1
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
2
|
Li P, Zhu D. Clinical investigation of glucokinase activators for the restoration of glucose homeostasis in diabetes. J Diabetes 2024; 16:e13544. [PMID: 38664885 PMCID: PMC11045918 DOI: 10.1111/1753-0407.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/29/2024] Open
Abstract
As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.
Collapse
Affiliation(s)
- Ping Li
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
3
|
Kaur U, Pathak BK, Meerashahib TJ, Krishna DVV, Chakrabarti SS. Should Glucokinase be Given a Chance in Diabetes Therapeutics? A Clinical-Pharmacological Review of Dorzagliatin and Lessons Learned So Far. Clin Drug Investig 2024; 44:223-250. [PMID: 38460077 DOI: 10.1007/s40261-024-01351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Despite advances in the management of type 2 diabetes mellitus (T2DM), one-third of patients with diabetes do not achieve the desired glycemic goal. Considering this inadequacy, many agents that activate glucokinase have been investigated over the last two decades but were withdrawn before submission for marketing permission. Dorzagliatin is the first glucokinase activator that has been granted approval for T2DM, only in China. As overstimulation of glucokinase is linked with pathophysiological disturbances such as fatty liver and cardiovascular issues and a loss of therapeutic efficacy with time. This review aims to highlight the benefits of glucokinase activators vis-à-vis the risks associated with chronic enzymatic activation. We discuss the multisystem disturbances expected with chronic activation of the enzyme, the lessons learned with glucokinase activators of the past, the major efficacy and safety findings with dorzagliatin and its pharmacological properties, and the status of other glucokinase activators in the pipeline. The approval of dorzagliatin in China was based on the SEED and the DAWN trials, the major pivotal phase III trials that enrolled patients with T2DM with a mean glycosylated hemoglobin of 8.3-8.4%, and a mean age of 53-54.5 years from multiple sites in China. Patients with uncontrolled diabetes, cardiac diseases, organ dysfunction, and a history of severe hypoglycemia were excluded. Both trials had a randomized double-blind placebo-controlled phase of 24 weeks followed by an open-label phase of 28 weeks with dorzagliatin. Drug-naïve patients with T2DM with a disease duration of 11.7 months were enrolled in the SEED trial while the DAWN trial involved patients with T2DM with a mean duration of 71.5 months and receiving background metformin therapy. Compared with placebo, the decline in glycosylated hemoglobin at 24 weeks was more with dorzagliatin with an estimated treatment difference of - 0.57% in the SEED trial and - 0.66% in the DAWN trial. The desired glycosylated hemoglobin (< 7%) was also attained at more than two times higher rates with dorzagliatin. The glycemic improvement was sustained in the SEED trial but decreased over 52 weeks in the DAWN trial. Hyperlipidemia was observed in 12-14% of patients taking dorzagliatin versus 9-11% of patients receiving a placebo. Additional adverse effects noticed over 52 weeks with dorzagliatin included an elevation in liver enzymes, hyperuricemia, hyperlacticacidemia, renal dysfunction, and cardiovascular disturbances. Considering the statistically significant improvement in glycosylated hemoglobin with dorzagliatin in patients with T2DM, the drug may be given a chance in treatment-naïve patients with a shorter disease history. However, with the waning therapeutic efficacy witnessed in patients with long-standing diabetes, which was also one of the potential concerns with previously tested molecules, extended studies involving patients with chronic and uncontrolled diabetes are needed to comment upon the long-term therapeutic performance of dorzagliatin. Likewise, evidence needs to be generated from other countries, patients with organ dysfunction, a history of severe hypoglycemia, cardiac diseases, and elderly patients before extending the use of dorzagliatin. Apart from monitoring lipid profiles, long-term safety studies of dorzagliatin should involve the assessment of serum uric acid, lactate, renal function, liver function, and cardiovascular parameters.
Collapse
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Bhairav Kumar Pathak
- Department of Pharmacology and Therapeutics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Tharik Jalal Meerashahib
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Song L, Cao F, Niu S, Xu M, Liang R, Ding K, Lin Z, Yao X, Liu D. Population Pharmacokinetic/Pharmacodynamic Analysis of the Glucokinase Activator PB201 in Healthy Volunteers and Patients with Type 2 Diabetes Mellitus: Facilitating the Clinical Development of PB201 in China. Clin Pharmacokinet 2024; 63:93-108. [PMID: 37985591 DOI: 10.1007/s40262-023-01321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
PB201 is an orally active, partial glucokinase activator targeting both pancreatic and hepatic glucokinase. As the second glucokinase activator studied beyond phase I, PB201 has demonstrated promising glycemic effects as well as favorable pharmacokinetic (PK) and safety profiles in patients with type 2 diabetes mellitus (T2DM). This study aims to develop a population PK/pharmacodynamic (PD) model for PB201 using the pooled data from nine phase I/II clinical trials conducted in non-Chinese healthy volunteers and a T2DM population and to predict the PK/PD profile of PB201 in a Chinese T2DM population. We developed the PK/PD model using the non-linear mixed-effects modeling approach. All runs were performed using the first-order conditional estimation method with interaction. The pharmacokinetics of PB201 were well fitted by a one-compartment model with saturable absorption and linear elimination. The PD effects of PB201 on reducing the fasting plasma glucose and glycosylated hemoglobin levels in the T2DM population were described by indirect response models as stimulating the elimination of fasting plasma glucose, where the production of glycosylated hemoglobin was assumed to be stimulated by fasting plasma glucose. Covariate analyses revealed enhanced absorption of PB201 by food and decreased systemic clearance with ketoconazole co-administration, while no significant covariate was identified for the pharmacodynamics. The population PK model established for non-Chinese populations was shown to be applicable to the Chinese T2DM population as verified by the PK data from the Chinese phase I study. The final population PK/PD model predicted persistent and dose-dependent reductions in fasting plasma glucose and glycosylated hemoglobin levels in the Chinese T2DM population receiving 50/50 mg, 100/50 mg, and 100/100 mg PB201 twice daily for 24 weeks independent of co-administration of metformin. Overall, the proposed population PK/PD model quantitatively characterized the PK/PD properties of PB201 and the impact of covariates on its target populations, which allows the leveraging of extensive data in non-Chinese populations with the limited data in the Chinese T2DM population to successfully supported the waiver of the clinical phase II trial and facilitate the optimal dose regimen design of a pivotal phase III study of PB201 in China.
Collapse
Affiliation(s)
- Ling Song
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Fangrui Cao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
| | - Shu Niu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
| | - Michael Xu
- PegBio Co., Ltd., Suzhou, Jiangsu, China
| | | | - Ke Ding
- PegBio Co., Ltd., Suzhou, Jiangsu, China
| | | | - Xueting Yao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Zhang M, Lei Z, Yu Z, Yao X, Li H, Xu M, Liu D. Development of a PBPK model to quantitatively understand absorption and disposition mechanism and support future clinical trials for PB-201. CPT Pharmacometrics Syst Pharmacol 2023; 12:941-952. [PMID: 37078371 PMCID: PMC10349193 DOI: 10.1002/psp4.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
PB-201 is the second glucokinase activator in the world to enter the phase III clinical trials for the treatment of type 2 diabetes mellitus (T2DM). Combined with the efficacy advantages and the friendly absorption, distribution, metabolism, and excretion characteristics, the indication population of PB-201 will be broad. Because the liver is the primary organ for PB-201 elimination, and the elderly account for 20% of patients with T2DM, it is essential to estimate PB-201 exposure in specific populations to understand the pharmacokinetic characteristics and avoid hypoglycemia. Despite the limited contribution of CYP3A4 to PB-201 metabolism in vivo, the dual effects of nonspecific inhibitors/inducers on PB-201 (substrate for CYP3A4 and CYP2C9 isoenzymes) exposure under fasted and fed states also need to be evaluated to understand potential risks of combination therapy. To grasp the unknown information, the physiologically-based pharmacokinetic (PBPK) model was first developed and the influence of internal and external factors on PB-201 exposure was evaluated. Results are shown that the predictive performance of the mechanistic PBPK model meets the predefined criteria, and can accurately capture the absorption and disposition characteristics. Impaired liver function and age-induced changes in physiological factors may significantly increase the exposure under fasted state by 36%-158% and 48%-82%, respectively. The nonspecific inhibitor (fluconazole) and inducer (rifampicin) may separately increase/decrease PB-201 systemic exposure by 44% and 58% under fasted state, and by 78% and 47% under fed state. Therefore, the influence of internal and external factors on PB-201 exposure deserves attention, and the precision dose can be informed in future clinical studies based on the predicted results.
Collapse
Affiliation(s)
- Miao Zhang
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Zihan Lei
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
| | - Ziheng Yu
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Xueting Yao
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
| | - Haiyan Li
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
- Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Min Xu
- PegBio Co., Ltd.SuzhouJiangsuChina
| | - Dongyang Liu
- Drug Clinical Trial CenterPeking University Third HospitalBeijingChina
| |
Collapse
|
6
|
Du Y, Gao L, Xiao X, Hou X, Ji L. A multicentre, randomized, double-blind, parallel, active- and placebo-controlled Phase 3 clinical study of the glucokinase activator PB-201 in treatment-naive patients with type 2 diabetes mellitus: A study protocol. Diabetes Obes Metab 2023; 25:649-655. [PMID: 36309971 DOI: 10.1111/dom.14909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 02/04/2023]
Abstract
AIM To report the rationale for using PB-201, a partial glucokinase activator (GKA), for a Phase 3 study (NCT05102149) assessing its efficacy and safety in a Chinese population and to describe the design of this GKA Phase 3 trial, the first to involve both an active control and a placebo control arm. MATERIALS AND METHODS This is an ongoing, multicentre, randomized, double-blind, three-arm placebo and active control study to be carried out among 672 Chinese treatment-naive participants with type 2 diabetes mellitus (T2DM) to assess the efficacy and safety of PB-201 for approximately 60 weeks, including a screening period and a safety follow-up period. RESULTS The primary objective of this study was to monitor change in glycated haemoglobin levels with PB-201 in treatment-naive T2DM participants from baseline to 24 weeks in comparison with vildagliptin and placebo. The key secondary objective was to assess the efficacy and safety of PB-201 following treatment for a time period of 52 weeks. CONCLUSION This pivotal study will offer critical information regarding the efficacy and safety of PB-201 in Chinese treatment-naive T2DM participants that would help to establish robust evidence for the benefit-risk evaluation of this drug.
Collapse
Affiliation(s)
- Ying Du
- Clinical Develop Center, PegBio Co., Ltd, Suzhou, China
| | - Leili Gao
- Department of Endocrinology, Peking University People's Hospital, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Xin Hou
- Clinical Develop Center, PegBio Co., Ltd, Suzhou, China
| | - Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Li L, Meyer C, Zhou ZW, Elmezayen A, Westover K. Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. J Mol Biol 2022; 434:167626. [PMID: 35595166 DOI: 10.1016/j.jmb.2022.167626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Allosteric mechanisms are pervasive in nature, but human-designed allosteric perturbagens are rare. The history of KRASG12C inhibitor development suggests that covalent chemistry may be a key to expanding the armamentarium of allosteric inhibitors. In that effort, irreversible targeting of a cysteine converted a non-deal allosteric binding pocket and low affinity ligands into a tractable drugging strategy. Here we examine the feasibility of expanding this approach to other allosteric pockets of RAS and kinase family members, given that both protein families are regulators of vital cellular processes that are often dysregulated in cancer and other human diseases. Moreover, these heavily studied families are the subject of numerous drug development campaigns that have resulted, sometimes serendipitously, in the discovery of allosteric inhibitors. We consequently conducted a comprehensive search for cysteines, a commonly targeted amino acid for covalent drugs, using AlphaFold-generated structures of those families. This new analysis presents potential opportunities for allosteric targeting of validated and understudied drug targets, with an emphasis on cancer therapy.
Collapse
Affiliation(s)
- Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Cynthia Meyer
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Zhi-Wei Zhou
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Ammar Elmezayen
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Kenneth Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA.
| |
Collapse
|