and its molecular mechanism were explored. MDBK cells were treated with hypoxic stress, apoptosis and mitochondrial apoptotic pathway were significantly increased, and the expression of B-cell lymphoma 6 (BCL6) was significantly decreased. Overexpressing or inhibiting BCL6 demonstrated that BCL6 inhibited the apoptosis. And the increase of apoptosis controlled by hypoxic stress was blocked by BCL6 overexpressing. MDBK cells were treated with hypoxic stress, the expression and the nuclear localization of p53 were significantly increased. Overexpressing or inhibiting p53 demonstrated that hypoxic stress suppressed the expression of BCL6 through p53. Together, these results indicated that hypoxic stress induced the apoptosis of MDBK cells, and BCL6 was an important negative factor for this regulation process. In MDBK cells, hypoxic stress suppressed the expression of BCL6 through p53/BCL6-mitochondrial apoptotic pathway. This study enhanced current understanding of the molecular mechanisms underlying the regulation of apoptosis by hypoxic stress in MDBK cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Yangjin Baima
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Ji De
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Zhuzha Basang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| |
Collapse
|
12
|
Zhu HW, Wang YP, Zhang QF, Wang KD, Huang Y, Xiang RL. F-actin/DRP1 axis-mediated mitochondrial fission promotes mitophagy in diabetic submandibular glands. Oral Dis 2024; 30:5429-5444. [PMID: 38735833 DOI: 10.1111/odi.14983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Diabetes is accompanied by a high prevalence of hyposalivation, causing severe damage to oral and systemic health. Mitochondrial dynamics play important roles in the pathogenesis of various diabetic complications; however, little is known about their roles in diabetic hyposalivation. MATERIALS AND METHODS A diabetic mouse model and a high glucose (HG)-induced diabetic submandibular gland (SMG) cell model were employed. RESULTS More mitochondria surrounded by autophagosomes and higher expression of mitophagy-related proteins were detected in the SMGs of diabetic mice and HG-treated SMG cells. In diabetic SMGs, dynamin-related protein 1 (DRP1) was upregulated, whereas mitofusin-2 was downregulated both in vivo and in vitro. Shortened mitochondria and impaired mitochondrial functions were observed in the HG group. A DRP1-specific inhibitor, mdivi-1, suppressed mitochondrial fission and mitophagy, as well as restored mitochondrial functions in the HG condition. Moreover, the interaction of F-actin and DRP1 was enhanced in the diabetic group. Inhibiting F-actin with cytochalasin D repaired the injured effects of HG on mitochondrial dynamics and functions. Conversely, the F-actin-polymerization-inducer jasplakinolide aggravated mitochondrial fission and dysfunction. CONCLUSIONS F-actin contributes to HG-evoked mitochondrial fission by interacting with DRP1, which induces mitophagy and impairs mitochondrial function in SMG cells, ultimately damaging the SMG.
Collapse
Affiliation(s)
- Hou-Wei Zhu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Yi-Ping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Qiu-Fang Zhang
- Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Kai-Di Wang
- Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yan Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Wu Y, Yang Y, Qin X, Zhang Z, Ullah M, Li Y, Zhang Z. Unfolded proteins in the mitochondria activate HRI and inhibit mitochondrial protein translation. Cell Signal 2024; 123:111353. [PMID: 39168261 DOI: 10.1016/j.cellsig.2024.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/04/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The mitochondrial unfolded protein response (UPRmt) is triggered through eIF2α phosphorylation in mammals. However, the mechanisms of UPRmt activation and the influence of eIF2α phosphorylation on mitochondrial protein translation remain unclear. In this study, we confirmed that the UPRmt is a rapid and specific stress response that occurs through pharmacological induction of eIF2α phosphorylation, along with the phosphorylation of eIF2α, ATF4, and CHOP. Moreover, with the upregulation of the expression of some chaperones, cytochrome P450 enzymes, and DDIT4, as determined by RNA-Seq and ribosome profiling, eIF2α phosphorylation was found to be essential for the expression of ATF4 and CHOP, after which ATF4 trafficked into the nucleus and initiated CHOP expression. In addition, the generation of ROS and mitochondrial morphology were not affected by the GTPP-induced UPRmt. Furthermore, we investigated the mechanism by which HRI kinase-mediated UPRmt is induced by mitochondrial unfolded proteins via CRISPR-Cas9 technology, mitochondrial recruitment of HRI and interaction with other proteins. Moreover, we confirmed that mitochondrial protein translation and mitochondrial protein import were inhibited through eIF2α phosphorylation with the accumulation of unfolded mitochondrial proteins. These findings reveal the molecular mechanism of the UPRmt and its impact on cellular protein translation, which will offer novel insights into the functions of the UPRmt, including its implications for human disease and pathobiology.
Collapse
Affiliation(s)
- Yongshu Wu
- College of Animal Science and Technology College of Veterinary Medicine/Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province/Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology/Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management/China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou 311300, China
| | - Yang Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Zhixiong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Munib Ullah
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| | - Zhidong Zhang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
14
|
Chang X, Zhou H, Hu J, Ge T, He K, Chen Y, Zou R, Fan X. Targeting mitochondria by lipid-selenium conjugate drug results in malate/fumarate exhaustion and induces mitophagy-mediated necroptosis suppression. Int J Biol Sci 2024; 20:5793-5811. [PMID: 39494338 PMCID: PMC11528455 DOI: 10.7150/ijbs.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease primarily affecting large and medium-sized arteries and involves various complex pathological mechanisms and factors. Previous studies have demonstrated a close association between atherosclerosis and inflammatory damage, metabolic disorders, and gut microbiota. It is also closely linked to several cellular processes, such as endothelial cell pyroptosis, ferroptosis, mitophagy, mitochondrial dynamics, and mitochondrial biogenesis. Mitophagy has been recognized as a previously unexplored mechanism contributing to endothelial injury in atherosclerosis. Our study aims to further elucidate the potential relationship and mechanisms between AS-induced mitophagy dysfunction and the interaction of TMBIM6 and NDUFS4. Data from the study demonstrated that atherosclerosis in AS mice was associated with substantial activation of inflammatory and oxidative stress damage, along with a marked reduction in endothelial mitophagy expression and increased pathological mitochondrial fission, leading to mitochondrial homeostasis disruption. However, under pharmacological intervention, mitophagy levels significantly increased, pathological mitochondrial fission was notably reduced, and oxidative stress and inflammatory damage were suppressed, while necroptotic pathways in endothelial cells were significantly blocked. Interestingly, the deletion of TMBIM6 or NDUFS4 in animal models or cell lines markedly impaired the therapeutic effects of the drug, disrupting its regulation of mitophagy and mitochondrial fission, and leading to the re-emergence of inflammatory responses and oxidative stress damage. Metabolomics analysis further revealed that autophagy plays a pivotal regulatory role during drug intervention and after genetic modification of TMBIM6 and NDUFS4. The activation of autophagy (macroautophagy/mitophagy) alleviated the negative effects of mitochondrial fission and inflammatory damage induced by lipid stress in endothelial cells, a regulatory mechanism likely associated with the TMBIM6-NDUFS4 axis. Subsequent animal gene modification experiments demonstrated that knocking out TMBIM6-NDUFS4 negates the therapeutic effects of the drug on lipid-induced damage and metabolic function. In summary, our research reveals a phenotypic regulatory mechanism of endothelial cell stress damage through mitophagy, influenced by the interaction of TMBIM6 and NDUFS4. Pharmacological intervention can restore mitochondrial homeostasis in endothelial cells by regulating mitophagy via the TMBIM6-NDUFS4 pathway. This novel insight suggests that TMBIM6-NDUFS4 may serve as a key therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, Beijing, China
| | - Jinlin Hu
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Teng Ge
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Kunyang He
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Ye Chen
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
| |
Collapse
|
15
|
Zhang X, Chang X, Deng J, Li C, Li Y, Zheng Y, Yang R, Xu X, Yan W, Zhang F, Xia Y, Zhao H, Xing P, Guo G, Ding F, Tao L, Wang S. Decreased Mrpl42 expression exacerbates myocardial ischemia and reperfusion injury by inhibiting mitochondrial translation. Cell Signal 2024; 125:111482. [PMID: 39447668 DOI: 10.1016/j.cellsig.2024.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Mammalian mitochondrial DNA (mtDNA) encodes a total of 13 proteins, all of which are subunits of enzyme complexes of the oxidative phosphorylation. The mtDNA-encoded protein synthesis depends on the mitochondrial ribosomal proteins (MRPs), which assemble to form a specialized form of ribosome. Some mtDNA-encoded proteins have been reported to be reduced after myocardial ischemic injury. However, the molecular mechanisms responsible for this decrease and whether this decrease is involved in myocardial ischemia/reperfusion (I/R) injury remains unknown. Here, we found that the mtDNA-encoded protein levels were significantly decreased after I/R injury, while the mRNA levels of these genes were either increased or had no significant change. Subsequently, by querying and analyzing public database resources, we found that the expression of many mitochondrial translation-related proteins tended to decrease after myocardial infarction injury, and the reduction in the expression of these proteins was most obvious for Mrpl42. Furthermore, we found that cardiac Mrpl42 knockdown aggravated I/R-induced cardiac contractile dysfunction and cardiomyocyte death, while restoring Mrpl42 expression in the heart reduced I/R injury. Mrpl42 knockdown impaired the translation of mtDNA-encoded genes, ultimately led to aberrations in mitochondrial morphology and respiratory function. In addition, we found that the decrease in the expression of Mrpl42 after I/R injury was caused by the downregulation of Nrf2, which directly regulates Mrpl42 transcription. Our study revealed that ischemic downregulation of Mrpl42 expression and subsequent inhibition of mitochondrial translation contribute to cardiac I/R injury. Targeting Mrpl42 may be a novel therapeutic intervention for cardiac I/R injury and myocardial infarction.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaoqian Chang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jingyu Deng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yuan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yangzhi Zheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Rongjin Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Pingping Xing
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Guigao Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Fengyue Ding
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
16
|
Li J, Zhang J, Zhong Y, Xie D, Han H, Zhang Z, Liu Y, Li S. TRPC6 regulates necroptosis in myocardial ischemia/reperfusion injury via Ca 2+/CaMKII signaling pathway. Cell Signal 2024; 122:111344. [PMID: 39134250 DOI: 10.1016/j.cellsig.2024.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) frequently complicates postoperative cardiovascular disease treatment. Necroptosis, a cell death mechanism similar to apoptosis, is regulated by specific signaling pathways and plays an important role in MIRI. Receptor-interacting protein 3 (RIP3), a key protein regulating necroptosis during MIRI, directly phosphorylates calmodulin-dependent protein kinase II (CaMKII). Leading to mitochondrial permeablity transition pore (mPTP) opening and inducing necroptosis. Transient receptor potential canonical channel 6 (TRPC6) regulats Ca2+ entry, is linked to CaMKII as an important upstream effector. However, the connection between TRPC6 and MIRI necroptosis remains unclear. The study aimed to investigate the relationship between TRPC6 and MIRI necroptosis, with a specific focus on elucidating the role of TRPC6 in regulating CaMKII phosphorylation during cardiac necroptosis via Ca2+ modulation. METHODS AND RESULTS: The experiment used wild-type (WT) and TRPC6 knockout (TRPC6-/-) mice for I/R model construction, and H9c2 myocardial cell line for H/R model. After ischemia-reperfusion (I/R), TRPC6 protein levels in mice significantly increased, exacerbating myocardial injury, infarct size (IS), and cardiac function in WT mice. In contrast, TRPC6 knockout attenuated myocardial injury, IS, and improved cardiac function. The results showed a significant correlation between changes in CaMKII and TRPC6. TRPC6 knockout led to decreased intracellular calcium levels, CaMKII phosphorylation, reactive oxygen species levels, mPTP opening, and improve mitochondrial structure. CONCLUSION: I/R upregulates TRPC6, which mediates Ca2+ entry and CaMKII phosphorylation, exacerbates oxidative stress, and induces necroptosis. These findings suggest a potential therapeutic avenue for mitigating MIRI by targeting TRPC6.
Collapse
Affiliation(s)
- Junhao Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Jiaji Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Yunlong Zhong
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Dongge Xie
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Han Han
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Zhongqing Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Yong Liu
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Shoutian Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China.
| |
Collapse
|
17
|
Chang X, Wu D, Gao X, Lin J, Tan Y, Wang J, Zhu H, Zhou H. BuyangHuanwu Decoction alleviates Endothelial Cell Apoptosis and Coronary Microvascular Dysfunction via Regulation of the MAPKK4/p38 Signaling Axis. Int J Med Sci 2024; 21:2464-2479. [PMID: 39439466 PMCID: PMC11492876 DOI: 10.7150/ijms.98183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAPKK4 has been implicated in the pathological mechanisms underlying myocardial and vascular injury, specifically influencing endothelial cell damage and programmed cell death via subcellular pathways. Nevertheless, the regulatory role of MAPKK4 in coronary microvascular injury following myocardial infarction remains unconfirmed, and the exploration of targeted mitochondrial protective therapeutic agents remains unaddressed. In light of this gap, we established a MAPKK4 gene-modified mouse model of ischemia-reperfusion injury and employed Buyang Huanwu decoction (BYHW), a traditional cardiovascular therapeutic formula, to assess its efficacy in treating coronary microvascular injury post-ischemia-reperfusion. The study aimed to elucidate the mechanism by which BYHW mitigates coronary microvascular injury induced by ischemia-reperfusion through the attenuation of endothelial cell apoptosis. Experimental outcomes revealed that high-dose BYHW significantly ameliorated coronary microvascular injury post-ischemia-reperfusion, restoring the structural integrity of the coronary microvasculature and reducing inflammation and oxidative stress. Contrarily, in transgenic mice overexpressing MAPKK4, BYHW intervention failed to attenuate microvascular inflammation and oxidative stress. To further investigate, we simulated hypoxia/reoxygenation injury in vascular endothelial cells using a MAPKK4-related cellular gene modification model. The results indicated that BYHW attenuates inflammatory damage and enhances the viability of vascular endothelial cells following hypoxic stress, inhibiting apoptosis via the mitochondrial pathway. However, overexpression of MAPKK4/p38 negated the therapeutic effects of BYHW, showing no impact on endothelial cell apoptosis and oxidative stress under hypoxic conditions. Molecular interaction studies confirmed that the active components of BYHW, Astragaloside IV and Ligustrazine, interact with the MAPKK4/P38 axis. In vitro experiments further suggested that the interaction between MAPKK4 and P38 play a crucial role in the ability of BYHW to inhibit apoptosis in coronary microvascular endothelial cells. Therapeutically, MAPKK4 may potentiate the apoptotic pathway in microvascular endothelial cells by modulating downstream P38 expression and phosphorylation, thereby exacerbating ischemia-reperfusion-induced coronary microvascular endothelial injury. From an in vivo perspective, the transgenic overexpression of MAPKK4 and P38 inhibited the microvascular protective effects of BYHW. These findings collectively underscore the significance of the MAPKK4-P38 axis in the protection of coronary microvascular endothelial cells.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dan Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Gao
- Outpatient Department of the Sixth Medical Center of the PLA General Hospital, China
| | - Jianguo Lin
- The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Tan
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
18
|
Giménez-Escamilla I, Pérez-Carrillo L, González-Torrent I, Delgado-Arija M, Benedicto C, Portolés M, Tarazón E, Roselló-Lletí E. Transcriptomic Alterations in Spliceosome Components in Advanced Heart Failure: Status of Cardiac-Specific Alternative Splicing Factors. Int J Mol Sci 2024; 25:9590. [PMID: 39273537 PMCID: PMC11395552 DOI: 10.3390/ijms25179590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown. Therefore, we analysed the spliceosome transcriptome in cardiac tissue (n = 36) from control subjects and HF patients (with ischaemic (ICM) and dilated (DCM) cardiomyopathies) using RNA-seq. We found greater deregulation of spliceosome machinery in ICM. Specifically, we showed widespread upregulation of the E and C complex components, highlighting an increase in SNRPD2 (FC = 1.35, p < 0.05) and DHX35 (FC = 1.34, p < 0.001) mRNA levels. In contrast, we observed generalised downregulation of the A complex and cardiac-specific AS factors, such as the multifunctional protein PCBP2 (FC = -1.29, p < 0.001) and the RNA binding proteins QKI (FC = -1.35, p < 0.01). In addition, we found a relationship between SNPRD2 (an E complex component) and the left ventricular mass index in ICM patients (r = 0.779; p < 0.01). On the other hand, we observed the specific underexpression of DDX46 (FC = -1.29), RBM17 (FC = -1.33), SDE2 (FC = -1.35) and RBFOX1 (FC = -1.33), p < 0.05, in DCM patients. Therefore, these aetiology-related alterations may indicate the differential involvement of the splicing process in the development of ICM and DCM.
Collapse
Affiliation(s)
- Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Irene González-Torrent
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carlota Benedicto
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
19
|
Kaur S, Khullar N, Navik U, Bali A, Bhatti GK, Bhatti JS. Multifaceted role of dynamin-related protein 1 in cardiovascular disease: From mitochondrial fission to therapeutic interventions. Mitochondrion 2024; 78:101904. [PMID: 38763184 DOI: 10.1016/j.mito.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India.
| |
Collapse
|
20
|
Pu X, Zhang Q, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R, Chang X. Ginsenoside Rb1 ameliorates heart failure through DUSP-1-TMBIM-6-mediated mitochondrial quality control and gut flora interactions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155880. [PMID: 39053246 DOI: 10.1016/j.phymed.2024.155880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND There is currently no specific therapeutic drug available for heart failure in clinical practice. Numerous studies have validated the efficacy of Ginsenoside Rb1, an active component found in various herbal remedies used for heart failure treatment, in effectively ameliorating myocardial ischemia. However, the precise mechanism of action and molecular targets of Ginsenoside Rb1 remain unclear. PURPOSE This study aims to explore the molecular mechanisms through which Ginsenoside Rb1 synergistically modulates the gut flora and mitochondrial quality control network in heart failure by targeting the DUSP-1-TMBIM-6-VDAC1 axis. STUDY DESIGN This study utilized DUSP-1/VDAC1 knockout (DUSP-1-/-/VDAC1-/-) and DUSP-1/VDAC1 transgenic (DUSP-1+/+/VDAC1+/+) mouse models of heart failure, established through Transverse Aortic Constriction (TAC) surgery and genetic modification techniques. The mice were subsequently subjected to treatment with Ginsenoside Rb1. METHODS A series of follow-up multi-omics analyses were conducted, including assessments of intestinal flora, gene transcription sequencing, single-cell databases, and molecular biology assays of primary cardiomyocytes, to investigate the mechanism of action of Ginsenoside Rb1. RESULTS Ginsenoside Rb1 was found to have multiple regulatory mechanisms on mitochondria. Notably, DUSP-1 was discovered to be a crucial molecular target of Ginsenoside Rb1, controlling both intestinal flora and mitochondrial function. The regulatory effects of DUSP-1 on inflammation and mitochondrial quality control were mediated by changes in TMBIM-6 and VDAC1. Furthermore, NLRP3-mediated inflammatory responses were found to interact with mitochondrial quality control, exacerbating myocardial injury under stress conditions. Ginsenoside Rb1 modulated the DUSP-1-TMBIM-6-VDAC1 axis, inhibited the release of pro-inflammatory factors, altered the structural composition of the gut flora, and protected impaired heart function. These effects indirectly influenced the crosstalk between inflammation, mitochondria, and gut flora. CONCLUSION The DUSP-1-TMBIM-6-VDAC1 axis, an upstream pathway regulated by Ginsenoside Rb1, is a profound mechanism through which Ginsenoside Rb1 improves cardiac function in heart failure by modulating inflammation, mitochondria, and gut flora.
Collapse
Affiliation(s)
- Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
21
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155331. [PMID: 38870748 DOI: 10.1016/j.phymed.2023.155331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 06/15/2024]
Abstract
BACKGROUND Zishenhuoxue decoction (ZSHX), a Chinese herbal medicine, exhibits myocardial and vascular endothelial protective properties. The intricate regulatory mechanisms underlying myocardial ischemic injury and its association with dysfunctional mitochondrial quality surveillance (MQS) remain elusive. HYPOTHESIS/PURPOSE To study the protective effect of ZSHX on ischemic myocardial injury in mice using a TMBIM6 gene-modified animal model and mitochondrial quality control-related experiments. STUDY DESIGN Using model animals and myocardial infarction surgery-induced ischemic myocardial injury TMBIM6 gene-modified mouse models, the pharmacological activity of ZSHX in inhibiting ischemic myocardial injury and mitochondrial homeostasis disorder in vivo was tested. METHODS Our focal point entailed scrutinizing the impact of ZSHX on ischemic myocardial impairment through the prism of TMBIM6. This endeavor was undertaken utilizing mice characterized by heart-specific TMBIM6 knockout (TMBIM6CKO) and their counterparts, the TMBIM6 transgenic (TMBIM6TG) and VDAC1 transgenic (VDAC1TG) mice. RESULTS ZSHX demonstrated dose-dependent effectiveness in mitigating ischemic myocardial injury and enhancing mitochondrial integrity. TMBIM6CKO hindered ZSHX's cardio-therapeutic and mitochondrial protective effects, while ZSHX's benefits persisted in TMBIM6TG mice. TMBIM6CKO also blocked ZSHX's regulation of mitochondrial function in HR-treated cardiomyocytes. Hypoxia disrupted the MQS in cardiomyocytes, including calcium overload, excessive fission, mitophagy issues, and disrupted biosynthesis. ZSHX counteracted these effects, thereby normalizing MQS and inhibiting calcium overload and cardiomyocyte necroptosis. Our results also showed that hypoxia-induced TMBIM6 blockade resulted in the over-activation of VDAC1, a major mitochondrial calcium uptake pathway, while ZSHX could increase the expression of TMBIM6 and inhibit VDAC1-mediated calcium overload and MQS abnormalities. CONCLUSIONS Our findings suggest that ZSHX regulates mitochondrial calcium homeostasis and MQS abnormalities through a TMBIM6-VDAC1 interaction mechanism, which helps to treat ischemic myocardial injury and provides myocardial protection. This study also offers insights for the clinical translation and application of mitochondrial-targeted drugs in cardiomyocytess.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| |
Collapse
|
22
|
Kadier T, Zhang YG, Jing YX, Weng ZY, Liao SS, Luo J, Ding K, Cao C, Chen R, Meng QT. MCU inhibition protects against intestinal ischemia‒reperfusion by inhibiting Drp1-dependent mitochondrial fission. Free Radic Biol Med 2024; 221:111-124. [PMID: 38763207 DOI: 10.1016/j.freeradbiomed.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.
Collapse
Affiliation(s)
- Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Guo Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Xin Jing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Yi Weng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi-Shi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Cao
- Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
23
|
Wang J, Zhuang H, Jia L, He X, Zheng S, Ji K, Xie K, Ying T, Zhang Y, Li C, Chang X. Nuclear receptor subfamily 4 group A member 1 promotes myocardial ischemia/reperfusion injury through inducing mitochondrial fission factor-mediated mitochondrial fragmentation and inhibiting FUN14 domain containing 1-depedent mitophagy. Int J Biol Sci 2024; 20:4458-4475. [PMID: 39247823 PMCID: PMC11380451 DOI: 10.7150/ijbs.95853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the mechanism by which NR4A1 regulates mitochondrial fission factor (Mff)-related mitochondrial fission and FUN14 domain 1 (FUNDC1)-mediated mitophagy following cardiac ischemia-reperfusion injury(I/R). Our findings showed that the damage regulation was positively correlated with the pathological fission and pan-apoptosis of myocardial cell mitochondria. Compared with wild-type mice (WT), NR4A1-knockout mice exhibited resistance to myocardial ischemia-reperfusion injury and mitochondrial pathological fission, characterized by mitophagy activation. Results showed that ischemia-reperfusion injury increased NR4A1 expression level, activating mitochondrial fission mediated by Mff and restoring the mitophagy phenotype mediated by FUNDC1. The inactivation of FUNDC1 phosphorylation could not mediate the normalization of mitophagy in a timely manner, leading to an excessive stress response of unfolded mitochondrial proteins and an imbalance in mitochondrial homeostasis. This process disrupted the normalization of the mitochondrial quality control network, leading to accumulation of damaged mitochondria and the activation of pan-apoptotic programs. Our data indicate that NR4A1 is a novel and critical target in myocardial I/R injury that exertsand negative regulatory effects by activating Mff-mediated mito-fission and inhibiting FUNDC1-mediated mitophagy. Targeting the crosstalk balance between NR4A1-Mff-FUNDC1 is a potential approach for treating I/R.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lianqun Jia
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Xinyong He
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Sicheng Zheng
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Kangshou Ji
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Kang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Tong Ying
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Ying Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048 Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Chun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
24
|
Piamsiri C, Maneechote C, Jinawong K, Arunsak B, Chunchai T, Nawara W, Kerdphoo S, Chattipakorn SC, Chattipakorn N. Chronic mitochondrial dynamic-targeted therapy alleviates left ventricular dysfunction by reducing multiple programmed cell death in post-myocardial infarction rats. Eur J Pharmacol 2024; 977:176736. [PMID: 38878877 DOI: 10.1016/j.ejphar.2024.176736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Mitochondrial dysfunction and the activation of multiple programmed cell death (PCD) have been shown to aggravate the severity and mortality associated with the progression of myocardial infarction (MI). Although pharmacological modulation of mitochondrial dynamics, including treatment with the fusion promoter (M1) and the fission inhibitor (Mdivi-1), exerted cardioprotection against several cardiac complications, their roles in the post-MI model have never been investigated. Using a MI rat model instigated by permanent left-anterior descending (LAD) coronary artery occlusion, post-MI rats were randomly assigned to receive one of 4 treatments (n = 10/group): vehicle (DMSO 3%V/V), enalapril (10 mg/kg), Mdivi-1 (1.2 mg/kg) and M1 (2 mg/kg), while a control group of sham operated rats underwent surgery without LAD occlusion (n = 10). After 32-day treatment, cardiac and mitochondrial function, and histopathological morphology were investigated and molecular analysis was performed. Treatment with enalapril, Mdivi-1, and M1 significantly mitigated cardiac pathological remodeling, reduced myocardial injury, and improved left ventricular (LV) function in post-MI rats. Importantly, all interventions also attenuated mitochondrial dynamic imbalance and mitigated activation of apoptosis, necroptosis, and pyroptosis after MI. This investigation demonstrated for the first time that chronic mitochondrial dynamic-targeted therapy mitigated mitochondrial dysfunction and activation of PCD, leading to improved LV function in post-MI rats.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kewarin Jinawong
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
25
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Du Y, Li J, Dai Z, Chen Y, Zhao Y, Liu X, Xia T, Zhu P, Wang Y. Pyruvate kinase M2 sustains cardiac mitochondrial quality surveillance in septic cardiomyopathy by regulating prohibitin 2 abundance via S91 phosphorylation. Cell Mol Life Sci 2024; 81:254. [PMID: 38856931 PMCID: PMC11335292 DOI: 10.1007/s00018-024-05253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
The endogenous mitochondrial quality control (MQC) system serves to protect mitochondria against cellular stressors. Although mitochondrial dysfunction contributes to cardiac damage during many pathological conditions, the regulatory signals influencing MQC disruption during septic cardiomyopathy (SC) remain unclear. This study aimed to investigate the involvement of pyruvate kinase M2 (PKM2) and prohibitin 2 (PHB2) interaction followed by MQC impairment in the pathogenesis of SC. We utilized LPS-induced SC models in PKM2 transgenic (PKM2TG) mice, PHB2S91D-knockin mice, and PKM2-overexpressing HL-1 cardiomyocytes. After LPS-induced SC, cardiac PKM2 expression was significantly downregulated in wild-type mice, whereas PKM2 overexpression in vivo sustained heart function, suppressed myocardial inflammation, and attenuated cardiomyocyte death. PKM2 overexpression relieved sepsis-related mitochondrial damage via MQC normalization, evidenced by balanced mitochondrial fission/fusion, activated mitophagy, restored mitochondrial biogenesis, and inhibited mitochondrial unfolded protein response. Docking simulations, co-IP, and domain deletion mutant protein transfection experiments showed that PKM2 phosphorylates PHB2 at Ser91, preventing LPS-mediated PHB2 degradation. Additionally, the A domain of PKM2 and the PHB domain of PHB2 are required for PKM2-PHB2 binding and PHB2 phosphorylation. After LPS exposure, expression of a phosphorylation-defective PHB2S91A mutant negated the protective effects of PKM2 overexpression. Moreover, knockin mice expressing a phosphorylation-mimetic PHB2S91D mutant showed improved heart function, reduced inflammation, and preserved mitochondrial function following sepsis induction. Abundant PKM2 expression is a prerequisite to sustain PKM2-PHB2 interaction which is a key element for preservation of PHB2 phosphorylation and MQC, presenting novel interventive targets for the treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jialei Li
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhe Dai
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Chen
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Zhao
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoman Liu
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tian Xia
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Pingjun Zhu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| | - Yijin Wang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
27
|
Chen Y, Chen S, Zhang J, Hu X, Li N, Liu Z, Huang L, Yu J, Zhang Y, Lin X, Xu Z, Fang Y, Chen Z, Guo Y, Chen B. Electroacupuncture pre-treatment exerts a protective effect on LPS-induced cardiomyopathy in mice through the delivery of miR-381 via exosomes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167208. [PMID: 38701956 DOI: 10.1016/j.bbadis.2024.167208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.
Collapse
Affiliation(s)
- Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ningcen Li
- Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 500515, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
28
|
Wang Y, Ren T, Li C, Wu Q, Liu J, Guan X, Chang X, Liu Z, Liu R. Mechanisms involved in the regulation of mitochondrial quality control by PGAM5 in heart failure. Cell Stress Chaperones 2024; 29:510-518. [PMID: 38821173 PMCID: PMC11214171 DOI: 10.1016/j.cstres.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Heart failure (HF) refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body's tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of HF. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. Phosphoglycerate mutase 5 (PGAM5), a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5's involvement in the regulation of the mitochondrial quality control system in the occurrence and development of HF, thereby providing a theoretical basis for future in-depth research.
Collapse
Affiliation(s)
- Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuizhi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
29
|
Tang W, Guo R, Hu C, Yang Y, Yang D, Chen X, Liu Y. BMAL1 alleviates myocardial damage in sepsis by activating SIRT1 signaling and promoting mitochondrial autophagy. Int Immunopharmacol 2024; 133:112111. [PMID: 38678672 DOI: 10.1016/j.intimp.2024.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Brain and muscle arnt-like protein-1 (BMAL1) deficiency is associated with myocardial dysfunction and suppressed sirtuin 1 (SIRT1). However, whether BMAL1 promotes mitophagy via SIRT1 to alleviate myocardial injury in sepsis remains unknown. METHODS An in vitro myocardial injury model was established using lipopolysaccharide (LPS)-treated H9C2 cells. Knockdown or overexpression of genes was performed using plasmid transfection. Gene and protein expression was assessed by qRT-PCR and Western blot, respectively. Cell proliferation was evaluated using cell counting kit-8, and cellular apoptosis and reactive oxygen species (ROS) levels were analyzed using flow cytometry. An in vivo myocardial injury model of sepsis was established by cecal ligation and puncture in rats. Myocardial function was characterized by analyzing the damage-associated proteins, inflammatory factors, ejection fraction, and fraction shortening. RESULTS sgBMAL1 significantly decreased BMAL1 levels and remarkably increased the sensitivity of H9C2 cells to LPS stimulation, consequently enhancing LPS-induced apoptosis, inflammation, and ROS levels. These effects were further attenuated by BMAL1 overexpression. BMAL1 knockdown inhibited the expression of SIRT1 and mitophagy-associated proteins. SIRT1 overexpression reversed the enhancement of shBMAL1 on cell proliferation and inflammation. In the rat model of sepsis, BMAL1 overexpression decreased the myocardial injury-associated proteins to recover the myocardial function and suppressed inflammatory activities by promoting mitophagy via SIRT1. CONCLUSION BMAL1 enhances mitophagy dependent on SIRT1, thereby alleviating myocardial injury in sepsis.
Collapse
Affiliation(s)
- Wen Tang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Rennan Guo
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Congyu Hu
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Yang Yang
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Danping Yang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Xiaxia Chen
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Yan Liu
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China.
| |
Collapse
|
30
|
Chang X, Zhang Q, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytother Res 2024; 38:2496-2517. [PMID: 38447978 DOI: 10.1002/ptr.8177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Fang X, Zhang Y, Wu H, Wang H, Miao R, Wei J, Zhang Y, Tian J, Tong X. Mitochondrial regulation of diabetic endothelial dysfunction: Pathophysiological links. Int J Biochem Cell Biol 2024; 170:106569. [PMID: 38556159 DOI: 10.1016/j.biocel.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Jilin 130117, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
32
|
Zhao Q, Zhang Q, Zhao X, Tian Z, Sun M, He L. MG53: A new protagonist in the precise treatment of cardiomyopathies. Biochem Pharmacol 2024; 222:116057. [PMID: 38367817 DOI: 10.1016/j.bcp.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Cardiomyopathies (CMs) are highly heterogeneous progressive heart diseases characterised by structural and functional abnormalities of the heart, whose intricate pathogenesis has resulted in a lack of effective treatment options. Mitsugumin 53 (MG53), also known as Tripartite motif protein 72 (TRIM72), is a tripartite motif family protein from the immuno-proteomic library expressed primarily in the heart and skeletal muscle. Recent studies have identified MG53 as a potential cardioprotective protein that may play a crucial role in CMs. Therefore, the objective of this review is to comprehensively examine the underlying mechanisms mediated by MG53 responsible for myocardial protection, elucidate the potential role of MG53 in various CMs as well as its dominant status in the diagnosis and prognosis of human myocardial injury, and evaluate the potential therapeutic value of recombinant human MG53 (rhMG53) in CMs. It is expected to yield novel perspectives regarding the clinical diagnosis and therapeutic treatment of CMs.
Collapse
Affiliation(s)
- Qianru Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China.
| | - Lian He
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, Liaoning, PR China.
| |
Collapse
|
33
|
Chen T, Wang Y, Chen X, Zheng W, Guo W, Liang Q, Wang J, Chen Z, Zhou Y, Xiao L. The MQRG score: a novel prognostic tool for adrenocortical carcinoma patients based on mitochondrial quality. Front Endocrinol (Lausanne) 2024; 15:1222281. [PMID: 38505747 PMCID: PMC10948487 DOI: 10.3389/fendo.2024.1222281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Objectives Adrenal tumors are common, but adrenocortical carcinomas (ACCs) are a rare and challenging form of cancer to diagnose and manage.This study aimed to explore the critical role of mitochondrial quality in maintaining cellular function and the implications of the abnormal expression of mitochondrial metabolism-related proteins observed in ACC patients. We focused on identifying the connection between mitochondrial quality and the development of ACC at molecular and genomic levels. Methods We compared mitochondrial quality-related genes (MQRGs) across ACC subtypes using overall survival (OS) and disease-free survival (DFS) as evaluation indicators. Furthermore, a novel MQRG score was developed to predict clinical prognosis and guide immunotherapy responses accurately. Results The majority of MQRGs were upregulated in the ACC samples, correlating to poor prognosis. The MQRG score was confirmed as an independent prognostic factor for ACC, with the high-risk MQRG score group showing a significantly shorter overall survival period. Conclusions Multilayer alterations in MQRGs are associated with patient prognosis and immune cell infiltration characteristics. This comprehensive analysis of MQRGs can contribute to a deeper understanding of potential differences in ACC patients' tumor microenvironment. This can influence clinical decision-making and advanced prognosis prediction, thereby offering new insights into personalized treatments in ACC.
Collapse
Affiliation(s)
- Tao Chen
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Yifan Wang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xue Chen
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wenbin Zheng
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Weiquan Guo
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qi Liang
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhongbiao Chen
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yiwen Zhou
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lijia Xiao
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
34
|
Chen D, Duan H, Zou C, Yang R, Zhang X, Sun Y, Luo X, Lv D, Chen P, Shen Z, He B. 20(R)-ginsenoside Rg3 attenuates cerebral ischemia-reperfusion injury by mitigating mitochondrial oxidative stress via the Nrf2/HO-1 signaling pathway. Phytother Res 2024; 38:1462-1477. [PMID: 38246696 DOI: 10.1002/ptr.8118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Reducing mitochondrial oxidative stress has become an important strategy to prevent neuronal death in ischemic stroke. Previous studies have shown that 20(R)-ginsenoside Rg3 can significantly improve behavioral abnormalities, reduce infarct size, and decrease the number of apoptotic neurons in cerebral ischemia/reperfusion injury rats. However, it remains unclear whether 20(R)-ginsenoside Rg3 can inhibit mitochondrial oxidative stress in ischemic stroke and the potential molecular mechanism. In this study, we found that 20(R)-ginsenoside Rg3 notably inhibited mitochondrial oxidative stress in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and maintained the stability of mitochondrial structure and function. Treatment with 20(R)-ginsenoside Rg3 also decreased the levels of mitochondrial fission proteins (Drp1 and Fis1) and increased the levels of fusion proteins (Opa1, Mfn1, and Mfn2) in MCAO/R rats. Furthermore, we found that 20(R)-ginsenoside Rg3 promoted nuclear aggregation of nuclear factor erythroid2-related factor 2 (Nrf2) but did not affect Kelch-like ECH-associated protein-1 (Keap1), resulting in the downstream expression of antioxidants. In in vitro oxygen-glucose deprivation/reperfusion stroke models, the results of PC12 cells treated with 20(R)-ginsenoside Rg3 were consistent with animal experiments. After transfection with Nrf2 short interfering RNA (siRNA), the protective effect of 20(R)-ginsenoside Rg3 on PC12 cells was reversed. In conclusion, the inhibition of mitochondrial oxidative stress plays a vital position in the anti-cerebral ischemia-reperfusion injury of 20(R)-ginsenoside Rg3, and its neuroprotective mechanism is related to the activation of the nuclear factor erythroid2-related factor 2/heme oxygenase 1 signaling pathway.
Collapse
Affiliation(s)
- Deyun Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- College of Food, Drugs, and Health, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Hengqian Duan
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Cheng Zou
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Renhua Yang
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Xiaochao Zhang
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yan Sun
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Xingwei Luo
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Di Lv
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Peng Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Zhiqiang Shen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Bo He
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
35
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Zhang Q, Liu Z, Liu R. Zishen Tongyang Huoxue decoction (TYHX) alleviates sinoatrial node cell ischemia/reperfusion injury by directing mitochondrial quality control via the VDAC1-β-tubulin signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117371. [PMID: 37981118 DOI: 10.1016/j.jep.2023.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Tongyang Huoxue decoction (TYHX) has been used clinically for nearly 40 years to treat sick sinus syndrome. Previous reports showed that TYHX can inhibit calcium flux by regulating mitochondrial homeostasis via β-tubulin and increase sinoatrial node cell (SNC) activity. However, the underlying mechanisms remain unclear. AIM OF THE STUDY We aimed to verify the protective effect of TYHX against SNC ischemia by regulating mitochondrial quality control (MQC) through β-tubulin and voltage-dependent anion-selective channel 1 (VDAC1) silencing. MATERIALS AND METHODS We established an in vitro model of SNC ischemia/reperfusion (I/R) injury and performed rescue experiments by silencing β-tubulin and VDAC1 expression. Cell-Counting Kit 8 assays were performed to detect cell viabilities, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays (paired with confocal microscopy) were performed to detect fragmentation. Mitochondrial-energy metabolism was detected using the Seahorse assay system. Reverse transcription-quantitative polymerase chain reaction analysis was performed to detect the mRNA-expression levels of MQC-related genes. RESULTS TYHX inhibited SNC mitochondrial injury. During I/R simulation, TYHX maintained β-tubulin stability, regulated synergy between mitophagy and the mitochondrial unfolded-protein response (UPRmt), and inhibited mitochondrial oxidative stress and overactive SNC fission. Next-generation sequencing suggested that mitochondrial-membrane injury caused SNC apoptosis. We also found that TYHX regulated β-tubulin expression through VDAC1 and inhibited dynamin-related protein 1 migration to mitochondria from the nucleus. After preventing excessive mitochondrial fission, the mitophagy-UPRmt pathway, mitochondrial-membrane potential, and mitochondrial energy were restored. VDAC1 silencing affected the regulatory mechanism of MQC in a β-tubulin-dependent manner via TYHX. CONCLUSION TYHX regulated mitochondrial membrane-permeability through VDAC1, which affected MQC through β-tubulin and inhibited mitochondrial apoptosis. Our findings may help in developing drugs to protect the sinoatrial node.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
36
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
37
|
Liu Z, Qiang Y, Shan S, Wang S, Liu Z, Yang Y, Huang Z, Song M, Zhao X, Song F. Aberrant mitochondrial aggregation of TDP-43 activated mitochondrial unfolded protein response and contributed to recovery of acetaminophen induced acute liver injury. Toxicol Res (Camb) 2024; 13:tfae008. [PMID: 38283824 PMCID: PMC10811519 DOI: 10.1093/toxres/tfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Mitochondrial dysfunction is a key pathological event in the acute liver injury following the overdose of acetaminophen (APAP). Calpain is the calcium-dependent protease, recent studies demonstrate that it is involved in the impairment of mitochondrial dynamics. The mitochondrial unfolded protein response (UPRmt) is commonly activated in the context of mitochondrial damage following pathological insults and contributes to the maintenance of the mitochondrial quality control through regulating a wide range of gene expression. More importantly, it is reported that abnormal aggregation of TDP-43 in mitochondria induced the activation of UPRmt. However, whether it is involved in APAP induced-hepatotoxicity remains unclear. In the present study, C57/BL6 mice were given 300 mg/kg APAP to establish a time-course model of acute liver injury. Furthermore, Calpeptin, the specific inhibiter of calpains, was used to conduct the intervention experiment. Our results showed, APAP exposure produced severe liver injury. Moreover, TDP-43 was obviously accumulated within mitochondria whereas mitochondrial protease LonP1 was significantly decreased. However, these changes exhibited significant recovery at 48 h. By contrast, the mitochondrial protease ClpP and chaperone mtHSP70 and HSP60 were consistently increased, which supported the UPRmt was activated to promote protein homeostasis. Further investigation revealed that calpain-mediated cleavage of TDP-43 could promote the accumulation of TDP-43 in mitochondria compartment, thereby facilitating the activation of UPRmt. Additionally, Calpeptin pretreatment not only protected against APAP-induced liver injury, but also suppressed the formation of TDP-43 aggregates and the activation of UPRmt. Taken together, our findings indicated that in APAP-induced acute liver injury, calpain-mediated cleavage of TDP43 caused its aberrant aggregation on the mitochondria. As a stress-protective response, the induction of UPRmt contributed to the recovery of mitochondrial function.
Collapse
Affiliation(s)
- Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
38
|
Xie W, Shi H, Zuo R, Zhou S, Ma N, Zhang H, Chang G, Shen X. Conjugated Linoleic Acid Ameliorates Hydrogen Peroxide-Induced Mitophagy and Inflammation via the DRP1-mtDNA-STING Pathway in Bovine Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2120-2134. [PMID: 38235560 DOI: 10.1021/acs.jafc.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Oxidative stress is tightly associated with liver dysfunction and injury in dairy cows. Previous studies have shown that cis-9, trans-11 conjugated linoleic acid (CLA) possesses anti-inflammatory and antioxidative abilities. In this study, the bovine hepatocytes were pretreated with CLA for 6 h, followed by treatment with hydrogen peroxide (H2O2) for another 6 h to investigate the antioxidative effect of CLA and uncover the underlying mechanisms. The results demonstrated that H2O2 treatment elevated the level of mitophagy, promoted mitochondrial DNA (mtDNA) leakage into the cytosol, and activated the stimulator of interferon genes (STING)/nuclear factor kappa B (NF-κB) signaling pathway to trigger an inflammatory response in bovine hepatocytes. In addition, the dynamin-related protein 1(DRP1)-mtDNA-STING-NF-κB axis contributed to the H2O2-induced oxidative injury of bovine hepatocytes. CLA could reduce mitophagy and the inflammatory response to attenuate oxidative damage via the DRP1/mtDNA/STING pathway in bovine hepatocytes. These findings offer a theoretical foundation for the hepatoprotective effect of CLA against oxidative injury in dairy cows.
Collapse
Affiliation(s)
- Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Huimin Shi
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Rankun Zuo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
39
|
Li Y, Yu J, Li R, Zhou H, Chang X. New insights into the role of mitochondrial metabolic dysregulation and immune infiltration in septic cardiomyopathy by integrated bioinformatics analysis and experimental validation. Cell Mol Biol Lett 2024; 29:21. [PMID: 38291374 PMCID: PMC10826082 DOI: 10.1186/s11658-024-00536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Septic cardiomyopathy (SCM), a common cardiovascular comorbidity of sepsis, has emerged among the leading causes of death in patients with sepsis. SCM's pathogenesis is strongly affected by mitochondrial metabolic dysregulation and immune infiltration disorder. However, the specific mechanisms and their intricate interactions in SCM remain unclear. This study employed bioinformatics analysis and drug discovery approaches to identify the regulatory molecules, distinct functions, and underlying interactions of mitochondrial metabolism and immune microenvironment, along with potential interventional strategies in SCM. METHODS GSE79962, GSE171546, and GSE167363 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and module genes were identified using Limma and Weighted Correlation Network Analysis (WGCNA), followed by functional enrichment analysis. Machine learning algorithms, including support vector machine-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) regression, and random forest, were used to screen mitochondria-related hub genes for early diagnosis of SCM. Subsequently, a nomogram was developed based on six hub genes. The immunological landscape was evaluated by single-sample gene set enrichment analysis (ssGSEA). We also explored the expression pattern of hub genes and distribution of mitochondria/inflammation-related pathways in UMAP plots of single-cell dataset. Potential drugs were explored using the Drug Signatures Database (DSigDB). In vivo and in vitro experiments were performed to validate the pathogenetic mechanism of SCM and the therapeutic efficacy of candidate drugs. RESULTS Six hub mitochondria-related DEGs [MitoDEGs; translocase of inner mitochondrial membrane domain-containing 1 (TIMMDC1), mitochondrial ribosomal protein S31 (MRPS31), F-box only protein 7 (FBXO7), phosphatidylglycerophosphate synthase 1 (PGS1), LYR motif containing 7 (LYRM7), and mitochondrial chaperone BCS1 (BCS1L)] were identified. The diagnostic nomogram model based on the six hub genes demonstrated high reliability and validity in both the training and validation sets. The immunological microenvironment differed between SCM and control groups. The Spearman correlation analysis revealed that hub MitoDEGs were significantly associated with the infiltration of immune cells. Upregulated hub genes showed remarkably high expression in the naive/memory B cell, CD14+ monocyte, and plasma cell subgroup, evidenced by the feature plot. The distribution of mitochondria/inflammation-related pathways varied across subgroups among control and SCM individuals. Metformin was predicted to be the most promising drug with the highest combined score. Its efficacy in restoring mitochondrial function and suppressing inflammatory responses has also been validated. CONCLUSIONS This study presents a comprehensive mitochondrial metabolism and immune infiltration landscape in SCM, providing a potential novel direction for the pathogenesis and medical intervention of SCM.
Collapse
Affiliation(s)
- Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jiachi Yu
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Ruibing Li
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China.
| | - Xing Chang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Zhao Y, Pan Y, Chen M, Tan Y, Chang X, Li H, Zhi Y. PKM2 interacts with and phosphorylates PHB2 to sustain mitochondrial quality control against septic cerebral-cardiac injury. Int J Med Sci 2024; 21:633-643. [PMID: 38464826 PMCID: PMC10920845 DOI: 10.7150/ijms.92367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024] Open
Abstract
Sepsis induces profound disruptions in cellular homeostasis, particularly impacting mitochondrial function in cardiovascular and cerebrovascular systems. This study elucidates the regulatory role of the Pyruvate Kinase M2 (PKM2)- Prohibitin 2 (PHB2) axis in mitochondrial quality control during septic challenges and its protective effects against myocardial and cerebral injuries. Employing LPS-induced mouse models, we demonstrate a significant downregulation of PKM2 and PHB2 in both heart and brain tissues post-sepsis, with corresponding impairments in mitochondrial dynamics, including fission, fusion, and mitophagy. Overexpression of PKM2 and PHB2 not only restores mitochondrial function, as evidenced by normalized ATP production and membrane potential but also confers resistance to oxidative stress by mitigating reactive oxygen species generation. These cellular mechanisms translate into substantial in vivo benefits, with transgenic mice overexpressing PKM2 or PHB2 displaying remarkable resistance to sepsis-induced cardiomyocyte and neuronal apoptosis, and organ dysfunction. Our findings highlight the PKM2-PHB2 interaction as a novel therapeutic target for sepsis, providing a foundation for future research into mitochondrial-based interventions to treat this condition. The study's insights into the molecular underpinnings of sepsis-induced organ failure pave the way for potential clinical applications in the management of sepsis and related pathologies.
Collapse
Affiliation(s)
- Yuanchen Zhao
- Neurology Department, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
| | - Yawen Pan
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, China
| | - Mengyuan Chen
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, China
| | - Ying Tan
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yinghao Zhi
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, China
| |
Collapse
|
41
|
Liu N, Ding Y, Zhou H, Chang X, Lou L. Dual-specificity phosphatase 1 interacts with prohibitin 2 to improve mitochondrial quality control against type-3 cardiorenal syndrome. Int J Med Sci 2024; 21:547-561. [PMID: 38322592 PMCID: PMC10845262 DOI: 10.7150/ijms.90484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiu Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chang
- Cardiovascular department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Long Lou
- Kunming Municipal Hospital of Traditional Chinese Medicine, Yunnan, China
| |
Collapse
|
42
|
Zeng Z, Qiu J, Chen Y, Liang D, Wei F, Fu Y, Zhang J, Wei X, Zhang X, Tao J, Lin L, Zheng J. Altered Gut Microbiota as a Potential Risk Factor for Coronary Artery Disease in Diabetes: A Two-Sample Bi-Directional Mendelian Randomization Study. Int J Med Sci 2024; 21:376-395. [PMID: 38169662 PMCID: PMC10758148 DOI: 10.7150/ijms.92131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The current body of research points to a notable correlation between an imbalance in gut microbiota and the development of type 2 diabetes mellitus (T2D) as well as its consequential ailment, coronary artery disease (CAD). The complexities underlying the association, especially in the context of diabetic coronary artery disease (DCAD), are not yet fully understood, and the causal links require further clarification. In this study, a bidirectional Mendelian randomization (MR) methodology was utilized to explore the causal relationships between gut microbiota, T2D, and CAD. By analyzing data from the DIAGRAM, GERA, UKB, FHS, and mibioGen cohorts and examining GWAS databases, we sought to uncover genetic variants linked to T2D, CAD, and variations in gut microbiota and metabolites, aiming to shed light on the potential mechanisms connecting gut microbiota with DCAD. Our investigation uncovered a marked causal link between the presence of Oxalobacter formigenes and an increased incidence of both T2D and CAD. Specifically, a ten-unit genetic predisposition towards T2D was found to be associated with a 6.1% higher probability of an increase in the Oxalobacteraceae family's presence (β = 0.061, 95% CI = 0.002-0.119). In a parallel finding, an augmented presence of Oxalobacter was related to an 8.2% heightened genetic likelihood of CAD (β = 0.082, 95% CI = 0.026-0.137). This evidence indicates a critical pathway by which T2D can potentially raise the risk of CAD via alterations in gut microbiota. Additionally, our analyses reveal a connection between CAD risk and Methanobacteria, thus providing fresh perspectives on the roles of TMAO and carnitine in the etiology of CAD. The data also suggest a direct causal relationship between increased levels of certain metabolites - proline, lysophosphatidylcholine, asparagine, and salicylurate - and the prevalence of both T2D and CAD. Sensitivity assessments reinforce the notion that changes in Oxalobacter formigenes could pose a risk for DCAD. There is also evidence to suggest that DCAD may, in turn, affect the gut microbiota's makeup. Notably, a surge in serum TMAO levels in individuals with CAD, coinciding with a reduced presence of methanogens, has been identified as a potentially significant factor for future examination.
Collapse
Affiliation(s)
- Zhaopei Zeng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiothoracic Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China
| | - Yuan Fu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiarui Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiexiao Wei
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Xinyi Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liling Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Liu Y, Liu N, He P, Cao S, Li H, Liu D. Arginine-methylated c-Myc affects mitochondrial mitophagy in mouse acute kidney injury via Slc25a24. J Cell Physiol 2024; 239:193-211. [PMID: 38164038 DOI: 10.1002/jcp.31160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
The transcription factor methylated c-Myc heterodimerizes with MAX to modulate gene expression, and plays an important role in energy metabolism in kidney injury but the exact mechanism remains unclear. Mitochondrial solute transporter Slc25a24 imports ATP into mitochondria and is central to energy metabolism. Gene Expression Omnibus data analysis reveals Slc25a24 and c-Myc are consistently upregulated in all the acute kidney injury (AKI) cells. Pearson correlation analysis also shows that Slc25a24 and c-Myc are strongly correlated (⍴ > 0.9). Mutant arginine methylated c-Myc (R299A and R346A) reduced its combination with MAX when compared with the wild type of c-Myc. On the other hand, the Slc25a24 levels were also correspondingly reduced, which induced the downregulation of ATP production. The results promoted reactive oxygen species (ROS) production and mitophagy generation. The study revealed that the c-Myc overexpression manifested the most pronounced mitochondrial DNA depletion. Additionally, the varied levels of mitochondrial proteins like TIM23, TOM20, and PINK1 in each group, particularly the elevated levels of PINK1 in AKI model groups and lower levels of TIM23 and TOM20 in the c-Myc overexpression group, suggest potential disruptions in mitochondrial dynamics and homeostasis, indicating enhanced mitophagy or mitochondrial loss. Therefore, arginine-methylated c-Myc affects mouse kidney injury by regulating mitochondrial ATP and ROS, and mitophagy via Slc25a24.
Collapse
Affiliation(s)
- Ying Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyu Cao
- Grade 2018 Clinical Medicine, China Medical University, Shenyang, China
| | - Huabing Li
- Department of Nephrology, Tiemei General Hospital of Liaoning Province Health Industrial Group, Tieling, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Ma L, Chang X, Gao J, Zhang Y, Chen Y, Zhou H, Zhou N, Du N, Li J, Bi J, Chen Z, Chen X, He Q. METTL3 boosts mitochondrial fission and induces cardiac fibrosis after ischemia/reperfusion injury. Int J Biol Sci 2024; 20:433-445. [PMID: 38169612 PMCID: PMC10758110 DOI: 10.7150/ijbs.87535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024] Open
Abstract
METTL3, an RNA methyltransferase enzyme, exerts therapeutic effects on various cardiovascular diseases. Myocardial ischemia-reperfusion injury (MIRI) and subsequently cardiac fibrosis is linked to acute cardiomyocyte death or dysfunction induced by mitochondrial damage, particularly mitochondrial fission. Our research aims to elucidate the potential mechanisms underlying the therapeutic actions of METTL3 in MIRI, with focus on mitochondrial fission. When compared with Mettl3flox mice subjected to MIRI, Mettl3 cardiomyocyte knockout (Mettl3Cko) mice have reduced infarct size, decreased serum levels of myocardial injury-related factors, limited cardiac fibrosis, and preserved myocardial ultrastructure and contractile/relaxation capacity. The cardioprotective actions of Mettl3 knockout were associated with reduced inflammatory responses, decreased myocardial neutrophil infiltration, and suppression of cardiomyocyte death. Through signaling pathway validation experiments and assays in cultured HL-1 cardiomyocytes exposed to hypoxia/reoxygenation, we confirmed that Mettl3 deficiency interfere with DNA-PKcs phosphorylation, thereby blocking the downstream activation of Fis1 and preventing pathological mitochondrial fission. In conclusion, this study confirms that inhibition of METTL3 can alleviate myocardial cardiac fibrosis inflammation and prevent cardiomyocyte death under reperfusion injury conditions by disrupting DNA-PKcs/Fis1-dependent mitochondrial fission, ultimately improving cardiac function. These findings suggest new approaches for clinical intervention in patients with MIRI.
Collapse
Affiliation(s)
- Li Ma
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Ye Chen
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Na Zhou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Na Du
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiamin Li
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiachen Bi
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ziyue Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xinxin Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
45
|
Zheng Z, Sun N, Mao C, Tang Y, Lin S. Val-Leu-Leu-Tyr (VLLY) Alleviates Ethanol-Induced Gastric Mucosal Cell Impairment by Improving Mitochondrial Fission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18722-18734. [PMID: 37980612 DOI: 10.1021/acs.jafc.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ethanolic gastric mucosal impairment is one of the most common disorders in the gastrointestinal system. In this study, we investigated the potential alleviating effects of sea cucumber peptides on Ges-1 impairment caused by ethanol and the associated mechanisms. The sea cucumber peptide VLLY could promote the proliferation and migration of healthy Ges-1 cells. After ethanol injury, VLLY peptide treatment could greatly promote the migration of Ges-1 cells, scavenge intracellular and mitochondrial ROS, reverse mitochondrial fission and F-actin depolymerization, and improve mitochondrial respiration. VLLY peptide restored mitochondrial dynamics by downregulating Drp1 and Fis1 and upregulating Mfn2 against excessive mitochondrial fission. In addition, the VLLY peptide maintained the mitochondrial membrane potential, ablated the leakage of cytochrome c to the cytoplasm, upregulated the expression of the antiapoptotic factor Bcl-XL, decreased the expression of the proapoptotic factors of Bax, BAD, and cleaved caspase-3, and finally blocked the mitochondria-related apoptotic pathway. These findings strongly suggested that sea cucumber peptides could promote proliferation and migration of healthy Ges-1 cells and reverse ethanol-induced excess mitochondrial fission and maintain mitochondrial homeostasis through the Fis1/Bax pathway, thereby improving ethanol-induced apoptosis. VLLY offers a new perspective for improving the ethanolic gastric mucosal epithelial cell injury.
Collapse
Affiliation(s)
- Zhihong Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chuwen Mao
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Tang
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
46
|
Zhang X, Zhou H, Chang X. Involvement of mitochondrial dynamics and mitophagy in diabetic endothelial dysfunction and cardiac microvascular injury. Arch Toxicol 2023; 97:3023-3035. [PMID: 37707623 DOI: 10.1007/s00204-023-03599-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Endothelial cells (ECs), found in the innermost layer of blood vessels, are crucial for maintaining the structure and function of coronary microcirculation. Dysregulated coronary microcirculation poses a fundamental challenge in diabetes-related myocardial microvascular injury, impacting myocardial blood perfusion, thrombogenesis, and inflammation. Extensive research aims to understand the mechanistic connection and functional relationship between cardiac EC dysfunction and the development, diagnosis, and treatment of diabetes-related myocardial microvascular injury. Despite the low mitochondrial content in ECs, mitochondria act as sensors of environmental and cellular stress, influencing EC viability, structure, and function. Mitochondrial dynamics and mitophagy play a vital role in orchestrating mitochondrial responses to various stressors by regulating morphology, localization, and degradation. Impaired mitochondrial dynamics or reduced mitophagy is associated with EC dysfunction, serving as a potential molecular basis and promising therapeutic target for diabetes-related myocardial microvascular injury. This review introduces newly recognized mechanisms of damaged coronary microvasculature in diabetes-related microvascular injury and provides updated insights into the molecular aspects of mitochondrial dynamics and mitophagy. Additionally, novel targeted therapeutic approaches against diabetes-related microvascular injury or endothelial dysfunction, focusing on mitochondrial fission and mitophagy in endothelial cells, are summarized.
Collapse
Affiliation(s)
- Xiao Zhang
- Dermatology, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, 252000, China
| | - Hao Zhou
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
47
|
WEN JY, PENG HX, WANG D, WEN ZM, LIU YT, QU J, CUI HX, WANG YY, DU YL, WANG T, GENG C, XU B. Lipopolysaccharides protect mesenchymal stem cell against cardiac ischemia-reperfusion injury by HMGB1/STAT3 signaling. J Geriatr Cardiol 2023; 20:801-812. [PMID: 38098470 PMCID: PMC10716610 DOI: 10.26599/1671-5411.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) is a serious and irreversible injury. Bone marrow-derived mesenchymal stem cells (MSCs) is considered to be a potential therapy for I/R injury due to the paracrine effects. High-mobility group box 1 (HMGB1) is a novel mediator in MSC and regulates the response of inflammation injury. Signal Transduction and Transcription Activator 3 (STAT3) is a critical transcription factor and important for release of paracrine factors. However, the relationship between HMGB1 and STAT3 in paracrine effect of MSC remains unknown. METHODS In vitro, hypoxia/reoxygenation injury model was established by AnaeroPack System and examined by Annexin V flow cytometry, CCK8 assay and morphology observation. Detection of apoptotic proteins and protein expression of HMGB1 and STAT3 by Western blot. RESULTS The conditioned medium of MSCs with or without LPS pretreatment was cocultured with H9C2 cells for 24 h before hypoxia treatment and MSC showed obvious cardiomyocytes protect role, as evidence by decreased apoptosis rate and improved cells viability, and LPS pretreated MSC exhibited better protect role than untreated MSC. However, such effect was abolished in HMGB1 deficiency group, silencing HMGB1 decreased the secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor (IGF), cell viability, and the expression of STAT3. Furthermore, STAT3 silence attenuated the protective effect of LPS in MSC. CONCLUSIONS These findings suggested that LPS improved MSC-mediated cardiomyocytes protection by HMGB1/STAT3 signaling.
Collapse
Affiliation(s)
- Jing-Yi WEN
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Pharmacy, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hui-Xi PENG
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dan WANG
- Department of Pharmacy, Ordos Central Hospital, Ordos, Inner Mongolia, China
| | - Zhi-Min WEN
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu-Tong LIU
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jian QU
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hong-Xuan CUI
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu-Ying WANG
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan-Lin DU
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ting WANG
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Cong GENG
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bing XU
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
48
|
Wang T, Wang X, Fu T, Ma Y, Wang Q, Zhang S, Zhang X, Zhou H, Chang X, Tong Y. Roles of mitochondrial dynamics and mitophagy in diabetic myocardial microvascular injury. Cell Stress Chaperones 2023; 28:675-688. [PMID: 37755621 PMCID: PMC10746668 DOI: 10.1007/s12192-023-01384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Tong Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xinwei Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Tong Fu
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuxiang Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Xing Chang
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
49
|
Wang X, Ling G, Wei Y, Li W, Zhang Y, Tan N, Li W, Li H, Qiu Q, Wang W, Wang Y. Activation of ULK1 to trigger FUNDC1-mediated mitophagy in heart failure: Effect of Ginsenoside Rg3 intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155042. [PMID: 37659296 DOI: 10.1016/j.phymed.2023.155042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Although the development of therapies for heart failure (HF) continues apace, clinical outcomes are often far from ideal. Unc51-like-kinase 1 (ULK1)-mediated mitophagy prevents pathological cardiac remodeling and heart failure (HF). Molecularly ULK1-targeted agent to enhance mitophagy is scanty. HYPOTHESIS/PURPOSE This study aimed to investigate whether Ginsenoside Rg3 (Rg3) can activate ULK1 to trigger FUNDC1-mediated mitophagy for protecting heart failure. METHODS Molecular docking and surface plasmon resonance were used to detect the ULK1 binding behavior of Rg3. Established HF model in rats and transcriptome sequencing were used to evaluate the therapeutic effect and regulatory mechanism of Rg3. Loss-of-function approaches in vivo and in vitro were performed to determine the role of ULK1 in Rg3-elicited myocardial protection against HF. FUNDC1 recombinant plasmid of site mutation was applied to elucidate more in-depth mechanisms. RESULTS Structurally, a good binding mode was unveiled between ULK1 and Rg3. In vivo, Rg3 improved cardiac dysfunction, adverse remodeling, and mitochondrial damage in HF rats. Furthermore, Rg3 promoted Ulk1-triggered mitophagy both in vivo and in vitro, manifested by the impetus of downstream Fundc1-Lc3 interaction. Of note, the protective effects conferred by Rg3 against mitophagy defects, pathological remodeling, and cardiac dysfunction were compromised by Ulk1 gene silencing both in vivo and in vitro. Mechanistically, Rg3 activated mitophagy by inducing ULK1-mediated phosphorylation of FUNDC1 at the Ser17 site, not the Ser13 site. CONCLUSION Together these observations demonstrated that Rg3 acts as a ULK1 activator for the precise treatment of HF, which binds to ULK1 to activate FUNDC1-mediated mitophagy.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guanjing Ling
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haijing Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
50
|
Cruz-Gregorio A, Aranda-Rivera AK, Amador-Martinez I, Maycotte P. Mitochondrial transplantation strategies in multifaceted induction of cancer cell death. Life Sci 2023; 332:122098. [PMID: 37734433 DOI: 10.1016/j.lfs.2023.122098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Otto Warburg hypothesized that some cancer cells reprogram their metabolism, favoring glucose metabolism by anaerobic glycolysis (Warburg effect) instead of oxidative phosphorylation, mainly because the mitochondria of these cells were damaged or dysfunctional. It should be noted that mitochondrial apoptosis is decreased because of the dysfunctional mitochondria. Strategies like mitochondrial transplantation therapy, where functional mitochondria are transplanted to cancer cells, could increase cell death, such as apoptosis, because the intrinsic apoptosis mechanisms would be reactivated. In addition, mitochondrial transplantation is associated with the redox state, which could promote synergy with common anticancer treatments such as ionizing radiation, chemotherapy, or radiotherapy, increasing cell death due to the presence or decrease of oxidative stress. On the other hand, mitochondrial transfer, a natural process for sharing mitochondrial between cells, induces an increase in chemoresistance and invasiveness in cancer cells that receive mitochondria from cells of the tumor microenvironment (TME), which indicates an antitumor therapeutic target. This review focuses on understanding mitochondrial transplantation as a therapeutic outcome induced by a procedure in aspects including oxidative stress, metabolism shifting, mitochondrial function, auto-/mitophagy, invasiveness, and chemoresistance. It also explores how these mechanisms, such as apoptosis, necroptosis, and parthanatos, impact cell death pathways. Finally, it discusses the chemoresistance and invasiveness in cancer cells associated with mitochondria transfer, indicating an antitumor therapeutic target.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Mexico City, Mexico.
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Isabel Amador-Martinez
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, 74360 Puebla, Mexico.
| |
Collapse
|