1
|
The Effects of Ferric Sulfate (Fe 2(SO 4) 3) on the Removal of Cyanobacteria and Cyanotoxins: A Mesocosm Experiment. Toxins (Basel) 2021; 13:toxins13110753. [PMID: 34822537 PMCID: PMC8619581 DOI: 10.3390/toxins13110753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacterial blooms are a global concern. Chemical coagulants are used in water treatment to remove contaminants from the water column and could potentially be used in lakes and reservoirs. The aims of this study was to: 1) assess the efficiency of ferric sulfate (Fe2(SO4)3) coagulant in removing harmful cyanobacterial cells from lake water with cyanobacterial blooms on a short time scale, 2) determine whether some species of cyanobacteria can be selectively removed, and 3) determine the differential impact of coagulants on intra- and extra-cellular toxins. Our main results are: (i) more than 96% and 51% of total cyanobacterial cells were removed in mesocosms with applied doses of 35 mgFe/L and 20 mgFe/L, respectively. Significant differences in removing total cyanobacterial cells and several dominant cyanobacteria species were observed between the two applied doses; (ii) twelve microcystins, anatotoxin-a (ANA-a), cylindrospermopsin (CYN), anabaenopeptin A (APA) and anabaenopeptin B (APB) were identified. Ferric sulfate effectively removed the total intracellular microcystins (greater than 97% for both applied doses). Significant removal of extracellular toxins was not observed after coagulation with both doses. Indeed, the occasional increase in extracellular toxin concentration may be related to cells lysis during the coagulation process. No significant differential impact of dosages on intra- and extra-cellular toxin removal was observed which could be relevant to source water applications where optimal dosing is difficult to achieve.
Collapse
|
2
|
Folcik AM, Klemashevich C, Pillai SD. Response of Microcystis aeruginosa and Microcystin-LR to electron beam irradiation doses. Radiat Phys Chem Oxf Engl 1993 2021; 186:109534. [PMID: 34040287 PMCID: PMC8143040 DOI: 10.1016/j.radphyschem.2021.109534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Harmful cyanobacterial blooms (cyanoHABs) pose threats to human and animal health due to the production of harmful cyanotoxins. Microcystis aeruginosa is a common cyanobacterium associated with these blooms and is responsible for producing the potent cyclic hepatotoxin microcystin-LR (MC-LR). Concerns over the public health implications of these toxins in water supplies have increased due to rising occurrence of these blooms. High energy electron beam (eBeam) irradiation technology presents a promising strategy for the mitigation of both cyanobacterial cells and cyanotoxins within the water treatment process. However, it is imperative that both cellular and chemical responses to eBeam irradiation are understood to ensure efficient treatment. We sought to investigate the effect of eBeam irradiation on M. aeruginosa cells and MC-LR degradation. Results indicate that doses as low as 2 kGy are lethal to M. aeruginosa cells and induce cell lysis. Even lower doses are required for degradation of the parent MC-LR toxin. However, it was observed that there is a delay in cell lysis after irradiation where M. aeruginosa cells may still be metabolically active and able to synthesize microcystin. These results suggest that eBeam may be suitable for cyanoHAB mitigation in water treatment if employed following cell lysis.
Collapse
Affiliation(s)
- Alexandra M. Folcik
- Interdisciplinary Graduate Program in Toxicology, Texas A&M University, College Station, TX, USA
- National Center for Electron Beam Research, An IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, USA
| | - Cory Klemashevich
- Integrated Metabolomic Analysis Core, Texas A&M University, College Station, TX, USA
| | - Suresh D. Pillai
- Interdisciplinary Graduate Program in Toxicology, Texas A&M University, College Station, TX, USA
- National Center for Electron Beam Research, An IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Jalili F, Trigui H, Guerra Maldonado JF, Dorner S, Zamyadi A, Shapiro BJ, Terrat Y, Fortin N, Sauvé S, Prévost M. Can Cyanobacterial Diversity in the Source Predict the Diversity in Sludge and the Risk of Toxin Release in a Drinking Water Treatment Plant? Toxins (Basel) 2021; 13:toxins13010025. [PMID: 33401450 PMCID: PMC7823770 DOI: 10.3390/toxins13010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023] Open
Abstract
Conventional processes (coagulation, flocculation, sedimentation, and filtration) are widely used in drinking water treatment plants and are considered a good treatment strategy to eliminate cyanobacterial cells and cell-bound cyanotoxins. The diversity of cyanobacteria was investigated using taxonomic cell counts and shotgun metagenomics over two seasons in a drinking water treatment plant before, during, and after the bloom. Changes in the community structure over time at the phylum, genus, and species levels were monitored in samples retrieved from raw water (RW), sludge in the holding tank (ST), and sludge supernatant (SST). Aphanothece clathrata brevis, Microcystis aeruginosa, Dolichospermum spiroides
, and Chroococcus minimus were predominant species detected in RW by taxonomic cell counts. Shotgun metagenomics revealed that Proteobacteria was the predominant phylum in RW before and after the cyanobacterial bloom. Taxonomic cell counts and shotgun metagenomic showed that the Dolichospermum bloom occurred inside the plant. Cyanobacteria and Bacteroidetes were the major bacterial phyla during the bloom. Shotgun metagenomics also showed that Synechococcus, Microcystis
, and Dolichospermum were the predominant detected cyanobacterial genera in the samples. Conventional treatment removed more than 92% of cyanobacterial cells but led to cell accumulation in the sludge up to 31 times more than in the RW influx. Coagulation/sedimentation selectively removed more than 96% of Microcystis and Dolichospermum. Cyanobacterial community in the sludge varied from raw water to sludge during sludge storage (1-13 days). This variation was due to the selective removal of coagulation/sedimentation as well as the accumulation of captured cells over the period of storage time. However, the prediction of the cyanobacterial community composition in the SST remained a challenge. Among nutrient parameters, orthophosphate availability was related to community profile in RW samples, whereas communities in ST were influenced by total nitrogen, Kjeldahl nitrogen (N- Kjeldahl), total and particulate phosphorous, and total organic carbon (TOC). No trend was observed on the impact of nutrients on SST communities. This study profiled new health-related, environmental, and technical challenges for the production of drinking water due to the complex fate of cyanobacteria in cyanobacteria-laden sludge and supernatant.
Collapse
Affiliation(s)
- Farhad Jalili
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
- Correspondence:
| | - Hana Trigui
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Juan Francisco Guerra Maldonado
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Sarah Dorner
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Arash Zamyadi
- Water Research Australia, Adelaide SA 5001, Australia;
| | - B. Jesse Shapiro
- Department of Biological Sciences, University of Montréal, Montréal, QC H2V 0B3, Canada; (B.J.S.); (Y.T.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- McGill Genome Center, McGill University, Montréal, QC H3A 0G1, Canada
| | - Yves Terrat
- Department of Biological Sciences, University of Montréal, Montréal, QC H2V 0B3, Canada; (B.J.S.); (Y.T.)
| | - Nathalie Fortin
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC H4P 2R2, Canada;
| | - Sébastien Sauvé
- Department of Chemistry, University of Montréal, Montréal, QC H3C 3J7, Canada;
| | - Michèle Prévost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| |
Collapse
|
5
|
Greenstein KE, Zamyadi A, Glover CM, Adams C, Rosenfeldt E, Wert EC. Delayed Release of Intracellular Microcystin Following Partial Oxidation of Cultured and Naturally Occurring Cyanobacteria. Toxins (Basel) 2020; 12:E335. [PMID: 32443714 PMCID: PMC7291037 DOI: 10.3390/toxins12050335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oxidation processes can provide an effective barrier to eliminate cyanotoxins by damaging cyanobacteria cell membranes, releasing intracellular cyanotoxins, and subsequently oxidizing these toxins (now in extracellular form) based on published reaction kinetics. In this work, cyanobacteria cells from two natural blooms (from the United States and Canada) and a laboratory-cultured Microcystis aeruginosa strain were treated with chlorine, monochloramine, chlorine dioxide, ozone, and potassium permanganate. The release of microcystin was measured immediately after oxidation (t ≤ 20 min), and following oxidant residual quenching (stagnation times = 96 or 168 h). Oxidant exposures (CT) were determined resulting in complete release of intracellular microcystin following chlorine (21 mg-min/L), chloramine (72 mg-min/L), chlorine dioxide (58 mg-min/L), ozone (4.1 mg-min/L), and permanganate (391 mg-min/L). Required oxidant exposures using indigenous cells were greater than lab-cultured Microcystis. Following partial oxidation of cells (oxidant exposures ≤ CT values cited above), additional intracellular microcystin and dissolved organic carbon (DOC) were released while the samples remained stagnant in the absence of an oxidant (>96 h after quenching). The delayed release of microcystin from partially oxidized cells has implications for drinking water treatment as these cells may be retained on a filter surface or in solids and continue to slowly release cyanotoxins and other metabolites into the finished water.
Collapse
Affiliation(s)
| | - Arash Zamyadi
- Water Research Australia (WaterRA), Adelaide, SA 5001, Australia;
- BGA Innovation Hub and Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Caitlin M. Glover
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Craig Adams
- Department of Civil Engineering, Saint Louis University, St. Louis, MO 63103, USA;
| | | | - Eric C. Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA;
| |
Collapse
|
6
|
Impact of Hydrogen Peroxide and Copper Sulfate on the Delayed Release of Microcystin. WATER 2020. [DOI: 10.3390/w12041105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Algicides, like hydrogen peroxide and copper sulfate, are commonly applied to recreational waters and drinking water sources to mitigate cyanobacterial blooms. In this work, the effects of hydrogen peroxide and copper sulfate were evaluated in two natural bloom samples (collected from Canadian and American waterbodies) and one lab-cultured Microcystis aeruginosa suspended in Colorado River water. Five algicide to dissolved organic carbon (DOC) dose ratios were evaluated during an initial exposure period of 24 h. One dose ratio (0.4 H2O2:DOC or 0.25 CuSO4:DOC) was then evaluated during stagnation after quenching (hydrogen peroxide) or extended exposure (copper sulfate) for up to 96 or 168 h. During the initial hydrogen peroxide exposure, the CA bloom had no release of intracellular microcystins (MCs) and the USA bloom only released MC at 4 H2O2:DOC. The reverse occurred with copper sulfate, where the CA bloom released MCs at 0.6 CuSO4:DOC but the USA bloom had no detectable extracellular MCs. Extracellular MC was released from the lab-cultured Microcystis at the lowest hydrogen peroxide and copper sulfate doses. In the hydrogen peroxide stagnation experiment, intracellular MC decreased in the USA bloom after 168 h despite the low dose applied. Similarly, the extended copper sulfate exposure led to intracellular MC decreases in both bloom samples after 168 h, despite showing no impact during the initial 24 h monitoring period. The lab-cultured Microcystis was again less resistant to both algicides, with releases observed after less than 2 h of stagnation or exposure. The damage to cells as measured by pigments during these experiments did not match the MC data, indicating that blooms with depressed pigment levels can still be a risk to nearby drinking water sources or recreational activities. These results provide insight on the timeline (up to one week) required for monitoring the potential release of MCs after algicide application.
Collapse
|
7
|
Martínez-Ruiz EB, Cooper M, Fastner J, Szewzyk U. Manganese-oxidizing bacteria isolated from natural and technical systems remove cylindrospermopsin. CHEMOSPHERE 2020; 238:124625. [PMID: 31466008 DOI: 10.1016/j.chemosphere.2019.124625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The cyanotoxin cylindrospermopsin was discovered during a drinking water-related outbreak of human poisoning in 1979. Knowledge about the degradation of cylindrospermopsin in waterbodies is limited. So far, only few cylindrospermopsin-removing bacteria have been described. Manganese-oxidizing bacteria remove a variety of organic compounds. However, this has not been assessed for cyanotoxins yet. We investigated cylindrospermopsin removal by manganese-oxidizing bacteria, isolated from natural and technical systems. Cylindrospermopsin removal was evaluated under different conditions. We analysed the correlation between the amount of oxidized manganese and the cylindrospermopsin removal, as well as the removal of cylindrospermopsin by sterile biogenic oxides. Removal rates in the range of 0.4-37.0 μg L-1 day-1 were observed. When MnCO3 was in the media Pseudomonas sp. OF001 removed ∼100% of cylindrospermopsin in 3 days, Comamonadaceae bacterium A210 removed ∼100% within 14 days, and Ideonella sp. A288 and A226 removed 65% and 80% within 28 days, respectively. In the absence of Mn2+, strain A288 did not remove cylindrospermopsin, while the other strains removed 5-16%. The amount of manganese oxidized by the strains during the experiment did not correlate with the amount of cylindrospermopsin removed. However, the mere oxidation of Mn2+ was indispensable for cylindrospermopsin removal. Cylindrospermopsin removal ranging from 0 to 24% by sterile biogenic oxides was observed. Considering the efficient removal of cylindrospermopsin by the tested strains, manganese-oxidizing bacteria might play an important role in cylindrospermopsin removal in the environment. Besides, manganese-oxidizing bacteria could be promising candidates for biotechnological applications for cylindrospermopsin removal in water treatment plants.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Technische Universität Berlin, Chair of Environmental Microbiology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany.
| | - Myriel Cooper
- Technische Universität Berlin, Chair of Environmental Microbiology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Jutta Fastner
- German Environment Agency, Section Drinking Water Treatment and Resource Protection, Schichauweg 58, D-12307, Berlin, Germany
| | - Ulrich Szewzyk
- Technische Universität Berlin, Chair of Environmental Microbiology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| |
Collapse
|
8
|
Han S, Li J, Zhou Q, Liu G, Wang T. Harmless disposal and resource utilization of wastes from the lake in China: Dewatering, composting and safety evaluation of fertilizer. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kumar P, Hegde K, Brar SK, Cledon M, Kermanshahi-Pour A. Potential of biological approaches for cyanotoxin removal from drinking water: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:488-503. [PMID: 30738231 DOI: 10.1016/j.ecoenv.2019.01.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 05/20/2023]
Abstract
Biological treatment of cyanotoxins has gained much importance in recent decades and holds a promise to work in coordination with various physicochemical treatments. In drinking water treatment plants (DWTPs), effective removal of cyanotoxins with reduced toxicity is a primary concern. Commonly used treatments, such as ozonation, chlorination or activated carbon, undergo significant changes in their operating conditions (mainly dosage) to counter the variation in different environmental parameters, such as pH, temperature, and high cyanotoxin concentration. Presence of metal ions, natural organic matter (NOM), and other chemicals demand higher dosage and hence affect the activation energy to efficiently break down the cyanotoxin molecule. Due to these higher dose requirements, the treatment leads to the formation of toxic metabolites at a concentration high enough to break the guideline values. Biological methods of cyanotoxin removal proceed via enzymatic pathway where the protein-encoding genes are often responsible for the compound breakdown into non-toxic metabolites. However, in contrast to the chemical treatment, the biological processes advance at a much slower kinetic rate, predominantly due to a longer onset period (high lag phase). In fact, more than 90% of the studies reported on the biological degradation of the cyanotoxins attribute the biodegradation to the bacterial suspension. This suspended growth limits the mass transfer kinetics due to the presence of metal ions, NOMs and, other oxidizable matter, which further prolongs the lag phase and makes biological process toxic-free, albeit less efficient. In this context, this review attempts to bring out the importance of the attached growth mechanism, in particular, the biofilm-based treatment approaches which can enhance the biodegradation rate.
Collapse
Affiliation(s)
- Pratik Kumar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada G1K 9A9
| | | | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada G1K 9A9; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada M3J 1P3.
| | - Maximiliano Cledon
- CIMAS (CONICET, UnComa, Rio Negro), Güemes 1030, San Antonio Oeste, Rio Negro, Argentina
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 1Z1
| |
Collapse
|
10
|
Khadgi N, Upreti AR. Photocatalytic degradation of Microcystin-LR by visible light active and magnetic, ZnFe 2O 4-Ag/rGO nanocomposite and toxicity assessment of the intermediates. CHEMOSPHERE 2019; 221:441-451. [PMID: 30654258 DOI: 10.1016/j.chemosphere.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
In this work, we aimed to study photocatalytic degradation of Microcystin-LR (MC-LR), a cyanotoxin known to cause acute as well as chronic toxicity and even mortality. The nanocomposite (NC) based on zinc ferrite (ZnFe2O4) was modified with graphene oxide (GO) and Ag nanoparticles (NPs) to enhance its photocatalytic properties under visible light. The so-formed ZnFe2O4-Ag/rGO NC exhibited superior performance in visible light allowing complete degradation of MC-LR within 120 min of treatment with pseudo rate constant, k = 0.0515 min-1, several times greater than other photocatalysts, TiO2 (k = 0.0009 min-1), ZnFe2O4 (k = 0.0021 min-1), ZnFe2O4-Ag (k = 0.0046 min-1) and ZnFe2O4/rGO (k = 0.007 min-1) respectively. The total organic carbon analysis revealed that only 22% of MC-LR was mineralized on 120 min of treatment time indicating presence of different intermediate by-products. The intermediates formed during photocatalytic treatment were identified using liquid chromatography-mass spectrometry (LCMS) based on which probable degradation pathways were proposed. The attack from OH radicals formed during the photocatalytic process resulted to hydroxylation and subsequent cleavage of diene bond. The toxicity assessment with Daphnia magna revealed that the degradation process has alleviated toxicity of the MC-LR and no toxic intermediates were formed during the treatment which is very important from eco-toxicological view point. Therefore, ZnFe2O4-Ag/rGO has a good potential in the field of environmental applications as visible light active and magnetic photocatalyst with enhanced performance.
Collapse
Affiliation(s)
- Nirina Khadgi
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Akhanda Raj Upreti
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
11
|
Li H, Pei H, Xu H, Jin Y, Sun J. Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage - higher potential risk of toxin release than Microcystis aeruginosa? JOURNAL OF HAZARDOUS MATERIALS 2018; 347:307-316. [PMID: 29331810 DOI: 10.1016/j.jhazmat.2018.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Owing to the global warming and its strong adaptability, Cylindrospermopsis raciborskii has spread world-wide. However, as one of toxic cyanobacteria in many drinking water sources, it has not been drawn proper consideration in drinking water treatment plants so far. The investigation aimed at unveiling the fate of C. raciborskii during polyaluminum ferric chloride (PAFC) coagulation and sludge storage, revealing its differences from Microcystis aeruginosa. Results showed that C. raciborskii cells were effectively removed intactly under optimum coagulation conditions, but PAFC at higher dosages (>10 mg/L) triggered additional cylindrospermopsins release. In sludge storage, coagulated C. raciborskii cells suffered severe oxidative damage, leading to significant cylindrospermopsins release after day 6. C. raciborskii manifested different behaviors from M. aeruginosa which cells didn't release much microcystins during coagulation and sludge storage. This was mostly due to their differences in physiology and morphology. In flocs, M. aeruginosa could be enveloped by coagulant which can protect cells against the nasty attack from outside, whereas C. raciborskii with long filaments was hard to be wrapped and prone to suffering oxidative damage. These results confirmed C. raciborskii had a higher risk of toxin release in water production process than M. aeruginosa, which should deserve more attention.
Collapse
Affiliation(s)
- Hongmin Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| | - Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Yan Jin
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Jiongming Sun
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
12
|
Maghsoudi E, Fortin N, Greer C, Maynard C, Pagé A, Duy SV, Sauvé S, Prévost M, Dorner S. Cyanotoxin degradation activity and mlr gene expression profiles of a Sphingopyxis sp. isolated from Lake Champlain, Canada. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1417-1426. [PMID: 27711837 DOI: 10.1039/c6em00001k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A bacterium capable of degrading five microcystin (MC) variants, microcystin-LR, YR, LY, LW and LF at an initial total concentration of 50 μg l-1 in less than 16 hours was isolated from Missisquoi Bay, in the south of Quebec, Canada. Phylogenetic analysis of the 16S rRNA gene sequence identified the bacterium as Sphingopyxis sp., designated strain MB-E. It was shown that microcystin biodegradation activity was reduced at acidic and basic pH values. Even though no biodegradation occurred at pH values of 5.05 and 10.23, strain MB-E was able to degrade MCLR and MCYR at pH 9.12 and all five MCs variants tested at pH 6.1. Genomic sequencing revealed that strain MB-E contained the microcystin degrading gene cluster, including the mlrA, mlrB, mlrC and mlrD genes, and transcriptomic analysis demonstrated that all of these genes were induced during the degradation of MCLR alone or in the mixture of all five MCs. This novel transcriptomic analysis showed that the expression of the mlr gene cluster was similar for MCLR alone, or the mixture of MCs, and appeared to be related to the total concentration of substrate. The results suggested that the bacterium used the same pathway for the degradation of all MC variants.
Collapse
Affiliation(s)
- Ehsan Maghsoudi
- Polytechnique Montreal, Civil, Mineral and Mining Engineering Department, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7.
| | - Nathalie Fortin
- National Research Council Canada, Energy, Mining and Environment, 6100 Royalmount Ave., Montreal, QC, Canada H4P 2R2
| | - Charles Greer
- National Research Council Canada, Energy, Mining and Environment, 6100 Royalmount Ave., Montreal, QC, Canada H4P 2R2
| | - Christine Maynard
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, Canada
| | - Antoine Pagé
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montreal, C.P. 6128, Centre-Ville, Montreal, QC, Canada H3C 3J7
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montreal, C.P. 6128, Centre-Ville, Montreal, QC, Canada H3C 3J7
| | - Michèle Prévost
- Polytechnique Montreal, Civil, Mineral and Mining Engineering Department, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7.
| | - Sarah Dorner
- Polytechnique Montreal, Civil, Mineral and Mining Engineering Department, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7.
| |
Collapse
|
13
|
Pestana CJ, Reeve PJ, Sawade E, Voldoire CF, Newton K, Praptiwi R, Collingnon L, Dreyfus J, Hobson P, Gaget V, Newcombe G. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:1192-1200. [PMID: 27265732 DOI: 10.1016/j.scitotenv.2016.05.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Abstract
In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge.
Collapse
Affiliation(s)
- Carlos J Pestana
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Petra J Reeve
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Emma Sawade
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Camille F Voldoire
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia; École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087, France
| | - Kelly Newton
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Radisti Praptiwi
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Lea Collingnon
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia; École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087, France
| | - Jennifer Dreyfus
- Allwater, Adelaide Services Alliance, Wakefield St, Adelaide, SA 5001, Australia
| | - Peter Hobson
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia
| | - Virginie Gaget
- University of Adelaide, Ecology and Environmental Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia
| | - Gayle Newcombe
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000, Australia.
| |
Collapse
|
14
|
Potential of Fuzzy-ELECTRE MCDM in Evaluation of Cyanobacterial Toxins Removal Methods. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2032-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Toxic cyanobacterial bloom triggers in missisquoi bay, lake champlain, as determined by next-generation sequencing and quantitative PCR. Life (Basel) 2015; 5:1346-80. [PMID: 25984732 PMCID: PMC4500142 DOI: 10.3390/life5021346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/18/2022] Open
Abstract
Missisquoi Bay (MB) is a temperate eutrophic freshwater lake that frequently experiences toxic Microcystis-dominated cyanobacterial blooms. Non-point sources are responsible for the high concentrations of phosphorus and nitrogen in the bay. This study combined data from environmental parameters, E. coli counts, high-throughput sequencing of 16S rRNA gene amplicons, quantitative PCR (16S rRNA and mcyD genes) and toxin analyses to identify the main bloom-promoting factors. In 2009, nutrient concentrations correlated with E. coli counts, abundance of total cyanobacterial cells, Microcystis 16S rRNA and mcyD genes and intracellular microcystin. Total and dissolved phosphorus also correlated significantly with rainfall. The major cyanobacterial taxa were members of the orders Chroococcales and Nostocales. The genus Microcystis was the main mcyD-carrier and main microcystin producer. Our results suggested that increasing nutrient concentrations and total nitrogen:total phosphorus (TN:TP) ratios approaching 11:1, coupled with an increase in temperature, promoted Microcystis-dominated toxic blooms. Although the importance of nutrient ratios and absolute concentrations on cyanobacterial and Microcystis dynamics have been documented in other laboratories, an optimum TN:TP ratio for Microcystis dominance has not been previously observed in situ. This observation provides further support that nutrient ratios are an important determinant of species composition in natural phytoplankton assemblages.
Collapse
|