1
|
Azevedo VC, Kennedy CJ. The effects of P-glycoprotein induction on ivermectin-induced behavioural alterations in zebrafish (Danio rerio) under varying diets. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109740. [PMID: 37689171 DOI: 10.1016/j.cbpc.2023.109740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The neuroprotective effects of inducing the blood-brain barrier ATP-binding cassette protein transporter P-glycoprotein (P-gp) with clotrimazole (CTZ) in both fed and fasted zebrafish (Danio rerio) against the CNS-toxicant ivermectin (IVM, 22,23-dihydro avermectin B1a + 22,23-dihydro avermectin B1b) were examined. Zebrafish were administered 2 μmol/kg IVM intraperitoneally, and various behavioural assays (swimming performance, exploratory behaviour, olfactory responses, motor coordination, and escape responses) were used to measure neurological dysfunction. IVM administration alone caused a decrease in mean swim speed (91 % of controls), maximal speed (71 %), passage rate (81 %), 90° turns (81 %), and response to food stimulus (39 %). IVM exposure also increased the percent time that fish spent immobile (45 % increase over controls) and the percent of lethargic fish (40 % increase). Fish administered 30 μmol/kg of the P-gp inducer CTZ intraperitoneally 3 d prior to IVM exposure exhibited a change in only the % time spent immobile. These data indicate that P-gp induction may be limited in protecting the zebrafish CNS from IVM over baseline. Fasted fish did not differ from fed fish in the effects of IVM on behaviour, and no differences were seen following P-gp induction with CTZ. These results suggest that this chemical defence system is not downregulated when fish are challenged with limited energy availability.
Collapse
Affiliation(s)
- Vinicius Cavicchioli Azevedo
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada. https://twitter.com/vini_cazevedo
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
2
|
Expression Analyses of Genes Related to Multixenobiotic Resistance in Mytilus galloprovincialis after Exposure to Okadaic Acid-Producing Dinophysis acuminata. Toxins (Basel) 2021; 13:toxins13090614. [PMID: 34564618 PMCID: PMC8471661 DOI: 10.3390/toxins13090614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
The mussel Mytilus galloprovincialis is one of the most important aquaculture species in Europe. Its main production problem is the accumulation of toxins during coastal blooms, which prevents mussel commercialization. P-glycoprotein (ABCB1/MDR1/P-gp) is part of the multixenobiotic resistance system in aquatic organisms, and okadaic acid, the main DSP toxin, is probably a substrate of the P-gp-mediated efflux. In this study, the presence and possible role of P-gp in the okadaic acid detoxification process was studied in M. galloprovincialis. We identified, cloned, and characterized two complete cDNAs of mdr1 and mdr2 genes. MgMDR1 and MgMDR2 predicted proteins had the structure organization of ABCB full transporters, and were identified as P-gp/MDR/ABCB proteins. Furthermore, the expression of mdr genes was monitored in gills, digestive gland, and mantle during a cycle of accumulation-elimination of okadaic acid. Mdr1 significantly increased its expression in the digestive gland and gills, supporting the idea of an important role of the MDR1 protein in okadaic acid efflux out of cells in these tissues. The expression of M. galloprovincialismrp2, a multidrug associated protein (MRP/ABCC), was also monitored. As in the case of mdr1, there was a significant induction in the expression of mrp2 in the digestive gland, as the content of okadaic acid increased. Thus, P-gp and MRP might constitute a functional defense network against xenobiotics, and might be involved in the resistance mechanisms to DSP toxins.
Collapse
|
3
|
Zhao A, Jiang S, Miao J. Effects of BαP and TBBPA on multixenobiotic resistance (MXR) related efflux transporter activity and gene expressions in gill cells of scallop Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21110-21118. [PMID: 33405114 DOI: 10.1007/s11356-020-12302-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The multixenobiotic resistance mechanism (MXR) provides aquatic organisms with the capacity to adapt to polluted environments, which can be inhibited by chemosensitizers. In the present study, the effect of two typical marine persistent organic pollutants, benzo(a)pyrene (BaP) and tetrabromobisphenol A (TBBPA), on the most relevant ABC transporters, ABCB1, ABCC1, and ABCG2 of scallop Chlamys farreri was tested. MXR transporter efflux activity of cultured gill cells of the scallops was evaluated by measuring the intracellular fluorescent intensity of Calcein-AM and rhodamine 123 with flow cytometry. The results showed that ABCB1 and ABCC1 transporters demonstrated increased activity compared with ABCG2 in mediating MXR efflux activity. BaP and TBBPA were able to suppress the efflux transporter activity of ABC transporters significantly, of which BaP revealed block effects by acting on the ABCB1 transporter. Additionally, exposure of BaP and TBBPA only significantly upregulated the expression level of ABCC1 gene. This study demonstrated the promising utility of efflux transporter activity in conjunction with biomarkers such as mRNA levels in identification of chemosensitizer.
Collapse
Affiliation(s)
- Anran Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Shanshan Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
4
|
Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:750-757. [PMID: 30933772 DOI: 10.1016/j.envpol.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | - Orson Mestanza
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Juan Pablo Isaza
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
5
|
Pollock T, Weaver RE, Ghasemi R, deCatanzaro D. A mixture of five endocrine-disrupting chemicals modulates concentrations of bisphenol A and estradiol in mice. CHEMOSPHERE 2018; 193:321-328. [PMID: 29145094 DOI: 10.1016/j.chemosphere.2017.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Most people in developed countries are exposed to multiple endocrine-disrupting synthetic chemicals. We previously showed that a single dose of triclosan, tetrabromobisphenol A (TBBPA), butyl paraben, propyl paraben, or di(2-ethylhexyl) phthalate elevated concentrations of bisphenol A (BPA) in mice. Here we investigated whether concurrent exposure to lower doses of these five chemicals could modulate concentrations of bisphenol A (BPA) or the natural estrogen, 17β-estradiol (E2). CF1 mice were injected subcutaneously with 0.1 or 0.5 mg of one chemical, or a 0.5 mg mixture containing 0.1 mg of each of all five chemicals, then given dietary 50 μg kg-114C-BPA. The mixture elevated 14C-BPA concentrations in the lungs, muscle, uterus, ovaries, kidney, and blood serum of female mice. When administered alone, triclosan and TBBPA elevated 14C-BPA concentrations in the uterus, ovaries, and blood serum. In another experiment, CF1 mice were injected subcutaneously with the 0.5 mg mixture containing 0.1 mg of all five chemicals, then E2 was measured in urine 2-12 h later. The mixture elevated E2 at 8 h after injection in female mice. No treatments significantly altered concentrations of 14C-BPA or E2 in male mice. These data show that these endocrine-disrupting chemicals interact in vivo, magnifying one another's effects, consistent with inhibition of enzymes that are critical for estrogen metabolism. These findings highlight the importance of considering exposure to multiple chemicals when assessing health outcomes and determining regulatory exposure limits.
Collapse
Affiliation(s)
- Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Rachel E Weaver
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Ramtin Ghasemi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Ben Cheikh Y, Xuereb B, Boulangé-Lecomte C, Le Foll F. Multixenobiotic resistance in Mytilus edulis: Molecular and functional characterization of an ABCG2- type transporter in hemocytes and gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:88-96. [PMID: 29304406 DOI: 10.1016/j.aquatox.2017.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 12/24/2017] [Indexed: 06/07/2023]
Abstract
Among the cellular protection arsenal, ABC transporters play an important role in xenobiotic efflux in marine organisms. Two pumps belonging to B and C subfamily has been identified in Mytilus edulis. In this study, we investigated the presence of the third major subtype ABCG2/BCRP protein in mussel tissues. Transcript was expressed in hemocytes and with higher level in gills. Molecular characterization revealed that mussel ABCG2 transporter shares the sequence and organizational structure with mammalian and molluscan orthologs. Overall identity of the predicted amino acid sequence with corresponding homologs from other organisms was between 49% and 98%. Moreover, protein efflux activity was demonstrated using a combination of fluorescent allocrites and specific inhibitors. The accumulation of bodipy prazosin and pheophorbide A was heterogeneous in gills and hemocytes. Most of the used blockers enhanced probe accumulation at different levels, most significantly for bodipy prazosin. Moreover, Mrp classical blocker MK571 showed a polyspecificity. In conclusion, our data demonstrate that several ABC transporters contribute to MXR phenotype in the blue mussel including ABCG2 that forms an active pump in hemocytes and gills. Efforts are needed to distinguish between the different members and to explore their single function and specificity towards allocrites and chemosensitizers.
Collapse
Affiliation(s)
- Yosra Ben Cheikh
- University of Le Havre Normandy, Environmental Stress and Aquatic Biomonitoring, UMR-I 02 SEBIO, 25 rue Philippe Lebon, F-76063, Le Havre, France.
| | - Benoit Xuereb
- University of Le Havre Normandy, Environmental Stress and Aquatic Biomonitoring, UMR-I 02 SEBIO, 25 rue Philippe Lebon, F-76063, Le Havre, France
| | - Céline Boulangé-Lecomte
- University of Le Havre Normandy, Environmental Stress and Aquatic Biomonitoring, UMR-I 02 SEBIO, 25 rue Philippe Lebon, F-76063, Le Havre, France
| | - Frank Le Foll
- University of Le Havre Normandy, Environmental Stress and Aquatic Biomonitoring, UMR-I 02 SEBIO, 25 rue Philippe Lebon, F-76063, Le Havre, France
| |
Collapse
|
7
|
Jeong CB, Kim HS, Kang HM, Lee JS. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:29-39. [PMID: 28183065 DOI: 10.1016/j.aquatox.2017.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
8
|
Knudsen GA, Hughes MF, McIntosh KL, Sanders JM, Birnbaum LS. Estimation of tetrabromobisphenol A (TBBPA) percutaneous uptake in humans using the parallelogram method. Toxicol Appl Pharmacol 2015; 289:323-9. [PMID: 26387765 DOI: 10.1016/j.taap.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
Abstract
Tetrabromobisphenol A (TBBPA) is currently the world's highest production volume brominated flame retardant. Humans are frequently exposed to TBBPA by the dermal route. In the present study, a parallelogram approach was used to make predictions of internal dose in exposed humans. Human and rat skin samples received 100 nmol of TBBPA/cm(2) skin and absorption and penetrance were determined using a flow-through in vitro system. TBBPA-derived [(14)C]-radioactivity was determined at 6h intervals in the media and at 24h post-dosing in the skin. The human skin and media contained an average of 3.4% and 0.2% of the total dose at the terminal time point, respectively, while the rat skin and media contained 9.3% and 3.5%, respectively. In the intact rat, 14% of a dermally-administered dose of ~100 nmol/cm(2) remained in the skin at the dosing site, with an additional 8% reaching systemic circulation by 24h post-dosing. Relative absorption and penetrance were less (10% total) at 24h following dermal administration of a ten-fold higher dose (~1000 nmol/cm(2)) to rats. However, by 72 h, 70% of this dose was either absorbed into the dosing-site skin or had reached systemic circulation. It is clear from these results that TBBPA can be absorbed by the skin and dermal contact with TBBPA may represent a small but important route of exposure. Together, these in vitro data in human and rat skin and in vivo data from rats may be used to predict TBBPA absorption in humans following dermal exposure. Based on this parallelogram calculation, up to 6% of dermally applied TBBPA may be bioavailable to humans exposed to TBBPA.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA.
| | - Michael F Hughes
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - J Michael Sanders
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| |
Collapse
|