1
|
Prakash J, Agrawal SB, Agrawal M. Global Trends of Acidity in Rainfall and Its Impact on Plants and Soil. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 23:398-419. [PMID: 36415481 PMCID: PMC9672585 DOI: 10.1007/s42729-022-01051-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/27/2022] [Indexed: 06/02/2023]
Abstract
Due to its deleterious and large-scale effects on the ecosystem and long-range transboundary nature, acid rain has attracted the attention of scientists and policymakers. Acid rain (AR) is a prominent environmental issue that has emerged in the last hundred years. AR refers to any form of precipitation leading to a reduction in pH to less than 5.6. The prime reasons for AR formation encompass the occurrence of sulfur dioxide (SO2), nitrogen oxides (NOx), ozone (O3), and organic acids in air produced by natural as well as anthropogenic activities. India, the top SO2 emitter, also shows a continuous increase in NO2 level responsible for AR formation. The plants being immobile unavoidably get exposed to AR which impacts the natural surrounding negatively. Plants get affected directly by AR due to reductions in growth, productivity, and yield by damaging photosynthetic mechanisms and reproductive organs or indirectly by affecting underground components such as soil and root system. Genes that play important role in plant defense under abiotic stress gets also modulated in response to acid rain. AR induces soil acidification, and disturbs the balance of carbon and nitrogen metabolism, litter properties, and microbial and enzymatic activities. This article overviews the factors contributing to AR, and outlines the past and present trends of rainwater pH across the world, and its effects on plants and soil systems.
Collapse
Affiliation(s)
- Jigyasa Prakash
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
2
|
Xue Y, Chen J, Li X, Liu Y. Transcriptome analysis of soybean leaves response to manganese toxicity. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1950566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yingbin Xue
- Department of Resources and Environmental Sciences, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Jingye Chen
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Xiaohao Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
3
|
Li Y, Chen X, Wang J, Zou G, Wang L, Li X. Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis Fisch. PLoS One 2020; 15:e0236565. [PMID: 32730299 PMCID: PMC7392228 DOI: 10.1371/journal.pone.0236565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Flavonoids are key components of licorice plant that directly affect its medicinal quality. Importantly, the MYB family of transcription factors serves to regulate the synthesis of flavonoids in plants. The MYB transcription factors represent one of the largest families of transcription factors in plants and play important roles in the process of plant growth and development. MYB gene expression is induced by a number of plant hormones, including the lipid-based hormone jasmonate (JA). Methyl jasmonate (MeJA) is an endogenous plant growth regulator that can induce the JA signaling pathway, which functions to regulate the synthesis of secondary metabolites, including flavonoids. In this study, MeJA was added to licorice cell suspensions, and RNA-seq analysis was performed to identify the differentially expressed genes. As a result, the MYB transcription factors GlMYB4 and GlMYB88 were demonstrated to respond significantly to MeJA induction. Subsequently, the GlMYB4 and GlMYB88 protein were shown to localize to the cell nucleus, and it was verified that GlMYB4 and GlMYB88 could positively regulate the synthesis of flavonoids in licorice cells. Overall, this research helps illustrate the molecular regulation of licorice flavonoid biosynthesis induced by MeJA.
Collapse
Affiliation(s)
- Yali Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
- * E-mail:
| | - Xiuli Chen
- Baotou Teachers’ College, Biological Science and Technology Institute, Baotou, Inner Mongolia, China
| | - Jiaqi Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Guangping Zou
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lu Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xueshuang Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
4
|
Cytological and Gene Profile Expression Analysis Reveals Modification in Metabolic Pathways and Catalytic Activities Induce Resistance in Botrytis cinerea Against Iprodione Isolated From Tomato. Int J Mol Sci 2020; 21:ijms21144865. [PMID: 32660143 PMCID: PMC7402349 DOI: 10.3390/ijms21144865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023] Open
Abstract
Grey mold is one of the most serious and catastrophic diseases, causing significant yield losses in fruits and vegetables worldwide. Iprodione is a broad spectrum agrochemical used as a foliar application as well as a seed protectant against many fungal and nematode diseases of fruits and vegetables from the last thirty years. The extensive use of agrochemicals produces resistance in plant pathogens and is the most devastating issue in food and agriculture. However, the molecular mechanism (whole transcriptomic analysis) of a resistant mutant of B. cinerea against iprodione is still unknown. In the present study, mycelial growth, sporulation, virulence, osmotic potential, cell membrane permeability, enzymatic activity, and whole transcriptomic analysis of UV (ultraviolet) mutagenic mutant and its wild type were performed to compare the fitness. The EC50 (half maximal effective concentration that inhibits the growth of mycelium) value of iprodione for 112 isolates of B. cinerea ranged from 0.07 to 0.87 µg/mL with an average (0.47 µg/mL) collected from tomato field of Guangxi Province China. Results also revealed that, among iprodione sensitive strains, only B67 strain induced two mutants, M0 and M1 after UV application. The EC50 of these induced mutants were 1025.74 μg/mL and 674.48 μg/mL, respectively, as compared to its wild type 1.12 μg/mL. Furthermore, mutant M0 showed higher mycelial growth sclerotia formation, virulence, and enzymatic activity than wild type W0 and M1 on potato dextrose agar (PDA) medium. The bctubA gene in the mutant M0 replaced TTC and GAT codon at position 593 and 599 by TTA and GAA, resulting in replacement of phenyl alanine into leucine (transversion C/A) and aspartic acid into glutamic acid (transversion T/C) respectively. In contrast, in bctubB gene, GAT codon at position 646 is replaced by AAT and aspartic acid converted into asparagine (transition G/A). RNA sequencing of the mutant and its wild type was performed without (M0, W0) and with iprodione treatment (M-ipro, W-ipro). The differential gene expression (DEG) identified 720 unigenes in mutant M-ipro than W-ipro after iprodione treatment (FDR ≤ 0.05 and log2FC ≥ 1). Seven DEGs were randomly selected for quantitative real time polymerase chain reaction to validate the RNA sequencing genes expression (log fold 2 value). The gene ontology (GO) enrichment and Kyoto encyclopedia genes and genomes (KEGG) pathway functional analyses indicated that DEG’s mainly associated with lysophopholipase, carbohydrate metabolism, amino acid metabolism, catalytic activity, multifunctional genes (MFO), glutathione-S transferase (GST), drug sensitivity, and cytochrome P450 related genes are upregulated in mutant type (M0, M-ipro) as compared to its wild type (W0, W-ipro), may be related to induce resistant in mutants of B. cinerea against iprodione.
Collapse
|
5
|
Zhang C, Yi X, Gao X, Wang M, Shao C, Lv Z, Chen J, Liu Z, Shen C. Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110315. [PMID: 32058162 DOI: 10.1016/j.ecoenv.2020.110315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Tea (Camellia sinensis), widely planted in the south of China, and often exposed to acid rain. However, research concerning the impacts of acid rain on physiology and biochemistry of tea plants is still scarce. In this study, we investigated the influence of simulated acid rain (SAR) on plant height, root length, photosynthetic pigment, Fv/Fm, proline, malondialdehyde, antioxidant enzyme activity, total nitrogen, caffeine, catechins, and free amino acids. Our results showed that SAR at pH 4.5 did not hinder plant development because growth characteristics, photosynthesis, and ascorbate peroxidase and catalase activities did not decrease at this pH compared to those at the other investigated pH values. However, at pH 3.5 and pH 2.5, the activities of antioxidase and concentrations of malondialdehyde and proline increased significantly in response to the decrease of photosynthetic pigments and Fv/Fm. In addition, the increase in acidity increased total nitrogen, certain amino acid content (theanine, cysteine), and decreased catechin and caffeine contents, resulting in an imbalance of the carbon and nitrogen metabolisms. Our results indicated that SAR at pH 3.5 and pH 2.5 could restrict photosynthesis and the antioxidant defense system, causing metabolic disorders and ultimately affecting plant development and growth, but SAR at pH 4.5 had no toxic effects on tea seedlings when no other stress factors are involved.
Collapse
Affiliation(s)
- Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Xiaoqin Yi
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xizhi Gao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minhan Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianjiao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
6
|
Abstract
With the continuation of industrialization and urbanization, acid rain (AR) has aroused extensive concern because of its potential negative effects on ecosystems. However, analysis of the current status and development trends in AR research area has seldom been systematically studied. Therefore, we motivated to conduct a bibliometric analysis of AR publications (1900–2018) using HistCite and CiteSpace software programs. Compared to traditional reviews by experts, this study offers an alternative method to quantitatively analyze and visualize the development of AR field at a large time scale. The results indicated that the overall concern of AR research studies had increased from 1900 to 2018. The most productive country was the United States, while the institution with the most publications was Chinese Academy of Sciences. “Environmental Sciences” was the most popular subject category, Water, Air, and Soil Pollution was the dominant journal, and C.T. Driscoll was the most prominent author in AR field. There were three hotspots in the field of AR, including analyzing AR status and its control policies in Europe, the United States, and China in the past few decades, investigating the ecological consequences of AR on plant histological, physiological, and biochemical traits, as well as surface water and soil properties, and the model application for quantitatively assessing AR and its effects on terrestrial and aquatic ecosystems at regional scale. Further, “behavior”, “phosphorus”, “fractionation”, “soil acidification”, “corrosion”, “performance”, “recovery”, “rainwater”, “trace element”, and “surface water” have been emerging active topics in recent years. This study can help new researchers to find out the most relevant subject categories, countries, institutions, journals, authors, and articles, and identify research trends and frontiers in the field of AR.
Collapse
|