1
|
Liu W, Feng Y, Chen S, Chu R, Li S, Wang Y, Yan Y. TiO 2 nanoparticles improves cadmium toxicity tolerance in Hemerocallis citrina Baroni by modulating photosynthetic and antioxidative profile. PLANT CELL REPORTS 2025; 44:105. [PMID: 40295382 DOI: 10.1007/s00299-025-03502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE TiO2 nanoparticles mitigates the toxicity of Cd to Hemerocallis citrina Baroni (daylily) by modulating the photosynthetic and antioxidative system, as revealed by physiological and transcriptomic analysis. Cadmium (Cd) is a common heavy metal pollutant exerting toxicity to plants. The unique physiochemical properties of titanium dioxide nanoparticles (TiO2 NPs) suggest their potential applications in agriculture. The molecular and physiological responses of Hemerocallis citrina Baroni (daylily) to Cd stress and the ameliorative effect of TiO2 NPs were investigated. KEGG enrichment analysis on differentially expressed genes (DEGs) revealed pronounced enrichment of pathways related to photosynthesis. GO enrichment analysis showed that chlorophyll metabolism and redox process were also notably enriched. Furthermore, weighted gene co-expression network analysis (WGCNA) demonstrated remarkable responses of photosynthetic characteristics and antioxidative system, and identified MYB, NAC, and WRKY transcription factors which played key roles in the Cd-stress response and regulation by TiO2 NPs. Under 5 mmol·L-1 Cd stress, daylily growth was severely inhibited, and cell membrane permeability and osmolytes significantly increased. Additionally, Cd stress pronouncedly impaired photosynthesis, increased the accumulation of reactive oxygen species in leaves, and inhibited the activities of most antioxidants. However, foliar spraying of 200 mg·L-1 TiO2 NPs promoted plant growth and increased osmolytes. The inhibition on leaf photosynthetic antenna proteins, photosystem reaction center activity, electron transfer rate, chlorophyll synthesis, and Calvin cycle process was markedly alleviated by upregulating corresponding gene expression as revealed by photosynthesis-related traits and DEG analysis. The activities of key enzymes in ascorbate-glutathione (AsA-GSH) cycle and thioredoxin-peroxiredoxin (Trx-Prx) pathway were enhanced, and the regeneration of AsA and GSH was promoted. Overall, TiO2 NPs mitigated Cd-induced inhibition of photosynthesis and antioxidative system, and enhanced Cd tolerance of daylily.
Collapse
Affiliation(s)
- Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuwei Feng
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuo Chen
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Chu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Siyue Li
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Wang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongqing Yan
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Wang J, Cui C, Qi S, Wang Z, Song J, Ji G, Sun N, Liu X, Zhang H. The NAC transcription factor PagNAC17 enhances salt tolerance in poplar by alleviating photosynthetic inhibition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109645. [PMID: 39955821 DOI: 10.1016/j.plaphy.2025.109645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The NAC transcription factor family is essential for plant growth, development, and stress responses. This study, based on RNA-Seq data from 84K poplar and weighted gene co-expression network analysis (WGCNA), identified PagNAC17 as a key factor in the salt stress response of poplar. A total of 202 PtrNAC TFs were identified and categorized into two major subfamilies, with their conserved motifs, gene structures, and cis-acting elements analyzed. Genes co-expressed with PagNAC17 are involved in energy metabolism, such as photosynthesis (e.g., light absorption and CO2 fixation), oxidative phosphorylation, signal transduction processes, and stress responses (e.g., the glutathione metabolism pathway), suggesting that PagNAC17 may regulate salt tolerance in poplar through these pathways. PagNAC17 is localized in the nucleus, primarily expressed in young leaves with the lowest expression in roots, and has transcriptional activation activity. The expression of PagNAC17 in yeast significantly enhances growth under salt conditions. Likewise, the overexpression of PagNAC17 in 84K poplar also significantly enhances salt tolerance, reducing yellowing, wilting, and oxidative damage. In summary, PagNAC17 is a key salt-tolerance regulator within the poplar NAC gene family. This study provides valuable insights for functional research on the NAC TFs family and offers a promising genetic resource for the salt-tolerance breeding of poplar.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyue Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zheyuan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xuemei Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Shah AA, Usman S, Noreen Z, Kaleem M, Raja V, El-Sheikh MA, Ibrahim Z, Sehar S. Fullerenol nanoparticles and AMF application for optimization of Brassica napus L. resilience to lead toxicity through physio-biochemical and antioxidative modulations. Sci Rep 2024; 14:30992. [PMID: 39730765 DOI: 10.1038/s41598-024-82086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites. In this study, the ameliorative role of carbon based fullerenol nanoparticles (FNPs) in combination with Arbuscular Mycorrhizal Fungi (AMF) inoculation was examined in Brassica napus L. grown in Pb contaminated soil. A pot experiment in three-ways completely randomize fashion with three replicates was conducted. For Pb stress, a 200 µM PbCl2 solution was applied at a rate of 1 L per pot. FNPs were applied via foliar spray at a concentration of 3 mM. For AMF inoculation rhizospheric soil was collected from Sorghum bicolor fields and used in this experiment. Results of the study showed that Pb toxicity greatly reduced growth (shoot length; 15%, root length; 25%) of B. napus plants. It lowered photosynthesis (38%) and gas exchange related attributes. Pb contamination caused oxidative stress, evident from elevated level of malondialdehyde (62%), and reactive oxygen species (H2O2; 60%, OH-; 103% and O2•-; 23%). It also triggered the antioxidant defense system of B. napus. These plants also had high Pb metal ions in their root and shoot compared with control. Foliar application of FNPs along with AMF inoculation effectively mitigated oxidative stress caused by Pb via increasing antioxidant enzymes activities. Catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, phenylalanine ammonia-lyase and polyphenol peroxidase activities were increased by 37, 19, 96, 200, 47, 117 and 47%, respectively. In conclusion, these treatments modulated photosynthetic machinery, antioxidant defense mechanism and nutrients uptake in B. napus plants to alleviate Pb stress. It is presumed that use of carbon-based nano particles in combination with AMF inoculation could effectively mitigate HMs stress in crop plants grown in contaminated soil.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Kaleem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Vaseem Raja
- University Centre for Research and Development Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zakir Ibrahim
- Faculty of Agriculture, Department of Biotechnology and Bioinformatics, Lasbela University of Agriculture, Water and Marine Sciences, Uthal , 90150, Pakistan
| | - Shafaque Sehar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Pinto-Zevallos DM, Blande JD. Challenges of climate change and air pollution for volatile-mediated plant-parasitoid signalling. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101290. [PMID: 39471911 DOI: 10.1016/j.cois.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Herbivore-induced plant volatiles (HIPVs) are reliable cues that parasitoids can use to locate host patches. Interactions mediated by plant volatile organic compounds (VOCs) are vulnerable to disturbance by predicted climate change and air pollution scenarios. Abiotic stress-induced VOCs may act as false signals to parasitoids. Air pollutants can disrupt signalling by degrading HIPVs at different rates and preventing the perception of olfactory signals by reducing the sensitivity of olfactory receptors or by occluding insect sensillae. As essential components of biological control programmes, efforts should be made to assess how different parasitoid species respond and adapt to HIPVs in predicted scenarios. Since providing parasitoid food sources is a promising practice for boosting biological control, parasitoid-flower interactions deserve attention.
Collapse
Affiliation(s)
- Delia M Pinto-Zevallos
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PL 1627, 70211 Kuopio, Finland.
| | - James D Blande
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PL 1627, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Gatasheh MK, Shah AA, Kaleem M, Usman S, Shaffique S. Application of CuNPs and AMF alleviates arsenic stress by encompassing reduced arsenic uptake through metabolomics and ionomics alterations in Elymus sibiricus. BMC PLANT BIOLOGY 2024; 24:667. [PMID: 38997682 PMCID: PMC11245830 DOI: 10.1186/s12870-024-05359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Kaleem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, Daegu, 41566, Korea
| |
Collapse
|
6
|
Chen S, Zhou Q, Feng Y, Dong Y, Zhang Z, Wang Y, Liu W. Responsive mechanism of Hemerocallis citrina Baroni to complex saline-alkali stress revealed by photosynthetic characteristics and antioxidant regulation. PLANT CELL REPORTS 2024; 43:176. [PMID: 38896259 DOI: 10.1007/s00299-024-03261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE Saline-alkali stress induces oxidative damage and photosynthesis inhibition in H. citrina, with a significant downregulation of the expression of photosynthesis- and antioxidant-related genes at high concentration. Soil salinization is a severe abiotic stress that impacts the growth and development of plants. In this study, Hemerocallis citrina Baroni was used to investigate its responsive mechanism to complex saline-alkali stress (NaCl:Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) for the first time. The growth phenotype, photoprotective mechanism, and antioxidant system of H. citrina were studied combining physiological and transcriptomic techniques. KEGG enrichment and GO analyses revealed significant enrichments of genes related to photosynthesis, chlorophyll degradation and antioxidant enzyme activities, respectively. Moreover, weighted gene co-expression network analysis (WGCNA) found that saline-alkali stress remarkably affected the photosynthetic characteristics and antioxidant system. A total of 29 key genes related to photosynthesis and 29 key genes related to antioxidant enzymes were discovered. High-concentration (250 mmol L-1) stress notably inhibited the expression levels of genes related to light-harvesting complex proteins, photosystem reaction center activity, electron transfer, chlorophyll synthesis, and Calvin cycle in H. citrina leaves. However, most of them were insignificantly changed under low-concentration (100 mmol L-1) stress. In addition, H. citrina leaves under saline-alkali stress exhibited yellow-brown necrotic spots, increased cell membrane permeability and accumulation of reactive oxygen species (ROS) as well as osmolytes. Under 100 mmol L-1 stress, ROS was eliminate by enhancing the activities of antioxidant enzymes. Nevertheless, 250 mmol L-1 stress down-regulated the expression levels of genes encoding antioxidant enzymes, and key enzymes in ascorbate-glutathione (AsA-GSH) cycle as well as thioredoxin-peroxiredoxin (Trx-Prx) pathway, thus inhibiting the activities of these enzymes. In conclusion, 250 mmol L-1 saline-alkali stress caused severe damage to H. citrina mainly by inhibiting photosynthesis and ROS scavenging capacity.
Collapse
Affiliation(s)
- Shuo Chen
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Qiuxue Zhou
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuwei Feng
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yanjun Dong
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zixuan Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Wang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Song L, Yu Y, Chen H, Feng Y, Chen S, Zhang H, Zhou H, Meng L, Wang Y. Response of photosynthetic characteristics and antioxidant system in the leaves of safflower to NaCl and NaHCO 3. PLANT CELL REPORTS 2024; 43:146. [PMID: 38764051 DOI: 10.1007/s00299-024-03234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
KEY MESSAGE Compared with NaCl, NaHCO3 caused more serious oxidative damage and photosynthesis inhibition in safflower by down-regulating the expression of related genes. Salt-alkali stress is one of the important factors that limit plant growth. NaCl and sodium bicarbonate (NaHCO3) are neutral and alkaline salts, respectively. This study investigated the physiological characteristics and molecular responses of safflower (Carthamus tinctorius L.) leaves treated with 200 mmol L-1 of NaCl or NaHCO3. The plants treated with NaCl treatment were less effective at inhibiting the growth of safflower, but increased the content of malondialdehyde (MDA) in leaves. Meanwhile, safflower alleviated stress damage by increasing proline (Pro), soluble protein (SP), and soluble sugar (SS). Both fresh weight and dry weight of safflower was severely decreased when it was subjected to NaHCO3 stress, and there was a significant increase in the permeability of cell membranes and the contents of osmotic regulatory substances. An enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes identified significant enrichment of photosynthesis and pathways related to oxidative stress. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the darkgreen module had the highest correlation with photosynthesis and oxidative stress traits. Large numbers of transcription factors, primarily from the MYB, GRAS, WRKY, and C2H2 families, were predicted from the genes within the darkgreen module. An analysis of physiological indicators and DEGs, it was found that under saline-alkali stress, genes related to chlorophyll synthesis enzymes were downregulated, while those related to degradation were upregulated, resulting in inhibited chlorophyll biosynthesis and decreased chlorophyll content. Additionally, NaCl and NaHCO3 stress downregulated the expression of genes related to the Calvin cycle, photosynthetic antenna proteins, and the activity of photosynthetic reaction centers to varying degrees, hindering the photosynthetic electron transfer process, suppressing photosynthesis, with NaHCO3 stress causing more pronounced adverse effects. In terms of oxidative stress, the level of reactive oxygen species (ROS) did not change significantly under the NaCl treatment, but the contents of hydrogen peroxide and the rate of production of superoxide anions increased significantly under NaHCO3 stress. In addition, treatment with NaCl upregulated the levels of expression of the key genes for superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate-glutathione cycle, and the thioredoxin-peroxiredoxin pathway, and increased the activity of these enzymes, thus, reducing oxidative damage. Similarly, NaHCO3 stress increased the activities of SOD, CAT, and POD and the content of ascorbic acid and initiated the glutathione-S-transferase pathway to remove excess ROS but suppressed the regeneration of glutathione and the activity of peroxiredoxin. Overall, both neutral and alkaline salts inhibited the photosynthetic process of safflower, although alkaline salt caused a higher level of stress than neutral salt. Safflower alleviated the oxidative damage induced by stress by regulating its antioxidant system.
Collapse
Affiliation(s)
- Linlin Song
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongzhi Chen
- College of Bioengineering, Xinxiang Institute of Engineering, Henan, China
| | - Yuwei Feng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Haijia Zhou
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China
| | - Li Meng
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China.
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Wang Y, Guo D, Wang J, Tian B, Li Y, Sun G, Zhang H. Exogenous melatonin alleviates NO 2 damage in tobacco leaves by promoting antioxidant defense, modulating redox homeostasis, and signal transduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127265. [PMID: 34583160 DOI: 10.1016/j.jhazmat.2021.127265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 05/22/2023]
Abstract
Nitrogen dioxide (NO2) is a common outdoor air pollutant, which has adverse effects on the environment and human health. Herein, NO2 inhibited photosynthesis and antioxidant capacity in plants. Melatonin (Mel) is a neurohormone found in the pineal gland. Exogenous Mel alleviated chlorophyll degradation and increased the expression of key proteins and genes in the process of chlorophyll synthesis in tobacco leaves exposed to NO2. Additionally, the activities of photosystem II (PSII) and photosystem I (PSI) were enhanced. PSII and PSI reaction center proteins and genes were upregulated. Mel pre-treatment enhanced enzyme activities and expression of proteins related to the ascorbic acid-glutathione cycle and thioredoxin-peroxiredoxin pathway in leaves exposed to NO2, thus regulating their redox balance. Furthermore, exogenous Mel mediated the polyamine synthesis pathway and increased the expression of the key enzyme proteins SAMS1, SAMS2, and SAMS3 in the polyamine synthesis pathway in leaves under NO2 stress. Mel regulated ABA signal transduction and calmodulin binding transcription factors CAMTA12 and NtCaM calmodulin NtCaM2 in Ca2+ signal transduction. Collectively, these results elucidate that Mel can alleviate high-concentration NO2, thus suitable for agricultural application.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Dandan Guo
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jiechen Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bei Tian
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yuanyuan Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guangyu Sun
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Huihui Zhang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Sheng Q, Song M, Zhu Z, Cao F. Physiological and biochemical responses of two precious Carpinus species to high-concentration NO 2 stress and their natural recovery. Sci Rep 2021; 11:9500. [PMID: 33947881 PMCID: PMC8096962 DOI: 10.1038/s41598-021-84702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/19/2021] [Indexed: 11/09/2022] Open
Abstract
Carpinus betulus and Carpinus putoensis are precious species in the world. Studies on the ecosystem function of the two species are rare. This study investigated the physiological and biochemical responses of C. betulus and C. putoensis to NO2 stress and their natural recovery. C. betulus and C. putoensis seedlings underwent fumigation with 12.0 mg/m3 NO2 for 0, 1, 6, 12, 24, 48, and 72 h, respectively. Then, the plants were allowed to recover at room temperature for 30 d. Physiological and biochemical changes in the leaves were compared between the two species. In terms of peroxidase (POD) activity, the damage response of C. betulus under NO2 stress appeared later than that of C. putoensis. The soluble protein content of C. betulus was noticeably higher than that of C. putoensis, and C. betulus exhibited more stable membrane lipoperoxidation. The tendency of the changes in nitrate reductase of C. betulus was less noticeable than that of C. putoensis. The variation amplitudes of N, K, Mg, Zn and Mn in the leaves of C. putoensis were greater than those of C. betulus. C. putoensis showed more sensitive metabolisms in response to NO2 stress compared with C. betulus. High-concentration NO2 caused damage to C. betulus and C. putoensis was reversible, and both species returned to normal growth via their own metabolism after 30-d recovery. The results of this study may provide useful reference data for quantitative assessment of the ecosystem function of C. betulus and C. putoensis and for their scientific application in urban greening.
Collapse
Affiliation(s)
- Qianqian Sheng
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Min Song
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Co-Innovation Center for Sustainable Forestry in Southern China, College of Art and Design, Nanjing Forestry University, Nanjing, 210037, China.
| | - Fuliang Cao
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry of University, Nanjing, 210037, China
| |
Collapse
|