1
|
Pastore MC, Campora A, Mandoli GE, Lisi M, Benfari G, Ilardi F, Malagoli A, Sperlongano S, Henein MY, Cameli M, D'Andrea A. Stress echocardiography in heart failure patients: additive value and caveats. Heart Fail Rev 2024; 29:1117-1133. [PMID: 39060836 PMCID: PMC11306652 DOI: 10.1007/s10741-024-10423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Heart failure (HF) is a clinical syndrome characterized by well-defined signs and symptoms due to structural and/or myocardial functional impairment, resulting in raised intracardiac pressures and/or inadequate cardiac stroke volume at rest or during exercise. This could derive from direct ischemic myocardial injury or other chronic pathological conditions, including valvular heart disease (VHD) and primary myocardial disease. Early identification of HF etiology is essential for accurate diagnosis and initiation of early and appropriate treatment. Thus, the presence of accurate means for early diagnosis of HF symptoms or subclinical phases is fundamental, among which echocardiography being the first line diagnostic investigation. Echocardiography could be performed at rest, to identify overt structural and functional abnormalities or during physical or pharmacological stress, in order to elicit subclinical myocardial function impairment e.g. wall motion abnormalities and raised ventricular filling pressures. Beyond diagnosis of ischemic heart disease, stress echocardiography (SE) has recently shown its unique value for the evaluation of diastolic heart failure, VHD, non-ischemic cardiomyopathies and pulmonary hypertension, with recommendations from international societies in several clinical settings. All these features make SE an important additional tool, not only for diagnostic assessment, but also for prognostic stratification and therapeutic management of patients with HF. In this review, the unique value of SE in the evaluation of HF patients will be described, with the objective to provide an overview of the validated methods for each setting, particularly for HF management.
Collapse
Affiliation(s)
- Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci1 , Siena, Italy.
| | - Alessandro Campora
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci1 , Siena, Italy
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci1 , Siena, Italy
| | - Matteo Lisi
- Department of Cardiovascular Disease - AUSL Romagna, Division of Cardiology, Ospedale S. Maria Delle Croci, Viale Randi 5, 48121, Ravenna, Italy
| | - Giovanni Benfari
- Section of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Federica Ilardi
- Department of Advanced Biomedical Sciences, Division of Cardiology, Federico II University Hospital, Via S. Pansini 5, 80131, Naples, Italy
| | - Alessandro Malagoli
- Division of Cardiology, Nephro-Cardiovascular Department, Baggiovara Hospital, Modena, Italy
| | - Simona Sperlongano
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michael Y Henein
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci1 , Siena, Italy
| | - Antonello D'Andrea
- Department of Cardiology, Umberto I Hospital, 84014, Nocera Inferiore, SA, Italy
| |
Collapse
|
2
|
Oikonomou E, Theofilis P, Lampsas S, Katsarou O, Kalogeras K, Marinos G, Tsatsaragkou A, Anastasiou A, Lysandrou A, Gounaridi MI, Gialamas I, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Current Concepts and Future Applications of Non-Invasive Functional and Anatomical Evaluation of Coronary Artery Disease. Life (Basel) 2022; 12:1803. [PMID: 36362957 PMCID: PMC9696378 DOI: 10.3390/life12111803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Over the last decades, significant advances have been achieved in the treatment of coronary artery disease (CAD). Proper non-invasive diagnosis and appropriate management based on functional information and the extension of ischemia or viability remain the cornerstone in the fight against adverse CAD events. Stress echocardiography and single photon emission computed tomography are often used for the evaluation of ischemia. Advancements in non-invasive imaging modalities such as computed tomography (CT) coronary angiography and cardiac magnetic resonance imaging (MRI) have not only allowed non-invasive imaging of coronary artery lumen but also provide additional functional information. Other characteristics regarding the plaque morphology can be further evaluated with the latest modalities achieving a morpho-functional evaluation of CAD. Advances in the utilization of positron emission tomography (PET), as well as software advancements especially regarding cardiac CT, may provide additional prognostic information to a more evidence-based treatment decision. Since the armamentarium on non-invasive imaging modalities has evolved, the knowledge of the capabilities and limitations of each imaging modality should be evaluated in a case-by-case basis to achieve the best diagnosis and treatment decision. In this review article, we present the most recent advances in the noninvasive anatomical and functional evaluation of CAD.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Antonios Lysandrou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria-Ioanna Gounaridi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Ioannis Gialamas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Almeida AG, Carpenter JP, Cameli M, Donal E, Dweck MR, Flachskampf FA, Maceira AM, Muraru D, Neglia D, Pasquet A, Plein S, Gerber BL. Multimodality imaging of myocardial viability: an expert consensus document from the European Association of Cardiovascular Imaging (EACVI). Eur Heart J Cardiovasc Imaging 2021; 22:e97-e125. [PMID: 34097006 DOI: 10.1093/ehjci/jeab053] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
In clinical decision making, myocardial viability is defined as myocardium in acute or chronic coronary artery disease and other conditions with contractile dysfunction but maintained metabolic and electrical function, having the potential to improve dysfunction upon revascularization or other therapy. Several pathophysiological conditions may coexist to explain this phenomenon. Cardiac imaging may allow identification of myocardial viability through different principles, with the purpose of prediction of therapeutic response and selection for treatment. This expert consensus document reviews current insight into the underlying pathophysiology and available methods for assessing viability. In particular the document reviews contemporary viability imaging techniques, including stress echocardiography, single photon emission computed tomography, positron emission tomography, cardiovascular magnetic resonance, and computed tomography and provides clinical recommendations for how to standardize these methods in terms of acquisition and interpretation. Finally, it presents clinical scenarios where viability assessment is clinically useful.
Collapse
Affiliation(s)
- Ana G Almeida
- Faculty of Medicine, Lisbon University, University Hospital Santa Maria/CHLN, Portugal
| | - John-Paul Carpenter
- Cardiology Department, University Hospitals Dorset, NHS Foundation Trust, Poole Hospital, Longfleet Road, Poole, Dorset BH15 2JB, United Kingdom
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, Siena, Italy
| | - Erwan Donal
- Department of Cardiology, CHU Rennes, Inserm, LTSI-UMR 1099, Université de Rennes 1, Rennes F-35000, France
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, The University of Edinburgh & Edinburgh Heart Centre, Chancellors Building Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Frank A Flachskampf
- Dept. of Med. Sciences, Uppsala University, and Cardiology and Clinical Physiology, Uppsala University Hospital, Akademiska, 751 85 Uppsala, Sweden
| | - Alicia M Maceira
- Cardiovascular Imaging Unit, Ascires Biomedical Group Colon St, 1, Valencia 46004, Spain; Department of Medicine, Health Sciences School, CEU Cardenal Herrera University, Lluís Vives St. 1, 46115 Alfara del Patriarca, Valencia, Spain
| | - Denisa Muraru
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - Danilo Neglia
- Fondazione Toscana G. Monasterio-Via G. Moruzzi 1, Pisa, Italy
| | - Agnès Pasquet
- Service de Cardiologie, Département Cardiovasculaire, Cliniques Universitaires St. Luc, and Division CARD, Institut de Recherche Expérimental et Clinique (IREC), UCLouvain, Av Hippocrate 10, B-1200 Brussels, Belgium
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Bernhard L Gerber
- Department of Biomedical Imaging Science, Leeds, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
4
|
Kadoglou NPE, Papadopoulos CH, Papadopoulos KG, Karagiannis S, Karabinos I, Loizos S, Theodosis-Georgilas A, Aggeli K, Keramida K, Klettas D, Kounas S, Makavos G, Ninios I, Ntalas I, Ikonomidis I, Sahpekidis V, Stefanidis A, Zaglavara T, Athanasopoulos G, Karatasakis G, Kyrzopoulos S, Kouris N, Patrianakos A, Paraskevaidis I, Rallidis L, Savvatis K, Tsiapras D, Nihoyannopoulos P. Updated knowledge and practical implementations of stress echocardiography in ischemic and non-ischemic cardiac diseases: an expert consensus of the Working Group of Echocardiography of the Hellenic Society of Cardiology. Hellenic J Cardiol 2021; 64:30-57. [PMID: 34329766 DOI: 10.1016/j.hjc.2021.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Stress echocardiography (SE) is a well-established and valid technique, widely-used for the diagnostic evaluation of patients with ischemic and non-ischemic cardiac diseases. This statement of the Echocardiography Working Group of the Hellenic Society of Cardiology summarizes the consensus of the writing group regarding the applications of SE, based on the expertise of their members and on a critical review of current medical literature. The main objectives of the consensus document include a comprehensive review of SE methodology and training, focusing on the preparation, the protocols used and the analysis of the SE images and an updated, evidence-based knowledge about SE applications on ischemic and non-ischemic heart diseases, such as in cardiomyopathies, heart failure and valvular heart disease.
Collapse
Affiliation(s)
- Nikolaos P E Kadoglou
- Medical School, University of Cyprus, Nicosia, Cyprus; Second Cardiology Department, "Hippokration" Hospital, Aristotle University ofThessaloniki, Greece.
| | | | | | | | | | | | | | - Konstantina Aggeli
- 1st Cardiology Department, Hippokration University Hospital, Athens, Greece
| | - Kalliopi Keramida
- 2nd Cardiology Department, Attikon University Hospital, Athens, Greece
| | | | | | - George Makavos
- 3rd Cardiology Department, Sotiria University Hospital, Athens, Greece
| | - Ilias Ninios
- 2nd Cardiology Department, Interbalkan Center, Thessaloniki, Greece
| | | | | | | | | | | | | | - George Karatasakis
- 1st Cardiology Department, Onassis Cardiosurgical Center, Piraeus, Greece
| | | | - Nikos Kouris
- Cardiology Department, Thriasio Hospital, Elefsina, Greece
| | | | | | | | | | - Dimitrios Tsiapras
- 2nd Cardiology Department, Onassis Cardiosurgical Center, Piraeus, Greece
| | - Petros Nihoyannopoulos
- Metropolitan Hospital Center, Piraeus, Greece; Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
5
|
Yamagishi M, Tamaki N, Akasaka T, Ikeda T, Ueshima K, Uemura S, Otsuji Y, Kihara Y, Kimura K, Kimura T, Kusama Y, Kumita S, Sakuma H, Jinzaki M, Daida H, Takeishi Y, Tada H, Chikamori T, Tsujita K, Teraoka K, Nakajima K, Nakata T, Nakatani S, Nogami A, Node K, Nohara A, Hirayama A, Funabashi N, Miura M, Mochizuki T, Yokoi H, Yoshioka K, Watanabe M, Asanuma T, Ishikawa Y, Ohara T, Kaikita K, Kasai T, Kato E, Kamiyama H, Kawashiri M, Kiso K, Kitagawa K, Kido T, Kinoshita T, Kiriyama T, Kume T, Kurata A, Kurisu S, Kosuge M, Kodani E, Sato A, Shiono Y, Shiomi H, Taki J, Takeuchi M, Tanaka A, Tanaka N, Tanaka R, Nakahashi T, Nakahara T, Nomura A, Hashimoto A, Hayashi K, Higashi M, Hiro T, Fukamachi D, Matsuo H, Matsumoto N, Miyauchi K, Miyagawa M, Yamada Y, Yoshinaga K, Wada H, Watanabe T, Ozaki Y, Kohsaka S, Shimizu W, Yasuda S, Yoshino H. JCS 2018 Guideline on Diagnosis of Chronic Coronary Heart Diseases. Circ J 2021; 85:402-572. [PMID: 33597320 DOI: 10.1253/circj.cj-19-1131] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine Graduate School
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Graduate School
| | - Kenji Ueshima
- Center for Accessing Early Promising Treatment, Kyoto University Hospital
| | - Shiro Uemura
- Department of Cardiology, Kawasaki Medical School
| | - Yutaka Otsuji
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School
| | | | | | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School
| | | | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School
| | | | - Hiroshi Tada
- Department of Cardiovascular Medicine, University of Fukui
| | | | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | | | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa Universtiy
| | | | - Satoshi Nakatani
- Division of Functional Diagnostics, Department of Health Sciences, Osaka University Graduate School of Medicine
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Atsushi Nohara
- Division of Clinical Genetics, Ishikawa Prefectural Central Hospital
| | | | | | - Masaru Miura
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | | | | | | | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University
| | - Toshihiko Asanuma
- Division of Functional Diagnostics, Department of Health Sciences, Osaka University Graduate School
| | - Yuichi Ishikawa
- Department of Pediatric Cardiology, Fukuoka Children's Hospital
| | - Takahiro Ohara
- Division of Community Medicine, Tohoku Medical and Pharmaceutical University
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tokuo Kasai
- Department of Cardiology, Uonuma Kinen Hospital
| | - Eri Kato
- Department of Cardiovascular Medicine, Department of Clinical Laboratory, Kyoto University Hospital
| | | | - Masaaki Kawashiri
- Department of Cardiovascular and Internal Medicine, Kanazawa University
| | - Keisuke Kiso
- Department of Diagnostic Radiology, Tohoku University Hospital
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School
| | | | | | | | - Akira Kurata
- Department of Radiology, Ehime University Graduate School
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center
| | - Eitaro Kodani
- Department of Internal Medicine and Cardiology, Nippon Medical School Tama Nagayama Hospital
| | - Akira Sato
- Department of Cardiology, University of Tsukuba
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Kyoto University Graduate School
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University
| | - Masaaki Takeuchi
- Department of Laboratory and Transfusion Medicine, Hospital of the University of Occupational and Environmental Health, Japan
| | | | - Nobuhiro Tanaka
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Ryoichi Tanaka
- Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University
| | | | | | - Akihiro Nomura
- Innovative Clinical Research Center, Kanazawa University Hospital
| | - Akiyoshi Hashimoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Hospital
| | - Masahiro Higashi
- Department of Radiology, National Hospital Organization Osaka National Hospital
| | - Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University
| | | | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center
| | - Naoya Matsumoto
- Division of Cardiology, Department of Medicine, Nihon University
| | | | | | | | - Keiichiro Yoshinaga
- Department of Diagnostic and Therapeutic Nuclear Medicine, Molecular Imaging at the National Institute of Radiological Sciences
| | - Hideki Wada
- Department of Cardiology, Juntendo University Shizuoka Hospital
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University
| | - Yukio Ozaki
- Department of Cardiology, Fujita Medical University
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | | |
Collapse
|
6
|
Steeds RP, Wheeler R, Bhattacharyya S, Reiken J, Nihoyannopoulos P, Senior R, Monaghan MJ, Sharma V. Stress echocardiography in coronary artery disease: a practical guideline from the British Society of Echocardiography. Echo Res Pract 2019; 6:G17-G33. [PMID: 30921767 PMCID: PMC6477657 DOI: 10.1530/erp-18-0068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Stress echocardiography is an established technique for assessing coronary artery disease. It has primarily been used for the diagnosis and assessment of patients presenting with chest pain in whom there is an intermediate probability of coronary artery disease. In addition, it is used for risk stratification and to guide revascularisation in patients with known ischaemic heart disease. Although cardiac computed tomography has recently been recommended in the United Kingdom as the first-line investigation in patients presenting for the first time with atypical or typical angina, stress echocardiography continues to have an important role in the assessment of patients with lesions of uncertain functional significance and patients with known ischaemic heart disease who represent with chest pain. In this guideline from the British Society of Echocardiography, the indications and recommended protocols are outlined for the assessment of ischaemic heart disease by stress echocardiography.
Collapse
Affiliation(s)
- Richard P Steeds
- Department of Cardiology, Institute of Cardiovascular Science, University Hospital Birmingham, Birmingham, UK
| | - Richard Wheeler
- Department of Cardiology, University Hospital of Wales, Cardiff, UK
| | | | - Joseph Reiken
- Department of Cardiology, Kings College Hospital, London, UK
| | - Petros Nihoyannopoulos
- Department of Cardiology, National Heart Lung Institute, Hammersmith Hospital, London, UK
| | - Roxy Senior
- Department of Cardiology, Royal Brompton Hospital, London, UK
| | - Mark J Monaghan
- Department of Cardiology, Kings College Hospital, London, UK
| | - Vishal Sharma
- Department of Cardiology, Royal Liverpool and Broadgreen University Hospital, Liverpool, UK
| |
Collapse
|
7
|
Berbarie RF, Dib E, Ahmad M. Stress echocardiography using real-time three-dimensional imaging. Echocardiography 2018; 35:1196-1203. [DOI: 10.1111/echo.14050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Rafic F. Berbarie
- Division of Cardiology; Department of Internal Medicine; University of Texas Medical Branch; Galveston TX USA
| | - Elie Dib
- Division of Cardiology; Department of Internal Medicine; University of Texas Medical Branch; Galveston TX USA
| | - Masood Ahmad
- Division of Cardiology; Department of Internal Medicine; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
8
|
Vamvakidou A, Gurunathan S, Senior R. Novel techniques in stress echocardiography: a focus on the advantages and disadvantages. Expert Rev Cardiovasc Ther 2016; 14:477-94. [DOI: 10.1586/14779072.2016.1135054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Johri AM, Chitty DW, Hua L, Marincheva G, Picard MH. Assessment of image quality in real time three-dimensional dobutamine stress echocardiography: an integrated 2D/3D approach. Echocardiography 2014; 32:496-507. [PMID: 25059625 DOI: 10.1111/echo.12692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) stress echocardiography is a relatively new technique offering the potential to acquire images of the entire left ventricle from 1 or 2 transducer positions in a time-efficient manner. Relative to two-dimensional (2D) imaging, the ability to quickly acquire full volume images during peak stress with 3D echocardiography can eliminate left ventricular (LV) foreshortening while reducing inter-operator variability. Our objectives were to (1) determine the practicality of a novel integrated 2D/3D stress protocol in incorporating 3D imaging into a standard 2D stress echocardiogram and (2) to determine whether the quality of imaging using the novel 2D/3D protocol was sufficient for interpretation. METHODS Twenty-five patients referred for stress echocardiography underwent an integrated 2D/3D image acquisition protocol. LV segments were scored from 0 (absent or no clear endocardial visualization) to 3 (excellent/full visualization of endocardial border) with each modality. 2D segment quality scoring was compared with 3D. An integrated score was compared with either 2D or 3D imaging alone. RESULTS Two-dimensional and 3D imaging were optimal for differing segments and the integrated protocol was superior to either modality alone. 3D imaging was superior in visualizing the anterior and anterolateral region of the base segments, compared to 2D imaging. 3D imaging was less useful for the base, the mid-inferior, and the inferoseptal segments, thus emphasizing the need to retain 2D imaging in stress echocardiography at this time. CONCLUSION The integrated 2D/3D protocol approach to stress echocardiography is technically feasible and maximizes image quality of dobutamine stress echocardiography, improving patient assessment.
Collapse
Affiliation(s)
- Amer M Johri
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
10
|
Advances In Contrast Stress Echocardiography. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-013-9228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Evaluation of left ventricular structure and function by three-dimensional echocardiography. Curr Opin Crit Care 2013; 19:387-96. [DOI: 10.1097/mcc.0b013e328364d75e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
|
13
|
Abstract
Real-time 3D echocardiography is one of the most important developments in the field of non-invasive cardiac imaging within the last years. To investigate whether this new technology can be considered as a standard method the current guidelines and recommendations were reviewed. In the field of left ventricular function assessment, evaluation of mitral valve pathologies and peri-interventional monitoring of percutaneous valve repair procedures 3D echocardiography plays a major role. For other clinical applications, such as right heart assessment, congenital heart disease and stress echocardiography, a high potential is seen but evidence is currently too weak for general recommendations. However, in the near future no echo laboratory will be working without 3D modalities.
Collapse
|
14
|
Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 2012; 13:1-46. [PMID: 22275509 DOI: 10.1093/ehjci/jer316] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 2012; 25:3-46. [PMID: 22183020 DOI: 10.1016/j.echo.2011.11.010] [Citation(s) in RCA: 490] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Abusaid GH, Ahmad M. Real Time Three-Dimensional Stress Echocardiography Advantages and Limitations. Echocardiography 2012; 29:200-6. [DOI: 10.1111/j.1540-8175.2011.01626.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Ng A, Swanevelder J. Perioperative monitoring of left ventricular function: what is the role of recent developments in echocardiography? Br J Anaesth 2010; 104:669-72. [DOI: 10.1093/bja/aeq115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
18
|
Badano LP, Muraru D, Rigo F, Del Mestre L, Ermacora D, Gianfagna P, Proclemer A. High Volume-Rate Three-Dimensional Stress Echocardiography to Assess Inducible Myocardial Ischemia: A Feasibility Study. J Am Soc Echocardiogr 2010; 23:628-35. [DOI: 10.1016/j.echo.2010.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Indexed: 10/19/2022]
|
19
|
Abstract
PURPOSE OF REVIEW Three-dimensional echocardiography (3DE) is an additional ultrasound modality that is poised to become an integral part of the routine echocardiogram. Incorporating 3DE into clinical daily practice continues to be a challenge for many laboratories. The following review will focus on workflow processes related to methodology and protocols in order to incorporate 3DE into clinical practice. RECENT FINDINGS Several studies have shown the clinical utility and feasibility of both transthoracic and transesophageal 3DE. In addition, many centers performing 3DE studies utilize a focused 3DE protocol as opposed to a full 3DE protocol. A majority of the studies noted limitations with respect to artifacts inherent in gated imaging and preferred real-time 3DE or rather volume imaging. A recurrent message from several recent publications is that the ultimate success and widespread clinical application of 3DE will rely mainly on improved 3D image resolution and volume rates. SUMMARY Continuous technology improvements have led to real-time full-volume 3D imaging that is no longer prone to the artifact issues encountered with gated 3D imaging. Additional improvements to 3DE image quality and time-saving automatic quantitative analysis tools will continue to define the emerging role for routine 3DE.
Collapse
|
20
|
Ahmad M. Real-Time Three-Dimensional Dobutamine Stress Echocardiography: A Valuable Adjunct or a Superior Alternative to Two-Dimensional Stress Echocardiography? J Am Soc Echocardiogr 2009; 22:443-4. [DOI: 10.1016/j.echo.2009.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|