1
|
Bai Y, Lan X, Xu S. Effects of combined application of Se and ammonium fertilizers on the growth and nutritional quality of maize in Hg-polluted soil under two irrigation conditions and its health risk assessment. CHEMOSPHERE 2024; 367:143644. [PMID: 39476982 DOI: 10.1016/j.chemosphere.2024.143644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024]
Abstract
The interactive effects of Se (Na2SeO3) and ammonium fertilizers ((NH4)2SO4 and NH4Cl) on the growth and quality of maize (Zea mays L.) in mercury (Hg)-contaminated soil were studied under different water conditions. This study determined how two nutrient sources (Se and NH4+-N) interacted to improve the yield, quality, and safety of maize to ensure food security and quality assurance under the stress of heavy metal Hg. The experiment was conducted under two irrigation conditions: W1 (complete irrigation condition, 60-70% of water-holding capacity) and W2 (restricted irrigation condition, 40-50% of water-holding capacity). The combined treatment of Se and ammonium fertilizers significantly improved the growth of maize and the quality of grain in Hg-polluted soil. When Na2SeO3 and (NH4)2SO4 were combined, the growth and quality of maize increased the highest among all treatments. The interaction between Na2SeO3 and ammonium fertilizers significantly affected the available Hg/methylmercury (MeHg) content in soil and the Hg/MeHg concentration in maize. NH4Cl significantly increased the content of available Hg/MeHg in soil and increased the accumulation of Hg/MeHg in maize tissues due to Cl-. However, the treatments containing Na2SeO3 or (NH4)2SO4 significantly reduced the content of available Hg/MeHg in soil, reduced the accumulation of Hg/MeHg in maize tissues, and significantly reduced the possible health risks to human beings. The treatments containing Na2SeO3 or (NH4)2SO4 promoted maize growth by increasing the Se content in maize tissues and reducing the Hg/MeHg content, relieving the stress induced by Hg, and increasing the nutrient content. The combined treatment of Na2SeO3 and (NH4)2SO4 had the best effect in this experiment. This study also showed that this strategy is helpful in reducing the opportunities for consumers to accumulate Hg/MeHg by eating maize and its derivatives, thus ensuring food safety. Se and ammonium fertilizer can be used together to increase maize yield and develop agricultural production in Hg-polluted areas, which may have a significant impact on global food production. In addition, this simple method can help farmers manage soil affected by heavy metal pollution.
Collapse
Affiliation(s)
- Yanzhen Bai
- College of Resources and Environment, Shanxi Agricultural University, Taigu District, Jinzhong, 030801, Shanxi, China.
| | - Xiaoling Lan
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu District, Jinzhong, 030801, Shanxi, China.
| | - Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu District, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
2
|
Cui K, Wang J, Ma G, Guan S, Liang J, Fang L, Ding R, Li T, Dong Z, Wu X, Zheng Y. Residue levels, processing factors and risk assessment of pesticides in ginger from market to table. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134268. [PMID: 38608592 DOI: 10.1016/j.jhazmat.2024.134268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Ginger is consumed as a spice and medicine globally. However, pesticide residues in ginger and their residue changes during processing remain poorly understood. Our results demonstrate that clothianidin, carbendazim and imidacloprid were the top detected pesticides in 152 ginger samples with detection rates of 17.11-27.63%, and these pesticides had higher average residues of 44.07-97.63 μg/kg. Although most samples contained low levels of pesticides, 66.45% of the samples were detected with pesticides, and 38.82% were contaminated with 2-5 pesticides. Peeling, washing, boiling and pickling removed different amounts of pesticides from ginger (processing factor range: 0.06-1.56, most <1). By contrast, pesticide residues were concentrated by stir-frying and drying (0.50-6.45, most >1). Pesticide residues were influenced by pesticide physico-chemical parameters involving molecular weight, melting point, degradation point and octanol-water partition coefficient by different ginger processing methods. Chronic and acute dietary risk assessments suggest that dietary exposure to pesticides from ginger consumption was within acceptable levels for the general population. This study sheds light on pesticide residues in ginger from market to processing and is of theoretical and practical value for ensuring ginger quality and safety.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Li X, Chi Y, Ma F, Wang X, Du R, Wang Z, Dang X, Zhao C, Zhang Y, He S, Wang Y, Zhu T. Unlocking the potential of biochar: an iron-phosphorus-based composite modified adsorbent for adsorption of Pb(II) and Cd(II) in aqueous environments and response surface optimization of adsorption conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35688-35704. [PMID: 38740681 DOI: 10.1007/s11356-024-33238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
In this work, iron-phosphorus based composite biochar (FPBC) was prepared by modification with potassium phosphate and iron oxides for the removal of heavy metal ions from single and mixed heavy metal (Pb and Cd) solutions. FTIR and XPS characterization experiments showed that the novel modified biochar had a greater number of surface functional groups compared to the pristine biochar. The maximum adsorption capacities of FPBC for Pb(II) and Cd(II) were 211.66 mg·g-1 and 94.08 mg·g-1 at 293 K. The adsorption of Pb(II) and Cd(II) by FPBC followed the proposed two-step adsorption kinetic model and the Freundlich isothermal adsorption model, suggesting that the mechanism of adsorption of Pb(II) and Cd(II) by FPBC involved chemical adsorption of multiple layers. Mechanistic studies showed that the introduction of -PO4 and -PO3 chemisorbed with Pb(II) and Cd(II), and the introduction of -Fe-O increased the ion exchange with Pb(II) and Cd(II) during the adsorption process and produced precipitates such as Pb3Fe(PO4)3 and Cd5Fe2(P2O7)4. Additionally, the abundant -OH and -COOH groups also participated in the removal of Pb(II) and Cd(II). In addition, FPBC demonstrated strong selective adsorption of Pb(II) in mixed heavy metal solutions. The Response Surface Methodology(RSM) analysis determined the optimal adsorption conditions for FPBC as pH 5.31, temperature 26.01 °C, and Pb(II) concentration 306.30 mg·L-1 for Pb(II). Similarly, the optimal adsorption conditions for Cd(II) were found to be pH 5.66, temperature 39.34 °C, and Cd(II) concentration 267.68 mg·L-1. Therefore, FPBC has the potential for application as a composite-modified adsorbent for the adsorption of multiple heavy metal ions.
Collapse
Affiliation(s)
- Xu Li
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Yuan Chi
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Feng Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Xiaoxin Wang
- Baotou Renewable Water Resources and Sewage Treatment Co., LTD, Baotou, 014000, China
| | - Rui Du
- Baotou Renewable Water Resources and Sewage Treatment Co., LTD, Baotou, 014000, China
| | - Zhipeng Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Xiaoyan Dang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Chaoyue Zhao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Yanping Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Shumin He
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
4
|
Ma Y, Chen R, Zhang R, Liang J, Ren S, Gao Z. Application of DNA-fueled molecular machines in food safety testing. Compr Rev Food Sci Food Saf 2024; 23:1-22. [PMID: 38284608 DOI: 10.1111/1541-4337.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Food is consumed by humans, which is indispensable to human life. Therefore, considerable attention of the whole society has been paid to food safety. Over the last few years, dramatic social development has brought new challenges to food safety, making developing new and quick methods for on-site food safety testing an important necessity. As a result, DNA-fueled molecular machines, characterized by high efficiency, accuracy, and sensitivity in testing, have come into the spotlight, based on which sensors can be constructed to detect toxic and harmful substances in food products. This study reviewed recent research on several DNA-fueled molecular machines, including DNA tweezers, DNA walkers, and DNA origami, for rapidly detecting toxic and harmful substances. Based on the above studies, the sensitivity and timeliness of several DNA molecular machines were summarized and compared, and the development prospect of DNA fuel molecular machines in the field of food safety detection was prospected.
Collapse
Affiliation(s)
- Yujing Ma
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Rui Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
5
|
Xu JM, Lv Y, Xu K, Liu X, Wang K, Zi HY, Zhang G, Wang AJ, Lu S, Cheng HY. Long-distance responses of ginger to soil sulfamethoxazole and chromium: Growth, co-occurrence with antibiotic resistance genes, and consumption risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122081. [PMID: 37414118 DOI: 10.1016/j.envpol.2023.122081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
The coexistence of antibiotics and heavy metals in agroecosystems is nonnegligible, which permits the promotion of antibiotic resistance genes (ARGs) in crops, thus posing a potential threat to humans along the food chain. In this study, we investigated the bottom-up (rhizosphere→rhizome→root→leaf) long-distance responses and bio-enrichment characteristics of ginger to different sulfamethoxazole (SMX) and chromium (Cr) contamination patterns. The results showed that ginger root systems adapted to SMX- and/or Cr-stress by increasing humic-like exudates, which may help to maintain the rhizosphere indigenous bacterial phyla (i.e., Proteobacteria, Chloroflexi, Acidobacteria and Actinobacteria). The root activity, leaf photosynthesis and fluorescence, and antioxidant enzymes (SOD, POD, CAT) of ginger were significantly decreased under high-dose Cr and SMX co-contamination, while a "hormesis effect" was observed under single low-dose SMX contamination. For example, CS100 (co-contamination of 100 mg/L SMX and 100 mg/L Cr) caused the most severe inhibition to leaf photosynthetic function by reducing photochemical efficiency (reflected on PAR-ETR, φPSII and qP). Meanwhile, CS100 induced the highest ROS production, in which H2O2 and O2·- increased by 328.82% and 238.00% compared with CK (the blank control without contamination). Moreover, co-selective stress by Cr and SMX induced the increase of ARG bacterial hosts and bacterial phenotypes containing mobile elements, contributing to the high detected abundance of target ARGs (sul1, sul2) up to 10-2∼10-1 copies/16S rRNA in rhizomes intended for consumption.
Collapse
Affiliation(s)
- Jia-Min Xu
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hu-Yi Zi
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ai-Jie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao-Yi Cheng
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, Abd Elaty AE, Elgendy IM, Etman AE, Saad KE, Tsigkou K, Ali SS, Kornaros M, Mahmoud YAG. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. TOXICS 2023; 11:580. [PMID: 37505546 PMCID: PMC10384455 DOI: 10.3390/toxics11070580] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Natural and anthropogenic sources of metals in the ecosystem are perpetually increasing; consequently, heavy metal (HM) accumulation has become a major environmental concern. Human exposure to HMs has increased dramatically due to the industrial activities of the 20th century. Mercury, arsenic lead, chrome, and cadmium have been the most prevalent HMs that have caused human toxicity. Poisonings can be acute or chronic following exposure via water, air, or food. The bioaccumulation of these HMs results in a variety of toxic effects on various tissues and organs. Comparing the mechanisms of action reveals that these metals induce toxicity via similar pathways, including the production of reactive oxygen species, the inactivation of enzymes, and oxidative stress. The conventional techniques employed for the elimination of HMs are deemed inadequate when the HM concentration is less than 100 mg/L. In addition, these methods exhibit certain limitations, including the production of secondary pollutants, a high demand for energy and chemicals, and reduced cost-effectiveness. As a result, the employment of microbial bioremediation for the purpose of HM detoxification has emerged as a viable solution, given that microorganisms, including fungi and bacteria, exhibit superior biosorption and bio-accumulation capabilities. This review deals with HM uptake and toxicity mechanisms associated with HMs, and will increase our knowledge on their toxic effects on the body organs, leading to better management of metal poisoning. This review aims to enhance comprehension and offer sources for the judicious selection of microbial remediation technology for the detoxification of HMs. Microbial-based solutions that are sustainable could potentially offer crucial and cost-effective methods for reducing the toxicity of HMs.
Collapse
Affiliation(s)
- Manar K. Abd Elnabi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biotechnology Program, Institute of Basic and Applied Science (BAS), Egypt-Japan University of Science and Technology, New Borg El-Arab City 21934, Egypt
| | - Nehal E. Elkaliny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Maha M. Elyazied
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shimaa H. Azab
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shawky A. Elkhalifa
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Sohaila Elmasry
- Microbiology Department, Faculty of science, Damanhour University, Behaira 22514, Egypt;
| | - Moustafa S. Mouhamed
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ebrahim M. Shalamesh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Naira A. Alhorieny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Abeer E. Abd Elaty
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ibrahim M. Elgendy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Alaa E. Etman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Kholod E. Saad
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Sameh S. Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Yehia A.-G. Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| |
Collapse
|
7
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
8
|
Šnirc M, Jančo I, Hauptvogl M, Jakabová S, Demková L, Árvay J. Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content. J Fungi (Basel) 2023; 9:287. [PMID: 36983455 PMCID: PMC10054052 DOI: 10.3390/jof9030287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Wild-growing edible mushrooms contain many biologically valuable substances. However, they are considered a risk commodity due to their extremely high capacity for bioaccumulation of potential risk elements and pollutants from the environment. Four bolete mushrooms from the genus Leccinum were collected from 16 forested areas of Slovakia from June to October 2019. The total mercury content in soil and fruiting body parts was determined by an AMA-254 Advanced Mercury Analyzer. Soil pollution by total mercury was evaluated by contamination factor (Cfi). Bioaccumulation factor (BCF), translocation factor (Qc/s), percentage of provisional tolerable weekly intake (%PTWI), and target hazard quotient (THQ) were used to describe and compare uptake and transition abilities of mushrooms, and the health risk arising from consumption of the mushrooms. Total mercury content varied between 0.05 to 0.61 mg kg-1 DW in the soil/substrate samples, and between 0.16 and 5.82 (caps), and 0.20 and 3.50 mg kg-1 DW (stems) in fruiting body samples. None of the analyzed locations represented a health risk based on %PTWI values, however, three locations may pose a significant health risk from the perspective of THQ values.
Collapse
Affiliation(s)
- Marek Šnirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ivona Jančo
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Martin Hauptvogl
- Institute of Environmental Management, Faculty of European Studies and Regional Development, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Silvia Jakabová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Lenka Demková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 081 16 Prešov, Slovakia
| | - Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
9
|
Xu X, Wang J, Wu H, Lu R, Cui J. Bioaccessibility and bioavailability evaluation of heavy metal(loid)s in ginger in vitro: Relevance to human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159582. [PMID: 36272485 DOI: 10.1016/j.scitotenv.2022.159582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Ginger is a common spice in everyday diet. However, over time, it may absorb and accumulate heavy metal(loid)s (HMs) from the soil, posing a potential health risk to humans. In this study, we evaluated the pollution level, bioavailability, mobility evaluation, and health risk of Cr, Pb, Cd, and As in the soil-ginger system of five major ginger-producing cities in Shandong Province, China. Research indicated the concentrations of the Cr, Pb, Cd, and As in the soil were close to or even higher than background value, except Weifang. With the concentrations of Cr, Pb, Cd, and As in ginger being 0.08-0.47, 0.03-0.16, 0.002-0.03, and 0.006-0.028 mg/kg, the four HMs concentrations were within the limits of 0.1-0.5 mg/kg based on the Chinese health standard (GB2762-2017) of HMs in food. The bioavailability of HMs in soils was evaluated using diethylenetriaminepentaacetic acid (DTPA) and nitric acid (HNO3) extraction and the results showed that Pb and Cd have high bioavailability. Mobility evaluation of HMs from soil to ginger based on Pearson's correlation and the partial least squares-path method (PLS-PM) model showed that the soil's physicochemical properties influence the HMs migration process (especially Cd and Pb) in the soil-ginger system, and the PLS-PM model has good adaptability to Cd and Pb (gof > 0.5). The mean total carcinogenic risk (TCR) of bioaccessible gastric and intestinal HMs were 4.64 × 10-6 and 3.13 × 10-6, which were much lower than that of total HMs (2.60 × 10-5), indicating that existing models based on total HMs may overestimate the health risk of HMs. The bioaccessible concentrations should be considered to improve the accuracy of assessment results.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rui Lu
- Chinese Academy of Environmental Planning, Beijing 100012, PR China.
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
10
|
Wang X, Zhong W, Wang B, Quan M, Li T, Lin D, Shang S, Zhu C, Zhang C, Liao Y. Spatial-temporal variations and pollution risks of mercury in water and sediments of urban lakes in Guangzhou City, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80817-80830. [PMID: 35729385 DOI: 10.1007/s11356-022-21424-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This study aims to investigate the spatial and temporal characteristics, pollution degrees, and potential ecological risks of mercury (Hg) in urban lake waters and sediments in Guangzhou, where is a typical area of Hg emission and population-economic-industrial concentration in South China. In different districts of this city, the water from 15 lakes were collected continuously from June 2020 to May 2021, and the sediments from 9 lakes were collected in 2015 and 2021. The seasonal changes of Hg concentration (Hg-C) in the water were found to be high in winter and low in summer. The spatial distribution of Hg-C in sediments showed that it was high in urban central areas and low in suburbs. The Nemero index and geological accumulation index showed that there were uncontaminated of Hg in the collected lake water, and above moderately contaminated in the lake sediments in urban center, respectively. The Hg pollution potential ecological risk index showed that there was low risk in the collected water, high and extremely high risk in the lake sediments in urban center, respectively. The principal component analysis (PCA) and correlation analysis (CA) of Hg and meteorological factors showed that precipitation, temperature, and vapor pressure had negative effects on the seasonal changes of Hg-C in water, and air pressure and wind direction had positive effects. The PCA and CA of Hg and other geochemical elements showed that anthropogenic emissions may be the main sources of Hg in sediments, which was also supported by the data of population density, road density, and motor vehicles per 1000 people. This study provided a reference for urban lake pollution treatment, resident health, and ecological environment protection.
Collapse
Affiliation(s)
- Xiaojun Wang
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Zhong
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Bingxiang Wang
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mingying Quan
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tianhang Li
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China
| | - Durui Lin
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shengtan Shang
- School of Earth Science and Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chan Zhu
- Guangdong Center for Marine Development Research, Guangzhou, 510220, China
| | - Churan Zhang
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiling Liao
- School of Geography Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
11
|
Li Y, Wang K, Kong Y, Lv Y, Xu K. Toxicity and tissue accumulation characteristics of the herbicide pendimethalin under silicon application in ginger (Zingiber officinale Roscoe). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25263-25275. [PMID: 34839461 DOI: 10.1007/s11356-021-17740-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Environmental health and food safety issues potentially caused by the dinitroaniline herbicide pendimethalin (PM) are a worldwide concern. The toxicity response of ginger and tissue accumulation effects of PM on ginger biomass were studied by utilizing PM (CK (clean water), PM1 (0.4%), PM2 (0.67%), PM3 (1.0%), and PM4 (1.67%)) in a dose-response study. It significantly reduced the biomass of ginger under PM4, which is attributed to root damage. The net photosynthetic rate of ginger under PM4 was 11.37% lower than that of CK, which is mainly caused by stomatal limitation. In addition, the ultrastructure of chloroplasts has changed. PM4 caused the accumulation of reactive oxygen species (ROS) in ginger. The activity of superoxide dismutase (SOD) and peroxidase (POD) increased accordingly, maintaining the dynamic balance of ROS content. PM had no significant effect on the expression of ginger α-tubulin genes. PM was significantly accumulated in ginger roots, but not rhizomes. Si increased the productivity of ginger under PM4, which is mainly related to the increase of root development (root application of silicon) and photosynthetic efficiency (foliar application of silicon). Si reduced the ROS content due to the increase in SOD, POD, and catalase (CAT) activity and photosynthetic efficiency.
Collapse
Affiliation(s)
- Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yuwen Kong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
12
|
Li N, Wang K, Lv Y, Zhang Z, Cao B, Chen Z, Xu K. Silicon enhanced the resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to ofloxacin on the growth, photosynthetic characteristics and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:44-57. [PMID: 35180528 DOI: 10.1016/j.plaphy.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/22/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The negative impact of the misuse of antibiotics on agriculture and human health has become a popular research topic with the increasing usage of antibiotics; however, little information is available about the mechanisms of OFL (ofloxacin) and Si (silicon). In this experiment, we applied 7 OFL concentrations to two Chinese cabbage cultivars (Qinghua and Biyu) to screen proper OFL concentrations. OFL concentrations of 0, 1, 2.5 and 5 mg L-1 were selected for the subsequent test and 1.2 mmol L-1 Si was used as mitigation. The results showed that Biyu suffered more damage than Qinghua and the injury degree increased in a concentration-dependent manner. With increasing OFL concentrations, the photosynthetic fluorescence was weakened significantly; under 1, 2.5 and 5 mg L-1 OFL, the Pn reduced by 5.35%, 35.92% and 43.62% in Qinghua and 33.98%, 41.94% and 64.66% in Biyu, respectively. The production rate of O2-, H2O2 and the MDA content were increased and Biyu appeared higher increase rates. In addition, the antioxidant enzymes contents first increased and then decreased and that of Qinghua increased more than Biyu. Si ensured the growth under OFL and protected its photosynthetic ability. Under the OFL1+Si, OFL2.5 + Si and OFL5+Si treatments, Pn increased by 3.91%, 15.95 and 15.69% in Qinghua and 28.82%, 20.40% and 39.01% in Biyu. Si also maintained the structural integrity of leaf organelles and improved the scavenging ability of ROS by increasing the activity and relative gene expression of antioxidant enzymes. Moreover, varietal differences may play a more important role than Si.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | | | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
13
|
Durante-Yánez EV, Martínez-Macea MA, Enamorado-Montes G, Combatt Caballero E, Marrugo-Negrete J. Phytoremediation of Soils Contaminated with Heavy Metals from Gold Mining Activities Using Clidemia sericea D. Don. PLANTS (BASEL, SWITZERLAND) 2022; 11:597. [PMID: 35270068 PMCID: PMC8912359 DOI: 10.3390/plants11050597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Soils contaminated by potentially toxic elements (PTEs) as a result of anthropogenic activities such as mining are a problem due to the adverse effects on human and environmental health, making it necessary to seek sustainable strategies to remediate contaminated areas. The objective of this study was to evaluate the species Clidemia sericea D. Don for the phytoremediation of soils contaminated with PTEs (Hg, Pb, and Cd) from gold mining activities. The study was conducted for three months, with soils from a gold mining area in northern Colombia, and seeds of C. sericea, under a completely randomized experimental design with one factor (concentration of PTEs in soil) and four levels (control (T0), low (T1), medium (T2), and high (T3)), each treatment in triplicate, for a total of twelve experimental units. Phytotoxic effects on plants, bioconcentration (BCF), and translocation (TF) factors were determined. The results obtained for the tissues differed in order of metal accumulation, with the root showing the highest concentration of metals. The highest values of bioconcentration (BCF > 1) were presented for Hg at T3 and Cd in the four treatments; and of translocation (TF > 1) for Hg and Pb at T0 and T1; however, for Pb, the TF indicates that it is transferable, but it is not considered for phytoextraction. Thus, C. sericea demonstrated its potential as a phytostabilizer of Hg and Cd in mining soils, strengthening as a wild species with results of resistance to the stress of the PTEs evaluated, presenting similar behavior and little phytotoxic affectation on the growth and development of each of the plants in the different treatments.
Collapse
Affiliation(s)
- Elvia Valeria Durante-Yánez
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - María Alejandra Martínez-Macea
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - Germán Enamorado-Montes
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - Enrique Combatt Caballero
- Department of Agricultural Engineering and Rural Development, Faculty of Agricultural Sciences, University of Córdoba, Montería 230002, Colombia;
| | - José Marrugo-Negrete
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| |
Collapse
|
14
|
Ahire ML, Mundada PS, Nikam TD, Bapat VA, Penna S. Multifaceted roles of silicon in mitigating environmental stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:291-310. [PMID: 34826705 DOI: 10.1016/j.plaphy.2021.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Food security relies on plant productivity and plant's resilience to climate change driven environmental stresses. Plants employ diverse adaptive mechanisms of stress-signalling pathways, antioxidant defense, osmotic adjustment, nutrient homeostasis and phytohormones. Over the last few decades, silicon has emerged as a beneficial element for enhancing plant growth productivity. Silicon ameliorates biotic and abiotic stress conditions by regulating the physiological, biochemical and molecular responses. Si-uptake and transport are facilitated by specialized Si-transporters (Lsi1, Lsi2, Lsi3, and Lsi6) and, the differential root anatomy has been shown to reflect in the varying Si-uptake in monocot and dicot plants. Silicon mediates a number of plant processes including osmotic, ionic stress responses, metabolic processes, stomatal physiology, phytohormones, nutrients and source-sink relationship. Further studies on the transcriptional and post-transcriptional regulation of the Si transporter genes are required for better uptake and transport in spatial mode and under different stress conditions. In this article, we present an account of the availability, uptake, Si transporters and, the role of Silicon to alleviate environmental stress and improve plant productivity.
Collapse
Affiliation(s)
- M L Ahire
- Department of Botany, Yashavantrao Chavan Institute of Science, Satara, 415 001, Maharashtra, India
| | - P S Mundada
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India; Department of Biotechnology, Yashavantrao Chavan Institute of Science, Satara, 415 001, Maharashtra, India
| | - T D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India
| | - V A Bapat
- Department of Biotechnology, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - Suprasanna Penna
- Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, 400 094, Maharashtra, India.
| |
Collapse
|
15
|
Lv Y, Li Y, Liu X, Xu K. Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117321. [PMID: 33975211 DOI: 10.1016/j.envpol.2021.117321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L-1), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L-1, H202, O2-, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L-1 SMZ, the SMZ accumulation in fruits was 110.54 μg kg-1, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
16
|
Jančo I, Šnirc M, Hauptvogl M, Demková L, Franková H, Kunca V, Lošák T, Árvay J. Mercury in Macrolepiota procera (Scop.) Singer and Its Underlying Substrate-Environmental and Health Risks Assessment. J Fungi (Basel) 2021; 7:772. [PMID: 34575810 PMCID: PMC8467616 DOI: 10.3390/jof7090772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Wild-growing edible mushrooms are valuable food with a high content of proteins, fibers, antioxidants, and they are characterized by their specific taste and flavor. However, from an ecotoxicological point of view, they are a risk commodity because of their extremely high bioaccumulative capacity to accumulate the risk elements and contaminants from the environment. In the present study, we examined mercury (Hg) contamination in 230 fruiting bodies of Macrolepiota procera (Scop.) Singer and 230 soil/substrate samples, which were collected in foraging seasons 2015-2019 from 22 different locations in Slovakia. Total mercury content was determined by cold-vapor AAS analyzer AMA 254. The level of contamination and environmental risks were assessed by contamination factor (Cf), index of geoaccumulation (Igeo), and potential environmental risk index (PER). Bioaccumulation factor (BAF) was calculated for individual anatomical parts of M. procera. Mercury content in the soil/substrate samples varied between 0.02 and 0.89 mg kg-1 DW, and in mushroom samples between 0.03 and 2.83 mg kg-1 DW (stems), and between 0.04 and 6.29 mg kg-1 DW (caps). The obtained results were compared with the provisional tolerable weekly intake for Hg defined by WHO to determine a health risk resulting from regular and long-term consumption of M. procera.
Collapse
Affiliation(s)
- Ivona Jančo
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| | - Marek Šnirc
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| | - Martin Hauptvogl
- Faculty of European Studies and Regional Development, Institute of Environmental Management, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| | - Lenka Demková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 081 16 Prešov, Slovakia;
| | - Hana Franková
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| | - Vladimír Kunca
- Department of Applied Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 01 Zvolen, Slovakia;
| | - Tomáš Lošák
- Department of Environmentalistics and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, 613 00 Brno, Czech Republic;
| | - Július Árvay
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.Š.); (H.F.); (J.Á.)
| |
Collapse
|
17
|
Improvement of Oral Bioavailability and Anti-Tumor Effect of Zingerone Self-Microemulsion Drug Delivery System. J Pharm Sci 2021; 110:2718-2727. [PMID: 33610568 DOI: 10.1016/j.xphs.2021.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
This study sought to prepare a self-microemulsion drug delivery system containing zingerone (Z-SMEDDS) to improve the low oral bioavailability of zingerone and anti-tumor effect. Z-SMEDDS was characterized by particle size, zeta potential and encapsulation efficiency, while its pharmacokinetics and anti-tumor effects were also evaluated. Z-SMEDDS had stable physicochemical properties, including average particle size of 17.29 ± 0.07 nm, the zeta potential of -22.81 ± 0.29 mV, and the encapsulation efficiency of 97.96% ± 0.02%. In vitro release studies have shown the release of zingerone released by Z-SMEDDS was significantly higher than free zingerone in different release media. The relative oral bioavailability of Z-SMEDDS was 7.63 times compared with free drug. Meanwhile, the half inhibitory concentration (IC50)of Z-SMEDDS and free zingerone was 8.45 μg/mL and 13.30 μg/mL, respectively on HepG2. This study may provide a preliminary basis for further clinical research and application of Z-SMEDDS.
Collapse
|
18
|
Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK. Fascinating impact of silicon and silicon transporters in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110885. [PMID: 32650140 DOI: 10.1016/j.ecoenv.2020.110885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is a metalloid which is gaining worldwide attention of plant scientists due to its ameliorating impact on plants' growth and development. The beneficial response of Si is observed predominantly under numerous abiotic and biotic stress conditions. However, under favorable conditions, most of the plant can grow without it. Therefore, Si has yet not been fully accepted as essential element rather it is being considered as quasi-essential for plants' growth. Si is also known to enhance resilience in plants by reducing the plant's stress. Besides its second most abundance on the earth crust, most of the soils lack plant available form of Si i.e. silicic acid. In this regard, understanding the role of Si in plant metabolism, its uptake from roots and transport to aerial tissues along with its ionomics and proteomics under different circumstances is of great concern. Plants have evolved a well-optimized Si-transport system including various transporter proteins like Low silicon1 (Lsi1), Low silicon2 (Lsi2), Low silicon3 (Lsi3) and Low silicon6 (Lsi6) at specific sub-cellular locations along with the expression profiling that creates precisely coordinated network among these transporters, which also facilitate uptake and accumulation of Si. Though, an ample amount of information is available pertinent to the solute specificity, active sites, transcriptional and post-transcriptional regulation of these transporter genes. Similarly, the information regarding transporters involved in Si accumulation in different organelles is also available particularly in silica cells occurred in poales. But in this review, we have attempted to compile studies related to plants vis à vis Si, its role in abiotic and biotic stress, its uptake in various parts of plants via different types of Si-transporters, expression pattern, localization and the solute specificity. Besides these, this review will also provide the compiled knowledge about the genetic variation among crop plants vis à vis enhanced Si uptake and related benefits.
Collapse
Affiliation(s)
- Shweta Gaur
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Institute of Engineering and Technology, Dr. Shakuntla Misra National Rehabilitation University, Mohaan Road, Lucknow, U.P, 226017, India.
| | - Dharmendra Kumar
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India
| | - Devendra Kumar Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Prabhat Kumar Srivastava
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Department of Botany, KS Saket PG College, Ayodhya U.P, 224123., India.
| |
Collapse
|