1
|
Laurence DW, Sabin PM, Sulentic AM, Daemer M, Maas SA, Weiss JA, Jolley MA. FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement. Ann Biomed Eng 2025; 53:241-259. [PMID: 39499365 PMCID: PMC11831577 DOI: 10.1007/s10439-024-03637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures. METHODS We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients. RESULTS Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within ± 0.03 strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients. CONCLUSIONS FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.
Collapse
Affiliation(s)
- Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia M Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Analise M Sulentic
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Daemer
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA.
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Mangine NR, Laurence DW, Sabin PM, Wu W, Herz C, Zelonis CN, Unger JS, Pinter C, Lasso A, Maas SA, Weiss JA, Jolley MA. Effect of Parametric Variation of Chordae Tendineae Structure on Simulated Atrioventricular Valve Closure. ARXIV 2024:arXiv:2411.09599v1. [PMID: 39606725 PMCID: PMC11601809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Purpose Many approaches have been used to model chordae tendineae geometries in finite element simulations of atrioventricular heart valves. Unfortunately, current "functional" chordae tendineae geometries lack fidelity (e.g., branching) that would be helpful when informing clinical decisions. The objectives of this work are (i) to improve synthetic chordae tendineae geometry fidelity to consider branching and (ii) to define how the chordae tendineae geometry affects finite element simulations of valve closure. Methods In this work, we develop an open-source method to construct synthetic chordae tendineae geometries in the SlicerHeart Extension of 3D Slicer. The generated geometries are then used in FEBio finite element simulations of atrioventricular valve function to evaluate how variations in chordae tendineae geometry influence valve behavior. Effects are evaluated using functional and mechanical metrics. Results Our findings demonstrated that altering the chordae tendineae geometry of a stereotypical mitral valve led to changes in clinically relevant valve metrics (regurgitant orifice area, contact area, and billowing volume) and valve mechanics (first principal strains). Specifically, cross sectional area had the most influence over valve closure metrics, followed by chordae tendineae density, length, radius and branches. We then used this information to showcase the flexibility of our new workflow by altering the chordae tendineae geometry of two additional geometries (mitral valve with annular dilation and tricuspid valve) to improve finite element predictions. Conclusion This study presents a flexible, open-source method for generating synthetic chordae tendineae with realistic branching structures. Further, we establish relationships between the chordae tendineae geometry and valve functional/mechanical metrics. This research contribution helps enrich our opensource workflow and brings the finite element simulations closer to use in a patient-specific clinical setting.
Collapse
Affiliation(s)
- Nicolas R. Mangine
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
| | - Devin W. Laurence
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia M. Sabin
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
| | - Wensi Wu
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christian Herz
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
| | - Christopher N. Zelonis
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
| | - Justin S. Unger
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Csaba Pinter
- EBATINCA, Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | | | | | - Matthew A. Jolley
- Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The effects of leaflet material properties on the simulated function of regurgitant mitral valves. J Mech Behav Biomed Mater 2023; 142:105858. [PMID: 37099920 PMCID: PMC10199327 DOI: 10.1016/j.jmbbm.2023.105858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated (1) the influence of tissue extensibility and (2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, Canada
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.
| |
Collapse
|
4
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The Effects of leaflet material properties on the simulated function of regurgitant mitral valves. ARXIV 2023:arXiv:2302.04939v2. [PMID: 36798457 PMCID: PMC9934730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated 1) the influence of tissue extensibility and 2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Steve A Maas
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
5
|
Nam HH, Flynn M, Lasso A, Herz C, Sabin P, Wang Y, Cianciulli A, Vigil C, Huang J, Vicory J, Paniagua B, Allemang D, Goldberg DJ, Nuri M, Cohen MS, Fichtinger G, Jolley MA. Modeling of the Tricuspid Valve and Right Ventricle in Hypoplastic Left Heart Syndrome With a Fontan Circulation. Circ Cardiovasc Imaging 2023; 16:e014671. [PMID: 36866669 PMCID: PMC10026972 DOI: 10.1161/circimaging.122.014671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND In hypoplastic left heart syndrome, tricuspid regurgitation (TR) is associated with circulatory failure and death. We hypothesized that the tricuspid valve (TV) structure of patients with hypoplastic left heart syndrome with a Fontan circulation and moderate or greater TR differs from those with mild or less TR, and that right ventricle volume is associated with TV structure and dysfunction. METHODS TV of 100 patients with hypoplastic left heart syndrome and a Fontan circulation were modeled using transthoracic 3-dimensional echocardiograms and custom software in SlicerHeart. Associations of TV structure to TR grade and right ventricle function and volume were investigated. Shape parameterization and analysis was used to calculate the mean shape of the TV leaflets, their principal modes of variation, and to characterize associations of TV leaflet shape to TR. RESULTS In univariate modeling, patients with moderate or greater TR had larger TV annular diameters and area, greater annular distance between the anteroseptal commissure and anteroposterior commissure, greater leaflet billow volume, and more laterally directed anterior papillary muscle angles compared to valves with mild or less TR (all P<0.001). In multivariate modeling greater total billow volume, lower anterior papillary muscle angle, and greater distance between the anteroposterior commissure and anteroseptal commissure were associated with moderate or greater TR (P<0.001, C statistic=0.85). Larger right ventricle volumes were associated with moderate or greater TR (P<0.001). TV shape analysis revealed structural features associated with TR, but also highly heterogeneous TV leaflet structure. CONCLUSIONS Moderate or greater TR in patients with hypoplastic left heart syndrome with a Fontan circulation is associated with greater leaflet billow volume, a more laterally directed anterior papillary muscle angle, and greater annular distance between the anteroseptal commissure and anteroposterior commissure. However, there is significant heterogeneity of structure in the TV leaflets in regurgitant valves. Given this variability, an image-informed patient-specific approach to surgical planning may be needed to achieve optimal outcomes in this vulnerable and challenging population.
Collapse
Affiliation(s)
- Hannah H Nam
- Department of Anesthesiology and Critical Care Medicine (H.H.N., M.F., C.H., P.S., A.C., C.V., M.A.J.)
| | - Maura Flynn
- Department of Anesthesiology and Critical Care Medicine (H.H.N., M.F., C.H., P.S., A.C., C.V., M.A.J.)
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, Canada (A.L.)
| | - Christian Herz
- Department of Anesthesiology and Critical Care Medicine (H.H.N., M.F., C.H., P.S., A.C., C.V., M.A.J.)
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine (H.H.N., M.F., C.H., P.S., A.C., C.V., M.A.J.)
| | - Yan Wang
- Division of Cardiology, Children's Hospital of Philadelphia, PA. (Y.W., D.J.G., M.S.C., M.A.J.)
| | - Alana Cianciulli
- Department of Anesthesiology and Critical Care Medicine (H.H.N., M.F., C.H., P.S., A.C., C.V., M.A.J.)
| | - Chad Vigil
- Department of Anesthesiology and Critical Care Medicine (H.H.N., M.F., C.H., P.S., A.C., C.V., M.A.J.)
| | - Jing Huang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania and Department of Pediatrics, Children's Hospital of Philadelphia, PA. (J.H.)
| | | | | | | | - David J Goldberg
- Division of Cardiology, Children's Hospital of Philadelphia, PA. (Y.W., D.J.G., M.S.C., M.A.J.)
| | - Mohammed Nuri
- Division of Pediatric Cardiac Surgery, Children's Hospital of Philadelphia, PA. (M.N.)
| | - Meryl S Cohen
- Division of Cardiology, Children's Hospital of Philadelphia, PA. (Y.W., D.J.G., M.S.C., M.A.J.)
| | | | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine (H.H.N., M.F., C.H., P.S., A.C., C.V., M.A.J.)
- Division of Cardiology, Children's Hospital of Philadelphia, PA. (Y.W., D.J.G., M.S.C., M.A.J.)
| |
Collapse
|